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Abstract 
Groundwater is threatened in the Southwestern United States and world-wide. Hydrologic, 

economic and environmental factors contribute to both groundwater quantity and quality 

outcomes. These outcomes impact those living in regions that rely primarily on groundwater to 

satisfy their water demand. This thesis explores two broad questions: 1) Are climate, economic 

and regulatory patterns reflected in depth to water levels? 2) Do environmental burdens relating 

to groundwater have disproportional negative impacts on racial and ethnic minorities, low-

income households, or less educated individuals? Depth to water data is more widely attainable 

than groundwater extraction data due to political and legal factors. We find modeling factors that 

directly relate to groundwater extraction (planted acreage, groundwater regulation status, 

recharge, climate factors, etc.) does explain variation in depth to water levels over time at the 

sub-basin level. These results can inform groundwater policy in areas where groundwater 

extraction is unavailable. Additionally, racial and ethnic minorities, low-income households, and 

less educated individuals are found to be associated with higher environmental burden 

prevalence. This disproportional exposure highlights disadvantaged communities in the Colorado 

River Basin and adjacent service areas, suggesting that further efforts towards environmental 

justice throughout groundwater management decisions are needed.          
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Chapter 1: Introduction 

1.1 Groundwater Level Data and their Use in Economic Analysis 
Disruptions in groundwater supply threaten Arizona due to regional drought and groundwater 

use exceeding natural recharge. From 2010 to 2020, population and housing units have increased 

by 11.9% and 8.9%, respectively, and agricultural production continues to grow (United States 

Census Bureau, 2021; Arizona Department of Agriculture, n.d.). The state has made regulatory 

and structural decisions to keep up with the rise in water demand including designating Active 

Management Areas (AMAs) and Irrigation Non-expansion Areas (INAs), constructing artificial 

recharge sites, and outsourcing water supply through projects like the Central Arizona Project 

(CAP). However, policy surrounding groundwater in Arizona only exists in part of the state, 

while outside of these regulated areas no monitoring and reporting standards regarding 

groundwater extraction exist. Additionally, roughly fifty percent of irrigated agriculture occurs 

outside groundwater regulated areas (McGreal and Eden, 2021). Knowing which economic and 

climate aspects provide insight to groundwater level changes can help inform policy decisions in 

areas that lack explicit groundwater use data in Arizona, and in other rural areas worldwide. 

Precipitation, temperature, and groundwater pumping have been used to study changes in 

groundwater levels. However, political, legal, and technical factors inhibit the requirements and 

accuracy for reporting groundwater use in areas outside of Arizona’s regulated areas (AMAs and 

INAs); thus, pumping data is not available in much of rural Arizona. Alternatively, groundwater 

level data, known as depth to water (DTW), is more widely attainable. This study examines the 

usefulness of groundwater level data in understanding linkages between groundwater conditions 

and economic, demographic, and climate factors.  

1.2 Arizona’s Groundwater Scarcity Mitigation Efforts 
Established in 1980 were the first four AMAs, Prescott, Phoenix, Pinal, Tucson (later a fraction 

split into Santa Cruz), along with the two INAs, Joseph City and Douglas (now an AMA as of 

2022). The Harqhahala INA was established the following year, and the Hualapai Valley INA 

was created in 2022. All designated areas fit the criteria for establishing stricter water 

management plans since they heavily rely on groundwater and were the culprit of 70% of 

Arizona’s groundwater overdraft (Arizona Department of Water Resources, n.d.b; Water 
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Resources Research Center, 2007). Municipal, industrial, and agricultural water users within an 

AMA zone are required to attain permits to pump groundwater, conserve its use, and report 

annual withdrawals to the Arizona Department of Water Resources (Arizona Department of 

Water Resources, 2016). Those within INA zones must install measuring devices on all 

nonexempt wells (wells that pump water greater than or equal to 35 gallons per minute or 

irrigates more than 2 acres of land), file a notice when modifying or digging a new well, and 

report groundwater withdrawals annually (Arizona Department of Water Resources, 2022).  

Arizona does not use economic incentives such as fees to promote less groundwater use. Those 

that withdraw groundwater within AMA zones are required to pay only a nominal fee. In 2023, 

fees differ by AMA and range from $2.00 (Pinal AMA) to $3.50 (Tucson AMA) per acre foot 

pumped (ADWR, 2022b). These fees are low and likely have little influence on the quantities 

pumped. There are lower barriers to pump groundwater in unregulated areas. Miscellaneous 

nominal fees are charged to particular wells outside of AMAs, but they are also very low.  

By 2005, all existing AMAs had artificial groundwater recharge sites, a popular method for using 

human intervention to improve groundwater conditions. There are two types of artificial 

recharge: surface and subsurface level, with the latter being more costly in terms of development 

and upkeep. Both methods share the goal to increase water level in a particular aquifer. There are 

artificial recharge sites throughout Arizona including outside of AMAs and INAs (Water 

Resources Research Center, 2007). 

The Central Arizona Project was authorized in 1968 and designated to transport 1.5 million acre-

feet (MAF) of water from the Colorado River to central and southern portions of Arizona’s most 

populated areas. This outsourced supply provides water for 80% of the state’s population, easing 

groundwater dependencies and overdraft (Central Arizona Project, n.d.). 

Compared to large municipal areas, rural communities in Arizona are disproportionately affected 

by threats to their groundwater as they have limited options to adapt and little regulation in place 

to monitor and protect underground flows. Understanding the economic, demographic, climatic, 

and regulatory factors that influence groundwater conditions is important for rural community 

resilience and sustainable water management planning.  
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1.3 Study Area 
This paper uses hydrological definitions from the Arizona Department of Water Resources 

(ADWR). A basin is designated based on an area’s topography, land use, and hydrology features, 

regarding an underground body of water. Some basins in Arizona have multiple related bodies of 

groundwater, each of which are broken up into smaller geographical areas called sub-basins 

(Arizona Department of Water Resources, n.d.). Some basins are not separated into sub-basins, 

thus are sub-basins themselves. This paper refers to all study areas as sub-basins. Sub-basin 

boundaries are set by ADWR (Arizona Department of Water Resources, n.d.c). Eight 

groundwater regulated and six unregulated sub-basins are included in the study area. All the sub-

basins in this study are majority groundwater dependent, have active agriculture, and have 

similar topography, climate, and economic activity. A detailed description of each individual 

sub-basin can be found in Appendix A1 and a visualization of each is shown below in Figure 1.  

 

Figure 1. Sub-basins in Study Area 
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1.4 Key Findings 
Results find unregulated groundwater sub-basins have the largest, positive, economically 

significant relationship with DTW, indicating sub-basins without regulation in place are also 

those whose groundwater levels decrease over time. As expected, planted acