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Abstract 

 Many adaptation and mitigation measures related to climate change require a temporally 

relevant understanding and for action to be taken at all levels of political jurisdiction. We analyze 

the developments of county experiences from the years 1895 to 2023 within the CONUS, 

Western U.S., Arizona, and Minnesota by employing numerous methods. The first descriptive 

statistical methods examine overall trends and discern how average, maximum, and minimum 

temperatures and precipitation patterns have changed in variability, spatial variation, as well as 

how the distributions have developed over time. Polarization indices are then used to analyze 

how the climatic experiences of counties have grown, be it more similar or less similar. We find 

that, for most counties, temperature variables have decreased in variability and precipitation has 

negligibly changed, implying a convergence of temperature ranges and minute shifts in the 

variability of precipitation. For most counties, the polarization of temperature variables has also 

decreased, while the polarization of precipitation has changed very little, suggesting that county 

experiences of temperature across the United States have generally become more alike and that 

precipitation experiences have changed little. Meanwhile, elements of spatial variation are 

exhibited through varying levels of significance across our selected regions, and the primarily 

opposing directions of results in Arizonan summers, which frequently exhibit increases in both 

variability and polarization.  
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1 Introduction 

In the academic world, the perturbation of the Earth’s climate by human activity is 

generally a well-recognized actuality, and increasingly unusual weather trends stand as testimony 

to the fact that the Earth’s climate is changing. A study by the National Aeronautics and Space 

Administration (NASA) asserts that the last 10 years have been the warmest in recorded history 

(Bardan, 2024). Furthermore, a temperature analysis led by the Goddard Institute for Space 

Studies (GISS) at NASA states that since the 1880s, Earth’s average global temperature has been 

increasing at a non-constant rate, as there has been a nearly 2°F increase since the late 1800s, 

with the majority of these increases having occurred since the year 1975 (GISTEMPT Team, 

2024; Lenssen et al., 2019). Meanwhile, the Wisconsin Department of Natural Resources 

predicts that with the accelerating pace by which the earth is warming, global temperatures will 

rise by an even higher 3.6-7.2°F by the year 2100 (Wisconsin Department of Natural Resources, 

2024). Although researchers have long since been investigating the nature of climate change, the 

growing severity of the matter illuminates the importance of understanding the intricacies of how 

the natural environment is developing. These trends not only impose insidious threats to Earth’s 

habitability but also have had immediate consequences for people’s well-being. Tol (2018) 

studies the economic effects of climate change across the globe and combines the estimates of 

other studies to provide a condensed approximation stating that, globally, a temperature increase 

of 2.5°C would make the average person feel as though she or he had lost approximately 1.3% of 

her or his income. Although some scholars disagree on whether economic impacts will be 

positive or negative, it is widely recognized that while initial impacts are subject to debate, 

further warming will lead to net economic damages (d’Arge et al., 1982). Hsiang et al. (2017) 

estimates the economic damage specifically within the U.S. that may be caused by climate 
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change in the future. They predict significant economic damages of 1.2% costs to GDP per +1°C 

rise in temperature on average. Additionally, they predict greater impacts in the southern U.S. 

and systematically higher costs to low-income counties. Meanwhile, they expect positive impacts 

in parts of New England and the Pacific Northwest. With the exacerbation of the climate, spatial 

variation becomes more apparent as different regions face unique challenges that worsen at 

incongruent rates. While almost all climates are experiencing rising temperatures, some regions 

are changing so drastically that the local climate is growing less recognizable.  

Alongside the progression of climate change, the behaviors of passing seasons have 

increasingly been met with surprise and confusion. Many buildings in the Northeast and Mid-

Atlantic had never experienced high enough temperatures in any part of the year to warrant the 

use of air conditioning units. Consequently, many buildings in these regions were never equipped 

with AC units. In recent years, however, many are dealing with such drastically higher summer 

temperatures that AC units are needed, and all too many people are finding themselves in houses 

lacking the equipment to be properly cooled. Anomalies like uncharacteristic snow or rain in 

unexpected seasons, or remarkably hot days in what are classified as winter months, are 

occurrences that seem to be growing in incidence. While most other regions experience rising 

temperatures at varying rates, however, the southeastern United States is one of the few places in 

the world that is experiencing wetting and cooling trends (Portmann et al., 2009). The ways in 

which the direct and indirect impacts of climate change manifest are experienced differently 

across the United States. Studies (see, e.g., Portmann et al., 2009; Wang et al., 2009; Fan and 

Carroll, 2012) have explored regionality (spatial variation) in the U.S. and found sizable 

differences between regions. In terms of climate change, spatial variation is the idea that the 

impacts of climate change manifest dissimilarly across different regions. Understanding how 
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different regions experience climate change informs us on how to better address it. As such, 

many researchers have taken to examining how spatial variation manifests in historical climatic 

patterns (e.g., Wang et al., 2009; Fan and Carroll, 2012; Portmann et al., 2009) but do so using a 

variety of different methods and resources. Wang et al. (2009) and Fan and Carroll (2012) both 

use data that only extends from the year 1950 to 2000, while data used by Portmann et al. (2009), 

which spans the years from 1950 to 2006, is slightly more recent, but still lacks analysis of recent 

years. While we expect most of our findings to corroborate the patterns and conclusions reached 

in the existing literature, the pace at which climate change is accelerating suggests that the years 

since 2006 may be subject to considerably different results in terms of trend significance. Given 

growingly unusual weather patterns, an updated understanding of climatic developments may 

better protect against unexpected shifts in climatic trajectories. Further, we use different 

analytical methods than the aforementioned studies in an attempt provide new insights into the 

intricacies of climatic developments. 

The goal of this study is also to investigate the development of spatial variation, but at a 

more precise level than is taken on by other studies. With different regions facing the impacts of 

climate change differently, a thorough understanding of how climate change is manifesting for 

local areas is paramount. The importance is particularly stressed by the fact that many policy 

decisions regarding climate change, such as adaptive measures, are made at the county level. 

Optimizing responses, adaptation, and mitigation of negative impacts requires the enactment of 

national, state, and local policies (Howe et al., 2015). First, we will conduct a descriptively 

elementary analysis of how the climatic variables belonging to United States counties are 

changing to understand how different regions, variables, and seasons have developed since the 

year 1895. We will then follow Park and Shin (2023) and employ rigorous tests of polarization to 
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further analyze the variables with the goal of better understanding how climatic experiences 

between counties have evolved. Section 2 presents literature that is relevant to our study and 

describes how our work is related to and differs from that of other researchers. Section 3 

describes the source, composition, and structure of our data. Section 4 will describe our methods. 

Section 5 presents our results and observations. Section 6 will discuss limitations to our study 

and potential future avenues of study. Section 7 will conclude.  

2 Related Studies 

A recent study that correlates closely with the focuses of our own is Gao et al. (2023); a 

UK-based study that uses data from 37 stations for the period 1950 to February 2023 and a panel 

data model to investigate the seasonal and spatial variation in climatic variables. Although 

secular increases in temperature are present across nearly all locations, they find almost 

unanimous temperature trends but variations in the trends of rainfall. This study, however, was 

based in the United Kingdom. Our goals are nearly identical to this recently published study, but 

instead cover the scope of the contiguous United States. Portmann et al. (2009) is another study 

whose interests are aimed at examining similar climatic trends and exploring the dynamics of 

regional and seasonal variations as they relate to climate change. Portmann and co-authors 

explore temperature extremes and their relationship to precipitation in the United States, with a 

targeted approach to analyzing the peculiarly negative temperature trends of the southern region. 

They use station-level data from the National Centers for Environmental Information’s (NCEI) 

Global Historical Climatology Network Daily (GHCND) for daily mean, maximum, and 

minimum temperatures and precipitation amounts as recorded by thousands of weather stations 

across the United States with a focus on the years 1950-2006. The data is aggregated into 5° 
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longitude bins for regions between 30-40°N and 40-50°N latitude to analyze the spatial dynamics 

of temporal and seasonal climatic trends. Variables are observed on daily, monthly, bimonthly, 

and seasonal scales. They use significance testing and percentile exceedance trends to measure 

how different parts of distribution are affected differently. Exceedance rate percentiles are 

calculated using 5-day windows about that day for all years within the data. They measure the 

days that surpass the 90th percentile (90PET) and those that fall below the 10th percentile (10PET) 

for each year and determine the trends in exceedance rates over time. They found distinct 

differences in trends between the daily minimum and maximum temperatures, strong 

anticorrelation between daily temperatures and hydrologic cycles, and a strong presence of 

spatial variation. The relationship between temperature and hydrologic cycles was also found to 

be most pronounced in the May-June period for the southeastern U.S. and to a lesser extent 

during July-August in the northern region.  

The correlation displays significant seasonal and spatial variation as it is absent in the 

southern U.S. for the November-December period and in the northern U.S. for the November-

April period. Further, in terms of spatial variation, while trends in maximum temperature vary 

greatly across the U.S. from east to west, and to a lesser extent from north to south, minimum 

temperatures remain relatively homogenously increasing across the United States. Variation 

between variables is also found to be present, as trends for maximum temperature’s 90PET show 

a stronger correlation with precipitation than compared to mean or minimum temperatures, 

suggesting that maximum temperature extremes are more sensitive to precipitation. This 

relationship between temperatures and precipitation values implies that wetter conditions are 

associated with fewer extremely hot days, underscoring the impact of the hydrological processes 

on temperature extremes. Overall, their findings highlight the importance of analyzing the 
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temperature distributions and their extremes to gain a better understanding of spatial climate 

trends and the broader implications associated. We aim to contribute to the understanding of 

climatic variables’ distribution dynamics by using polarization indices and empirically testing the 

changes in distributions over time. Further, the dataset we use, NClimDiv (as discussed in 

section 3), improves upon many of the limitations and issues associated with the GHCND dataset 

as well as provides an updated analysis and results that are more relevant in terms of recency.  

A study done by Wang et al. (2009) investigates observed trends in surface air 

temperature and precipitation across the U.S., with a focus on seasonality and spatial variability. 

With a time frame somewhat similar to Portmann et al. (2009), Wang et al. (2009) uses grid-

based data from the CRU TS 2.1 dataset that covers the global land surface of the United States 

through the period 1950 to 2000. Using the NASA NSIPP-1 Atmospheric General Circulation 

Model (AGCM) and empirical orthogonal functions (EOF), they analyze the effects of changing 

sea surface temperatures (SST) and find that long-term patterns of climate variability in the 

Pacific Ocean (Pacific Decadal Variability, also known as PDV) play a significant role in 

seasonal and regional variations observed across United States climatic trends. They find that the 

PDV EOF, particularly SST anomalies in the Pacific, are the primary drivers of observed cooling 

and wetting trends in the central U.S. during late summer and fall, while the Atlantic 

Multidecadal Variability (AMV) also contributes to these trends. Global warming, on the other 

hand, mainly induces a general warming and drying effect on the U.S. as a whole. The AGCM 

simulations show that observed climatic trends are the result of a combination of decadal 

variability and global warming influences, where the former has had a greater impact on trends 

found within the central United States. Wang et al. (2009) underscores the importance of decadal 

variability in understanding regional climate variations. 
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Fan and Caroll (2012) use regional, state-organized data gathered from the website of the 

National Climate Data Center (NCDC) of NOAA and regression analysis to explore trends in 

annual temperature and precipitation from the year 1931 to 2000 across four regions of the U.S.: 

the Pacific West, South Atlantic, North Central, and Northeast. They consider values with a 

p<0.0001 to be statistically significant and find their preliminary analysis of mean annual 

temperature to reveal no significant trends in any of the aforementioned regions. When 

calculating the five-year moving average for mean annual temperature and annual total 

precipitation, however, they find a significant increase of 0.62°C in the Pacific West and an 

increase of 10.4 centimeters in the precipitation of the North Central Region. Both Fan and 

Carroll (2012) and Wang et al. (2009) speculate that much of the spatial variation and seasonality 

found to be present from 1950 to 2000 may be explained by changes in SST. Furthermore, all 

three studies provide strong evidence for the presence of spatial and seasonal variation in climate 

change trends. 

Trenberth (2011) examines the shifts in precipitation with climate change and, like 

Portmann (2009), maintains that global warming has directly influenced precipitation. The study 

uses meteorological observations and model outputs covering global, oceanic, and land domains, 

but with a focus on the United States. Sourced from IPCC reports, scientific articles, and climate 

model simulations, Trenberth uses a mixture of both historical climate data and model 

projections to analyze trends and make future predictions regarding changes in temperature and 

precipitation. Trenberth uses the Clausius-Clapeyron equation to better understand the 

relationship between temperature and water vapor. Due to surface drying caused by heating 

trends, the intensity and duration of drought spells has increased. Alongside other authors (e.g., 

Groisman et al., 2005), Trenberth reports that even while instances of precipitation are sparser, 
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storms (thunderstorms, snowstorms, extratropical rain, tropical cyclones, etc.) are producing 

greater precipitation events in each instance, reporting notable increase in heavy precipitation 

events and a subsequent increase in the frequency and severity of flooding. Interestingly, this 

pattern also occurs in regions with overall decreasing amounts of rainfall. Trenberth also finds 

several common issues associated with climate models, stating their tendency to simulate rainfall 

events that occur too frequently, early, and with underestimated intensity. Further results reveal 

increasing trends in humidity and total column water vapor (TPWV) consistent with global 

warming, as well as notable shifts in the regional patterns of precipitation.  

In a study by Hay (2014) that investigates climatological mechanisms driving climate 

change, he states that the overall increasing frequency of extreme weather events like 

unprecedentedly high and low temperatures, unusual amounts of rainfall and snowfall, and the 

increased frequency of powerful storms, etc., are the harbingers of climate change. Hay uses data 

from various studies and observations, including temperature records, ice sheet measurements, 

and wildfire statistics. Hay finds that global warming has led to an increase in droughts and 

wildfires in the United States, which have subsequently become significant contributors to CO2 

emissions. The melting of the Greenland Ice Sheet is also a matter of direct concern as the 

resulting potential sea level rise can impact U.S. coastal regions. Further, increased soot 

accumulation on ice caused by industrial activities reduces the reflectivity of ice and 

subsequently exacerbates the melting process. Additionally, Hay discusses how regional effects 

of global dimming masked the warming trend but did not halt the long-term rise in temperatures 

driven by CO2 emissions. Hay's results indicate that the U.S. is experiencing more frequent and 

severe instances of extreme weather events, such as record high or low temperatures, changes in 
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precipitation, and droughts. The findings suggest that the climate is becoming increasingly 

unstable, and that the instability manifests in the form of increasingly unusual weather patterns.  

An aspect of spatial variation is observable as the inverse relationship discussed by 

Portmann and colleagues is most pronounced in the southern United States, and to a lesser extent 

in the northern United States. Portmann and co-authors later postulate that biogenic and 

anthropogenic factors may play a role in the linkages between temperature and precipitation. The 

data used by Portmann et al. (2009), however, has a few issues associated. While our dataset (to 

be discussed in section 3.) is derived from a divisional database (NClimDiv), the database from 

which our database originates has been adjusted to account for many of the issues associated 

with divisional databases. Further explanation regarding these improvements will be discussed in 

section 3. Furthermore, by choosing to partition boundaries based on county bounds as opposed 

to divisional boundaries, our two studies hold different contributions and implications for policy 

development and future research. We take on a county-level approach to analysis in an effort to 

follow the understood importance of well-informed county-level adaptation measures as 

discussed by other researchers (see, e.g.; Hsiang et al. 2017; Howe et al., 2015). By using 

counties as our method of organizing, we target our focus on developing a better understanding 

of how climate change relates to local climates and local levels of governmental authority.  

Other studies have found shifts in climatic spatial variation and variability, but our study 

offers an improvement in terms of recency, a unique focus on counties, and unexplored 

methodologies. The goal of our study is to, in terms of observational coverage and temporal 

length, provide an expansive view of climate change’s developmental patterns and spatial 

variations. With the accelerating nature of climate change, many of the climate’s developments 

have picked up speed in recent years, and our analysis offers both an overview of recent 
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progressions and reaches back further to the year 1895 in order to provide an extensive view of 

temporal movements (Barden, 2024). Alongside our support in the illumination of present trends, 

we aim to contribute new information and insights using methods which have not yet been 

applied to the topics of regionality and spatial variation. We aim to accomplish this by examining 

the polarization present in climatic variables to gather more insight into the intricacies of these 

trends. To do so, we replicate the methods used by Park and Shin (2023) by using the same 3 

indices their study uses the Wolfson index, the Lee and Shin index, and the Esteban and Ray 

index. Through our application of different statistical methodologies and use of more recent data 

at belonging to an infrequently studied scope, we hope to contribute new and refreshed 

perspectives on how climatic variables have developed in the past 128 years. Our data provides a 

refreshed understanding of how regionality and spatial variation may have developed in recent 

years, while our methods used will allow for a different perspective of the intertemporal 

distributional developments. 

 

3 Data 

The data used in our study comes from NOAA’s Monthly U.S. Climate Divisional 

Database (NClimDiv). Our dataset uses a 5km gridded approach and comprises monthly county 

observations for four different variables from the years 1895-2023, ranging from the contiguous 

United States (CONUS). Vose et al (2014) discusses the methods used, stating NClimDiv was 

transitioned to a 5km gridded structure through use of a spatial downscaling method that uses 

observations from weather stations across the U.S. to interpolate and average air temperatures. 

Challenges regarding topographic and network variability are often associated with divisional 
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analysis, where the consistency of data is often compromised through inhomogeneous conditions 

across collection spaces. To address many of the challenges with time series data ranging as far 

back as the late 1800s, several modifications were made to NClimDiv, which now serves as an 

improved version of its predecessor: the GHCNd. NClimDiv improves upon the GHCNd by 

addressing several challenges. To help minimize biases associated with topographic and network 

variability, they use climatologically aided interpolation to divide the Earth’s surface into a grid 

of cells, each measuring 5km by 5km. For the GHCNd, the primary networks included in the 

data were the Cooperative Observer (COOP) program and the Automated Surface Observing 

System (ASOS). NClimDiv provides improved coverage by including use of values from the 

National Interagency Fire Center Remote Automatic Weather Station Network (excluding 

precipitation data), the USDA Snow Telemetry network, the Environment Canada network, and a 

portion of Mexico’s Servicio Meterologico Nacional network. The NCEI also uses a pairwise 

homogenization algorithm to account for undocumented inhomogeneities and historical shifts 

such as those in measurement instrumentation. These modifications alongside the unchanging 

structure of county boundaries (with county boundaries conforming to their current-day bounds) 

provides more historically reliable and consistent values for counties throughout time. 

Urbanization is another common concern associated with climate data that has been addressed by 

NClimDiv. The updated adjustment methods considers both documented and undocumented 

changepoints in temperature records caused by factors such as station relocations, gradual 

environmental changes around the station, and changes in measurement instrumentation as 

discussed above. Among other purposes, the homogenization algorithm discussed in Menne et al. 

2009 is used to adjust urbanization and the impacts of urban heat islands on temperature 

measurements (Menne et al. 2009). The homogenization, in general, is not used to enforce an 
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absolute standard, but aims to remove the effects of relative bias changes that have occurred 

through the history of stations’ observations by using a pairwise comparison algorithm that 

identifies and adjusts for inconsistencies between the data of a station and its surrounding 

neighbors. The data is resultingly homogenized to remove unrepresentative trends caused by 

factors such as urban heat islands and changes in instrumentation. 

Selection speed was a significant barrier to the data collection process. While region-wide 

and state-wide data are available for download on the NOAA website, neither includes county 

level precision. Thus, county-level data needs to be downloaded individually. Furthermore, the 

NOAA interface only allows for county-level data to be downloaded for a single county and 

selected variable at a time. To collect the data for every county within the CONUS, we wrote a 

web scraper using python to collect all variables for all counties automatically. Our code uses a 

URL encoded with specifications for the parameters of state, county, and variable. The code 

makes a GET request to the URL, and the NOAA server then responds with a CSV file matching 

the parameters specified in the GET request. Although all the parameters could be set in a 

requested URL, the counties were denoted by a numeric value (e.g., 001). This value increased 

with the county for each state alphabetically. That is, the numeric ordering of counties for each 

state matched the alphabetical ordering. Unfortunately, this number representation of the county 

did not increase linearly, nor did it increase with any pattern. The first county for a state could be 

001, while the second could be 002, 003, 009, or any other number greater than the first county’s 

number value. This is true for the third county in relation to the second county and so on.  

Rather than attempt to discern each county’s number representation, we calculated the 

first and last county’s numeric representation and made requests for all numeric representations 

in between. This allowed us to acquire all county data. This did, however, often involve making 
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numerous invalid requests to the NOAA server. To be conscientious of NOAA’s resources and to 

avoid getting deny-listed by the server, we ran the script state by state to avoid sending too many 

requests, both valid and invalid, at one time. After collecting all files, we then aggregated the 

files into one and grouped all variables and counties for a state together. The aspects of interest 

(state, county, date, value) were isolated and extracted from the downloaded files, then 

rearranged into an alphabetically organized panel data format. Robustness checks were then run 

to ensure that the data collection process was run successfully and accurately and that no errors 

in the code or process had compromised the integrity of the data retrieved. Files generated using 

the script were compared to files downloaded manually from the NOAA website and no 

differences were found. Descriptive statistics were also generated for county values across states 

and were checked for accuracy and consistency across time, and no extreme or discernibly 

erroneous values were observed.  

3.1 Coverage 

In its entirety, our dataset contains 128 years of monthly data (containing all months of 

the year) for 48 states and 3,080 counties, totaling approximately 4.8 million observations. For 

our purposes, we subset 4 different regions into their own respective data frames. The CONUS, 

containing all 48 contiguous states; the Western U.S., containing the 11 states west of the 100th 

meridian, Arizona, and Minnesota. A unique number of counties, and thus unique sample size, is 

associated with each region. The CONUS contains 3,080 counties (≈ 4.8 million observations), 

the Western U.S. contains 480 counties (≈631,000 observations), Arizona contains 15 counties 

(≈23,000 observations), and Minnesota contains 85 counties (≈131,000 observations). County 

lines in the NClimDiv retain their current form throughout history. Given our methodologies and 

that our focus aimed at the analysis of county experiences, inhomogeneous county sizes are 
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inconsequential for our analysis. Although datum for Alaska are available, its availability is 

limited. Historical data for Alaska does not start until the year 1925. Datum for Hawaii are not 

currently available through NOAA. Data for all other states and counties is complete throughout 

the entire period and for all variables. The 4 variables we utilize in our analysis are average 

temperature, maximum temperature, minimum temperature, and precipitation. A readme file 

accessible through the NOAA website describes the calculation process of all temperature 

variables and precipitation (National Centers for Environmental Information, 2017). All 

temperature variables, average, maximum, and minimum temperatures, are calculated as the 

average of all daily values within a given month within a county. Valid monthly values are 

stipulated such that fewer than 4 consecutive daily values are missing, and no more than 5 values 

in total are missing. Precipitation is defined as the number of inches of rain experienced within a 

given scope, and at the county level, is calculated as the total number of inches rained in a county 

over a given month. 

4 Methodology 
4.1 Descriptive Pattern 

Although our dataset contains observations for all months of the year, we conduct our 

analysis through winter (December, January, February) and summer (May, June, July) for all 

variables. To track the trends and movements of climatic variables over time, we use a few 

different methods. Given the vastness of our data and analytical goals, calculations for most of 

the methodologies (Standard deviation, coefficient of variation, kernel density estimations, and 

polarization indices) are automated using RStudio. The process is done by isolating and 

computing results for unique combinations of region, variable, and month. For standard 

deviation, coefficient of variation, and the polarization indices, these unique combinations then 
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run through each year from 1895 to 2023. From each year, a value is then contributed to a 

resulting subset of aggregated yearly values and graphically represented. 

The first of the methods which we will discuss is standard deviation (σ). The standard 

deviation for a given variable is calculated across counties for a given variable for every year, 

resulting in an individual standard deviation for every variable in each year. The standard 

deviation for each month is calculated separately, where an annual data point is collected and 

contributed towards a collection of 128 separate values.  

σ = √
1
𝑁

∑(𝑥𝑖 − 𝜇)2
𝑁

𝑖=1

 

( 1 )

In this regard, µ represents the mean of all counties within a scope, xi represents the value of 

the given individual county, and N represents the total number of counties within the given scope 

(e.g. N=3,080 for the CONUS). Because we have data for the entire scope of our study, we 

calculate the population standard deviation. By doing this, our goal is to observe the trends of 

deviation for each unique combination of region, variable, and month, and subsequently gain 

insight into if and how the variability for each given combination is changing.  

Next, to provide a normalized perspective of trends over time by accounting for a diverse 

range of temperature averages across counties, we generated the coefficient of variation (CV) 

alongside standard deviation. Calculations for the coefficient of variation follow the same 

iterative pattern as σ. CV, is defined as: 
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𝐶𝑉 =
𝜎
𝜇

 

( 2 ) 

where mean value μ and standard deviation σ are calculated across counties for the selected 

variable in the given month for each year. Using the same method throughout, values for σ and 

CV are calculated for each of our selected variables in each of our selected regions. By 

calculating the CV, we once again aim to observe if and how variability is changing, but with the 

added adjustment of normalized changes. The structure of the graphs of standard deviation and 

coefficient of variation are essentially identical. The y-axis represents the value for either CV or 

σ, and the x-axis denotes years. Each data point represents the value of either CV or σ for a given 

year, while red data points labeled with a year denote outliers whose values lie within the 98th 

percentile. The straight blue trendline follows the pattern of data for a given unique combination 

of region, variable, and month. 

For our generation of the 25 hottest and coolest counties, we separated our observations for 

our variable of interest into 6 different subsets for our different years: 1895, 1925, 1955, 1985, 

2005, and 2023. We order observations in descending order of either hottest (highest value for 

maximum temperature) or coldest (lowest values for minimum temperature) and gather the top 

25 observations for each. We then analyze how the allocation of “hotspots” and “cold spots” 

changes over time by comparing which of the original locations from the 1895 list have been 

replaced. For hotspots and cold spots, we use July and January as our points of reference, 

respectively. We undergo this analysis of shifts in rankings in order to gain further insight into 

spatial changes and whether there have been lasting changes in which areas have been exhibiting 

the most extreme weather. If the climate is not meaningfully changing, then we expect the 
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hotspots and cold spots to remain largely the same throughout time. Conversely, if the climate is 

meaningfully changing, then we expect to see inconsistent or sporadic ranking patterns. 

Next, we compute the kernel density estimations (KDE) for the same combinations (region, 

county, variable, and month) using the density() function in RStudio. For the descriptive statistics 

piece of our analysis, this provides us with a provisional “snapshot” of the distributions’ shapes 

over time. We calculate KDEs using two different methods. The first follows the intuition of a 

moving average and is calculated using 30-year increments, except for the 8-year period between 

the years 2015 and 2023. For the second method, we calculate the KDE once every 30 years. 

Here, instead of holding the KDE as the summation of 30 years for each, the second method only 

considers one year’s observations for each KDE. The first method provides a smoother, more 

visually appealing, and digestible way of examining changing distributions over time. However, 

being the summation of 30-year intervals, a degree of change is lost using this method, as the 

KDEs are smoothed by gradually shifting values. Although relatively sporadic in appearance and 

interpretability, the second method demonstrates a fuller extent of change, without any bias from 

gradual shifts in value. These methods, however, provide a broad and less rigorous understanding 

of the selected climatic variables. While our descriptive statistics provide an overview of the 

circumstances, we use polarization indices to contribute empirical evidence to the discussion of 

how climatic variables have developed to impact the experiences of U.S. counties.  

A key aspect of our analysis is how results from one region relate to another. If spatial 

variation is present and regions experience climate change dissimilarly, then we should expect to 

see differing results between regions. For example, if the CV for the CONUS is negatively 

sloping over time, we question whether a similar negative sloping CV can be observed in regions 

like the Western U.S., Arizona, or Minnesota. Another aspect to consider is the level of 
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significance being exhibited by different regions throughout the months. To investigate the 

presence of spatial variation, we compute the same descriptive statistics for all of our regions of 

study and compare them against each other. We will first analyze the differences across the 

CONUS, then we will compare those trends against those observed in the Western U.S., Arizona, 

and Minnesota. 

4.4 Polarization Indices 
The final medium of observation employs polarization indices. While determining the 

stochastic dominance of one period’s distribution over the other’s rigorously asserts whether the 

distribution has changed to a significant degree, polarization indices provide insight into the 

intricacies of how the distributions of our variables have changed over time. Our polarization 

indices use similar computational patterns to the aforementioned methods when calculating the 

descriptive statistics but offer more rigorous inferences regarding the trends in our variables of 

interest over time. As polarization increases or decreases over time, county experiences may 

become more or less distinct from one another. In the case of increasing polarization, we expect 

to see a growing tendency of counties to cluster, insinuating more dissimilar weather experiences 

between counties. In the case of decreasing polarization, we expect to see less clustering of 

counties, insinuating that the weather experiences between counties are becoming more similar. 

The formulas for the Wolfson Bipolarization index, Lee & Shin index, and the Esteban & 

Ray index are provided and discussed in the section ahead. 

𝑊𝐼 =
(𝜇2 − 𝜇1)

𝑦𝑚𝑒𝑑
−

𝑦𝑚𝑒𝑎𝑛

𝑦𝑚𝑒𝑑
∙ 𝐺 

( 3 ) 



26 
 

 
 

The Wolfson bipolarization index (WI) provides insight into the degree of separation 

between two distinct poles. A declining WI signals that a variable is growing less polarized and 

that the division between two bipolarized clusters for a variable is diminishing. An increasing WI 

indicates that there is a clearer, greater division between the high-value and low-value county 

clusters. The WI is useful for identifying the formation or disappearance of distinct modes. 

𝐿𝑆𝐼 =
𝜇2 − 𝜇1

𝜇
∙ 𝜋1𝜋2 ∙ {(1 − 𝜃)(

𝜋1

𝛿11/𝛿
)𝛼 + 𝜃(

𝜋2

𝛿22/𝛿
)𝛼 } 

( 4 ) 

The Lee & Shin bipolarization index (LSI) nests multiple different indexes into one to 

provide a broad overview of the polarization present and assesses differences in values across 

time, and the ways in which the LSI develops over time lend inference into how clustering 

tendencies have progressed, providing insight into the modality of a distribution. For example, a 

decreasing value for the LSI over time signals that the experiences of counties within high-value 

and low-value clusters are becoming more alike. Conversely, a rising value for LSI implies that 

the experiences within county clusters are becoming more different. 

𝐸𝑅𝐼 =
(𝜇2 − 𝜇1)

2
𝑦𝑚𝑒𝑎𝑛

∙ 𝜋1𝜋2 ∙ (𝜋1
𝛼 + 𝜋2

𝛼) 

( 5 ) 

The Esteban & Ray bipolarization index (ERI) indicates the intensity by which a distribution 

is divided into distinct, well-separated groups, and considers both the size and distance between 

clusters. An increasing value of the ERI suggests the polarization between county clusters is 

increasing and becoming more pronounced and impactful. For the aforementioned equations, µ1, 

µ2, and µ, represent, respectively, the means for our selected variables’ low and high value 
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groups. The values µ1 and µ2 are then divided by the population mean: µ. Characters π1 and π2 

represent the aforementioned groups’ shares of the overall population such that π1+π2=1. θ is the 

level of weight placed on the group with a higher value. δkk is the measure of a group’s internal 

dispersion for a given group k, while δ represents a measure of overall dispersion. Our sensitivity 

parameter α differentiates a group’s similarity {(1- θ )…}and from the between group’s 

difference (Park and Shin, 2020).  

 One of the largest benefits of employing polarization indices is the ease of usage and 

interpretability. To observe the development of polarization over time, it can be visualized 

through the observed movements of the index over time. To achieve our goals of analyzing the 

development of polarization indices throughout the years, we determine and visualize our given 

index for every year. Like the methods of our code before, we once again calculate the indices 

for all regions, variables, months, and years by iterating through all combinations. To do this, we 

take our selected index (Wolfson, Lee & Shin, or Esteban & Ray), variable and month, then 

iterate each over each year from 1895 to 2023. The result is a graph for every combination of 

county, variable, and month, which contains within it a point for every year of observation. 

Similar to the graphs for standard deviation and coefficient of variation, the y-axis yields the 

value for the index value while the x-axis denotes the year. Lines are connected between each 

data point, resultingly, each peak represents the value of the index in a given year. Red points 

labeled with years are once again outliers which belong to the 98th percentile. Here, the straight 

red trendline follows the overall pattern of the data, while the curving blue line follows the 

movements of data points throughout the years.  



28 
 

 
 

5 Results 

5.1 Descriptive Patterns 

 Results for the standard deviation of average temperature in winter show relatively weak 

amounts of change during the beginning and end of winter but show slightly more intense 

change during January. In December, only Minnesota shows any level of significant change, 

being a decrease in variability. For January, all regions aside from Arizona have decreased in 

variability. For February, only Minnesota and the Western U.S. show significant levels of change 

in the variability, both again having decreased. During summer, we observe generally more 

significant changes in terms of both intensity and frequency. For the CONUS and Arizona, we 

see significant changes all through summer. Meanwhile, Minnesota has only significantly 

changed in July and June. Meanwhile, the Western U.S. shows no significant change during any 

summer month. All significant changes in Arizona are increases in the variability and all 

significant changes in the remaining regions are decreases. With the standard deviation of 

maximum temperature for winter, we observe significant decreases in the variability of Arizona 

and Minnesota for all months, while the CONUS and Western U.S. show no significant changes 

during any winter month. For the summer months, the CONUS has significantly decreased in 

variability during June and August, while Arizona and Minnesota show significant increases and 

decreases in variability, respectively, during the months of July and August. The West exhibits no 

significant change in variability for any of the summer months. For the standard deviation of 

minimum temperature for winter, significant changes in the variability can be observed for all 

regions and months except for the CONUS, Western U.S., and Minnesota during December. All 

significant instances of change for the CONUS, Western U.S., and Minnesota have decreased in 

variability, while Arizona has only increased. During summer months, we observe significant 
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decreases in the variability across the CONUS for all months, while the Western U.S. shows no 

significant changes during any. Meanwhile, Arizona shows very strong significant increases in 

variability during all summer months. In Minnesota, we observe a significant increase during 

June and a significant decrease during August. For the standard deviation of precipitation, we 

only observe two significant instances of change. The first is a weakly significant increase in 

Minnesota’s variability during December, while the second is a significant increase in the 

CONUS during June. 

 For coefficient of variation across our scopes, we see spatial variation in differences 

between scopes and seasonality in differences between seasons. Average temperature across all 

scopes shows generally low levels of significant change fewer instances of change during winter 

months, with approximately half of the results showing insignificant change. Furthermore, for 

average temperature in winter months, variability in Arizona follows the direction of trends in 

the CONUS, the Western U.S., and MN by increasing in variability. Average temperature in 

Arizona during summer months, however, trends in the opposite direction to the other three 

scopes and exhibits significant increases in variability for all summer months. The other three 

scopes display more significant changes in variability during summer months. For which, all 

combinations of month and scope show significant decreases in variability, with the exception of 

Minnesota and the Western U.S. during the month of June. The coefficient of variation of 

maximum temperature holds many of the same trends as with average temperature, except with 

higher levels of significance and more frequent cases of significant change. Arizona, especially, 

shows the most change, then Minnesota. Arizona once again follows the direction of trends in the 

other three scopes during winter months. For summer months, Arizona shows no significant 

change during June and July, but shows increasing variability in August. The CONUS and 
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Western U.S. show relatively moderate decreases in variability during summer months, while 

Minnesota shows no change in June, and strong decreases in variability during July and August. 

Similarly to the aforementioned temperature variables, the coefficient of variation for minimum 

temperature in winter months shows relatively moderate changes, with all significant changes in 

the CONUS and Western U.S. being decreases in variability. Interestingly, the CONUS and 

Western U.S. exhibit the most significant changes during winter. Arizona shows no significant 

changes until February, which increases in variability, while Minnesota does not change 

significantly for any winter month. During summer months, more significant changes are once 

again observed in terms of both frequency and intensity. In this case, Arizona shows the most 

significant change, followed by the CONUS, then the Western United States. Minnesota has only 

changed significantly in August. The CONUS, Western U.S., and Minnesota again have only 

decreased in variability for significant instances of change, while Arizona has only increased. 

Precipitation only shows weakly significant change in Minnesota during December, which has 

decreased in variability, and August, which has increased in variability. No other regions or 

months exhibit significant change in variability. 

In our calculation of cold spots and hotspots, we find noteworthy variation and 

fluctuations across years, indicating meaningful changes in climate hotspots and cold spots over 

the years, subsequently supporting the argument of spatially evolving climate hotspots as time 

progresses. Hotspot fluctuations range from 40% to 64% loss of original locales, and cold spot 

fluctuations range from 36% to 80% loss of original locales.  Figures 3 and 4 show a steady 

ascent in both maximum and minimum temperatures. From July 1895 to July 2023, the average 

maximum temperature among the 25 hottest counties across the U.S. rose from 97.06 °F to 

104.62 °F: a 7.78% increase. On the other hand, from 1895 to 2023, the average minimum 
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temperature among the 25 coolest counties across the U.S. went from -16.32 °F to 1.51 °F: 

approximately a 109% increase. From this, we infer that temperatures across the board are rising 

and that cooler temperatures are rising faster than warmer temperatures. From our kernel density 

estimations, we gain different forms of insight regarding the development of our climatic 

variables over time. We observe dramatic shifts and variation in the distributions of all variables 

and regions, with some converging to multimodality, bimodality, or unimodality, and others 

exhibiting no particular pattern but still demonstrating notable intemporal variation. A consistent 

theme between all temperature variables, however, is a gradual increase in temperature.  

 

5.4 Polarization Indices 
The WI for average temperature in winter months shows decreasing polarization values 

for all statistically significant changes. The CONUS, Western U.S., and Arizona show similar 

levels of significance throughout the winter months, while Minnesota only shows a significant 

decrease in February. Summer months generally exhibit more instances and greater intensities of 

change, although with different patterns. For all months, Arizona holds strongly significant 

increases in polarization, while Minnesota shows similarly increasing polarization during June, 

but decreasing polarization during July and August. The CONUS and Western U.S. decrease for 

all significant instances, while the CONUS has significantly changed in all summer months, and 

the Western U.S. only in August. For maximum temperature in winter months, greater statistical 

significance can be found in Arizona and Minnesota than in the CONUS and Western United 

States. All of which have decreased in polarization for significant instances. For summer months, 

all regions show relatively weak levels of change, with Arizona only showing a significant 

change by increasing in August. The CONUS is the only region to have significantly changed in 

June, while Minnesota is the only region to have significantly changed by decreasing in July. In 
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August, all regions show significant change, with Minnesota showing a strong decrease in 

polarization. The CONUS and Western U.S. have also decreased in polarization during August. 

The WI for minimum temperature in winter across all regions again exhibits less significance 

than in summer, with the CONUS being the only region to statistically change during December 

and January by decreasing. During February, the CONUS and Western U.S. decrease 

significantly, while Arizona increases, and Minnesota shows no significant change. For summer 

months, we observe moderate to strong changes in the polarization for all regions and months 

except for the Western U.S. in June and Minnesota in July. Polarization has strongly increased 

for both Arizona and Minnesota in June and continues to increase strongly for Arizona for July 

and August. Minnesota has decreased in polarization during August. The CONUS and Western 

U.S. show also show declines in polarization for all summer months, aside from the Western U.S. 

in June which shows no significant change. No significant changes are exhibited in the WI of 

precipitation for any regions or months. 

The LSI of average temperature in December only exhibits statistically significant change 

in Arizona, which has decreased. For January the CONUS, Western U.S., and Arizona show 

significant decreases in the polarization, while only the CONUS and Western U.S. exhibit 

significant change in February. All statistically significant changes in the LSI during winter are 

decreases in the polarization. Summer also shows relatively low levels of change, although 

higher than that found during winter. For June, the CONUS has significantly decreased in 

polarization, while Minnesota has increased, and the Western U.S. and Arizona show no 

significant changes. During July, no region shows any significant change in polarization. August, 

however, holds significant change for all regions, with all but Arizona decreasing in polarization. 

Maximum temperature in December shows no significant change in any of the regions, while 
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only Minnesota and the CONUS show significant change (decreases) in January. For February, 

all regions except Arizona show significant change, where all have decreased in polarization. For 

the LSI of maximum temperature in summer, we see few statistically significant instances of 

change. In June, the CONUS is the only region to have statistically significantly changed in 

polarization, while in July, only Minnesota has changed significantly. In August, only the 

CONUS and Minnesota show significant changes. All significant changes in the LSI of 

maximum temperature decreases. The LSI of minimum temperature shows generally less 

statistical significance than the WI of minimum temperature but shows more significant change 

than the LSI of average and maximum temperature. The LSI of minimum temperature for the 

CONUS and Western U.S. has statistically significantly decreased in polarization for all winter 

months, while Arizona and Minnesota show no significant change for any winter month except 

for Arizona in December which has decreased in polarization. For summer months, however, 

Arizona and Minnesota have significantly changed in polarization for all months except July, 

where Minnesota shows no significant change. Arizona has increased in polarization for all 

summer months, while Minnesota has strongly increased in June, and decreased in August. 

Meanwhile, the CONUS has significantly decreased in June and August, and the Western U.S. 

has significantly decreased in July and August. Similar to the WI, precipitation has not 

significantly changed for any regions or months. 

For the ERI of average temperature, we once again observe generally more statistically 

significant changes in summer than in winter. Arizona is the only region to have significantly 

changed in polarization during December, where it has weakly declined. For January, only 

Minnesota shows no significant change in polarization, while all other regions have declined. 

Meanwhile, in February, Arizona is the only region to not statistically change, while all other 
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regions have significantly decreased in polarization. Arizona has significantly increased in 

polarization for all summer months, with changes in August being the strongest. Regarding the 

other three regions, only the CONUS has significantly changed in June, while only Minnesota 

has in July. All three regions significantly change in August, with Minnesota showing the 

strongest. All significant changes in the CONUS, Western U.S., and Minnesota exhibit decreases 

in the ERI of average temperature. Maximum temperature in December shows significant 

decreases in the polarization of both Arizona and Minnesota, while January and February show 

significant decreases in the polarization of all regions. Interestingly, summer shows less change 

than winter. In June, the CONUS is the only region to significantly change, while in July, 

Minnesota is the only one. In August, all regions have significantly decreased in polarization, 

except for Arizona which has significantly increased. Notably, Minnesota shows a strong decline 

in polarization in July and a very strong decline in August. The ERI of minimum temperature 

shows relatively low levels of significance in winter in terms of both intensity and frequency. In 

December, only the CONUS shows a weak decrease in polarization and in January, only the 

CONUS and Western U.S. show significant decreases. Results for February are largely the same, 

but with Arizona weakly increasing. The CONUS and Arizona have significantly changed for all 

summer months, with the CONUS only decreasing in polarization, and Arizona only having 

increased. The Western U.S. and Minnesota only decrease in instances of significance, but 

changes are insignificant for Minnesota in July, and for the Western U.S. in June. Unlike those 

for the WI and LSI, results for the ERI of precipitation exhibit two significant instances of 

change. Both belonging to Minnesota, we observe a decrease in the polarization during 

December, and an increase during August. 
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6 Limitations 
A valuable future component of this study is the addition of stochastic dominance theory as a 

methodology. While the methodologies explored in this study provide a comprehensive 

understanding of how climatic variables in the United States have developed over time, the 

addition of stochastic dominance testing would provide a way in which to empirically state 

whether the distributions of climatic variables have significantly changed over time. We propose 

for this to be done by comparing the distributions of climatic variables across 30-year periods. 

Stochastic dominance testing is a methodology which could add to the analytical efficacy of our 

research, while further extensions into the analysis of precipitation may help to ameliorate 

potential gaps in understanding. In our study, precipitation was widely found to hold no 

statistical significance. Perhaps the addition of other climatic variables related to the hydrologic 

cycle may provide greater insight. Possible limitations with our analysis of the variable 

precipitation are associated with the time frame. Although daily data is more precise, it still may 

not be precise enough to gain a proper understanding of changes in precipitation. Hourly 

observations or inches per hour may be necessary in order to effectively evaluate patterns. Due to 

time constraints, we were unable to conduct our analysis on several additional variables such as 

cooling degree days, heating degree days, and the drought indices PDSI, PHDI, PMDI, and 

Palmer-Z. Further exploration of spatial variation and variability extended to the aforementioned 

variables may provide valuable insights into gaps of understanding. Additionally, exploration of 

other variables such as cloud cover or SST may provide further understanding into the patterns 

observed in this study. 
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7 Conclusions 
7.1 Descriptive Pattern 

Aside from suspected regionally and seasonally varying results, U.S. counties are 

decreasing in variability, depolarizing, and experiencing the most severe changes during summer 

and in minimum temperature. Sharp declines in the variability of our temperature variables in 

both summer and winter show a trend toward decreasing diurnal temperature ranges, particularly 

within the summer months. Within the CONUS, all significant instances of change show 

declining variability. This suggests that the United States and the counties within are overall 

experiencing homogenizing temperature ranges.
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For standard deviation across the CONUS, our selected temperature variables show significant 

declines in variability for both winter and summer, although to a greater degree during the 

summer months. Precipitation shows almost no significant changes in variability. For the CV 

calculations, we generally see more statistically significant changes compared to those observed 

with standard deviation. For the CVs of maximum temperature and minimum temperature, 

changes are approximately the same as they were for standard deviation. The CVs of average 

temperature, however, show more significant changes than standard deviation in general. The 

CVs of precipitation show almost no statistically significant changes. In summary, our analysis 

of the standard deviation and CV for climatic variables across the CONUS indicates significant 

declines in temperature variability for both winter and summer, with changes in summer being 

overall more pronounced, particularly for Arizona and Minnesota. Precipitation reveals the least 

significant change, and out of all variables, minimum temperature for both the standard deviation 

and CV shows the strongest overall changes, suggesting either a stabilization or convergence at 

the lower end of temperatures ranges. These shifts indicate meaningful changes and a general 

trend towards tighter temperature ranges on average and that the underlying temperature 

distribution has become more uniform with the range of temperatures experienced becoming 

smaller for regions like the CONUS, Western U.S., and mostly in significant instances of change 

in Minnesota. We also find a trend of sporadically positioned hotspots and cold spots throughout 

United States counties. The rankings of hotspots and cold spots across the U.S. are both unstable 

throughout the years, with cold spots showing a higher degree of fluctuation. Similarly 

inconstant patterns are found in the KDE of U.S. counties. Weighty shifts in the modality and 

positions of KDE distributions can be observed, with KDEs of temperature variables all 

incrementally moving to higher temperature values as a whole. Both the increases in temperature 
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and the dramatically shifting structures of KDEs suggest that the distributions of our climatic 

variables have meaningfully changed since the year 1895. 

Except for the Western U.S., which generally shows the least significant changes over 

time, we observe generally stronger trends in our analysis of AZ and MN. This is likely due to 

their smaller scale and subsequently lower degree of regional diversity which may dilute results 

found in the CONUS and the Western United States. The Western U.S. generally mirrors those 

exhibited in the CONUS, with a few differences. AZ, however, shows frequently dissimilar 

trends in terms of both intensity and direction, while Minnesota shows occasionally dissimilar 

trends in terms of intensity and direction. The same pattern of increasing temperatures for the 

generated KDEs can be observed for regions other than that of the CONUS. The Western U.S., 

AZ, and MN all also share the same pattern of gradually shifting outwards to higher average 

temperatures. AZ typically exhibits trends opposite to those observed in the CONUS and the 

Western U.S., while MN occasionally does the same. While the CONUS and the Western U.S. 

generally exhibit decreasing diurnal temperature ranges, results for AZ show meaningful 

increases in temperature variability. The resulting conclusion of our preliminary analysis is that 

variability and its trends are strongly subject to spatial variation. For the Western and Arizonan 

counties, precipitation results hold no significant changes in the variability of rainfall for σ or CV, 

while the CONUS and MN show very few and relatively weak significant changes in variability. 

The tendency for values observed by the coefficient of variation to be more intense and 

statistically significant than those observed with standard deviation indicates that relative 

changes in variability are more pronounced. As a whole, it’s important to consider that, while 

temperatures in general are homogenizing, they’re doing so with an overall upward trajectory. 
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7.2 Polarization Indices 

Across the CONUS, our results of the WI show generally decreasing trends in 

polarization across most variables and months, indicating a mix of diverging and converging 

climatic disparities between counties. For instance, August and December underwent increases in 

polarization for all temperature variables except minimum temperature, which holds a significant 

and substantial decrease in polarization. Meanwhile, all other significant changes in polarization 

have been downward in trajectory. Precipitation for the CONUS was not found to hold any 

significant changes. Due to its vast geographical diversity, the Western region presents a unique 

climatic profile yet holds a consistent direction of decreasing polarization. All variables and 

months with significant changes have experienced a decrease in polarization, with minimum 

temperature in summer (July and August) and average temperature in winter (January and 

February) showing the strongest declines in polarization. Although with lower levels of 

significance, WI results show that maximum temperature has also decreased in polarization, 

meaning all temperature variables in the Western U.S. have depolarized. Consistently half of the 

months hold significant changes, with changes in July significant in average and maximum 

temperature, July significant in minimum temperature, and August and February always 

significant. On the other hand, precipitation shows no significant changes during any months. 

Calculations for the WI in Arizona also present a more varied image. Aside from 

minimum temperatures in June, all significant changes in summer reveal increasing degrees of 

polarization among the temperature variables. While presenting decreasing polarization, aside 

from minimum temperature in February, winter months for average temperatures and minimum 

temperatures reveal less significant and more uncommon instances of change, except for 

maximum temperature, which shows substantial levels of significance in all three months. 
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Results for the WI in summers are inverse to those in winter, with strong changes in summer 

average and minimum temperatures but mostly unchanging polarization in maximum 

temperatures. Similarly to the CONUS, results for WI in Minnesota show mostly decreasing but 

occasionally increasing polarization among significant variables and months. The only instances 

of significant and increasing polarization are during July for average temperatures, December for 

maximum temperatures, and August in minimum temperatures. All other significant results show 

a decline in polarization. Maximum temperature holds more frequency and intensity of 

significant instances for both winter and summer than minimum and average temperature, which 

both have undergone relatively low levels of change in polarization. 

The LSI for the CONUS indicates varied trends across variables and months. For the 

CONUS, there’s a mix of increasing and decreasing levels of polarization for average and 

maximum temperatures, but only instances of decreasing polarization in minimum temperatures, 

which also has experienced the strongest changes in polarization across winter and summer. 

Average temperature holds the second most drastic shift in polarization, while minimum 

temperatures hold the least, and precipitation once again holds no significant changes. LSI 

results for the Western U.S. show almost exclusively decreasing changes in polarization among 

significant month and variable combinations, the exception being an increase in polarization 

during July for minimum temperatures. The remainder of significant instances have depolarized, 

with the most substantial changes seen in minimum temperatures, and precipitation once again 

holding no significant changes. Average temperature holds near identical changes in polarization 

as were revealed with calculations of the WI. Contrary to the tendency of Arizona to experience 

the most extreme changes, calculations of the LSI in AZ result in modest levels of polarization in 

average temperatures, and no significant changes in maximum temperature. Meanwhile, 
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minimum temperature experiences strong increases during summer, aside from a depolarizing 

June, and only one instance of faintly significant change in winter. While average and maximum 

temperatures in Minnesota have only experienced depolarization, minimum temperatures have 

only polarized. Furthermore, average and minimum temperatures have only experienced 

significant changes during summer, while maximum temperature has seen high levels of 

significant change in the latter two months of both winter and summer. 

Results for the ERI across the CONUS once again show significant changes in 

bipolarization across different variables. Minimum temperatures have undergone significant 

changes in all months, with all except December having decreased in polarization. Average 

temperatures have also firmly decreased in polarization in winter and June, but August shows a 

significant increase in polarization. Maximum temperatures have undergone a moderate degree 

of change and show a mix of depolarization and polarization in winter and summer, respectively. 

Lastly, precipitation has undergone no significant changes in polarization. The Western U.S. 

holds similar patterns of change in average temperatures for the ERI as were revealed in our 

calculations of the WI and LSI, and once again has significantly depolarized in January, February, 

and August. Meanwhile, maximum temperature holds the same patterns of change as the WI, 

where all the same months have depolarized, but to a lesser degree. Minimum temperature has 

depolarized for the latter two thirds of winter and summer. Like the CONUS and all results 

beforehand, ERI results for precipitation reveal no changes in polarization. Results for the ERI of 

average temperature in Arizona hold the same magnitudes and directions of change as are 

observed with the WI, with significant changes in the polarization of all summer months, 

December, and January, where all but July and August have depolarized. Minimum temperatures 

have polarized dramatically in all summer months, and faintly significantly in February. 
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Conversely, maximum temperatures have inverse patterns of depolarization, where all winter 

months have experienced considerable degrees of depolarization, and August shows weak 

depolarization. Precipitation has once again experienced no changes in polarization. Lastly, 

patterns of change for the ERI of Minnesota follow the same significance patterns as that of the 

WI, in that all the same months hold the same direction of change, aside from July which has 

depolarized. Degrees of significance are also near identical between the ERI and WI of 

Minnesota, aside from July where significance is fainter.  

Ultimately, minimum temperature has undergone the most dramatic changes and has 

mostly depolarized, intensity of changes is then followed by average temperature, then closely 

followed by maximum temperature. Results for the ERI in Minnesota reveal the first instance of 

statistically significant changes in the polarization of precipitation. In this case, precipitation 

shows faint significance of polarization in August and depolarization in December. With most 

months, variables, and regions experiencing a depolarization of values, we find empirical support 

for the growing disparity between county experiences across most United States regions. 

Furthermore, in the diversity of findings, while most regions, variables, and months are 

experiencing depolarization, not all are. Our main findings from polarization conclude that 

United States counties are largely depolarizing, although significant spatial variation and 

seasonality assign this as a general statement and not accurate for all observations. The overall 

decrease in polarization of WI temperature variables, aside from Arizona, across United States 

counties indicates a reduction in the gap of climatic experiences between counties, and that 

climatic conditions are becoming more similar across counties. The varying degrees of 

significant change between all regions support speculations regarding the presence of spatial 

variation. The varied nature of polarization in Arizona also indicates the presence of spatial 
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variation. While the Arizonan winter temperatures across counties are generally exhibiting less 

clustering tendencies, experiences of summer temperatures across counties in Arizona are mostly 

on the course to grow more intensely different and polarized. Similarly, depolarizing results 

present for the LSI of temperature variables indicate that there is an overall reduced polarization 

between county experiences and a more homogenized distribution of weather conditions, except 

for with minimum temperature during Arizonan summers. Lastly, with ERI also largely 

following trends of depolarization, it suggests that counties are overall experiencing fewer 

extremely different weather patterns in terms of intensity and frequency, with Arizonan counties 

once again being the exception and increasing in polarization for average and minimum 

temperatures in summer. Although most months and regions exhibit declines in polarization, it’s 

important to recognize the distinct presence of spatial variation within our results.  

As a whole, the weather experiences of United States counties are growing more similar, 

although with significant regional exceptions. The mechanisms as to why these changes are 

occurring are not tested rigorously in this study, and further analysis of reasons will be left to the 

expertise of climate scientists. We do, however, mention a few aspects which may have some 

bearing on the presence of regionally unique climatic developments. While colder and flatter 

regions like Minnesota or larger regions like the CONUS and Western U.S. may be overall 

depolarizing, counties belonging to other regions like Arizona may be subject to polarizing 

summer temperature ranges and growing disparities between county experiences in summer 

months. We suspect this may be due to either the hotter and dryer climate present in Arizona, or 

the topographic diversity of the region. The theory of hotter and dryer climate of Arizona 

contributing to the spatial variation lends support for the findings by Portmann et al (2009) 

which found that dryer conditioners are associated with greater temperature extremes. We would 
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expect results for counties or regions with similar climatic compositions and/or topographic 

makeups also to exhibit similar results and overall increases in temperature polarization during 

summer. Lastly, across most of our results, summer months, specifically August, as well as 

minimum temperatures, are the factors that exhibit the greatest changes in terms of both intensity 

and frequency. Minimum temperatures exhibiting the steepest trends and most significant levels 

of change hold two notable conclusions: either nocturnal temperatures are rising at a rate faster 

than diurnal temperatures, or colder regions are in general are warming faster than hotter regions. 

Both possibilities conclude that colder temperatures are rising faster than warmer temperatures. 

The CONUS, Arizona, and Minnesota all frequently show strong levels of significant change 

among our methodologies, but the steepest trends are observed in Arizona and Minnesota. In the 

case of polarization, results observed within the Western U.S. are once again hypothesized to be 

diluted by the distribution of reasonably climatically and topographically balanced counties. 

Lastly, while other studies have provided evidence for meaningful changes in the precipitation 

across the United States (e.g. Fan & Carroll, 2012; Portmann et al., 2009; Trenberth, 2011; Wang 

et al., 2009), we find no evidence for the U.S. as a whole exhibiting significant changes in the 

variability of rainfall. Our findings do not challenge the findings of other researchers which 

assert changes in precipitation. Instead, our results simply insinuate that the variability and 

polarization of rainfall has only very slightly significantly change.  
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8. Graphs and Figures 
 

Figure 1. Distribution of Hottest U.S. Counties (Maximum Temperature in July) 
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Figure 1.
Distribution of 25 Hottest U.S. Counties 

(Maximum Temperature in July)
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Figure 2. Distribution of 25 Coolest U.S. Counties (Minimum Temperature in January) 

 

 

25

13

16
15

5

16

0

5

10

15

20

25

30

1895 1925 1955 1985 2015 2023

N
um

be
r o

f o
rig

in
al

 co
un

tie
s (

ba
se

 p
er

io
d 

18
95

)

Year

Figure 2.
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Figure 3. Hottest U.S. Counties’ Max. Temp. Over Time (Max. Temp. in July) 

 

 

Figures 4. Coolest U.S. Counties’ Min. Temp. Over Time (Min. Temp. in July) 
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Appendix 
Table 1. Standard Deviation of Average Temperature across US counties over time 

 



50 
 

 
 



51 
 

 
 

 

 



52 
 

 
 

Table 2. Standard Deviation of Maximum Temperature across US counties over time 
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Table 3. Standard Deviation of Minimum Temperature across US counties over time 
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Table 4. Standard Deviation of Precipitation across US counties over time 
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Table 5. Coefficient of Variation in Average Temperature across US counties over time 
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Table 6. Coefficient of Variation in Maximum Temperature across US counties over time 
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Table 7. Coefficient of Variation in Minimum Temperature across US counties over time 
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Table 8. Coefficient of Variation in precipitation across US counties over time 
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Table 9. Kernel Density Estimations (Moving Average) for Average Temperature, Maximum Temperature, Minimum Temperature, 
Precipitation 
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Table 10. Kernel Density Estimations (Single Year) for Average Temperature, Maximum Temperature, Minimum Temperature, 
Precipitation 
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Table 11. Wolfson Polarization Index: Average Temperature 
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Table 12. Wolfson Polarization Index: Maximum Temperature 
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Table 13. Wolfson Polarization Index: Minimum Temperature 
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Table 14. Wolfson Polarization Index: Precipitation 
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Table 15. Lee & Shin Index: Average Temperature 
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Table 16. Lee & Shin Index: Maximum Temperature 
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Table 17. Lee & Shin Index: Minimum Temperature 
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Table 18. Lee & Shin Index: Precipitation 
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Table 19. Esteban & Ray Index: Average Temperature 
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Table 20. Esteban & Ray Index: Maximum Temperature 
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Table 21. Esteban & Ray Index: Minimum Temperature 
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Table 22. Esteban & Ray Index: Precipitation 
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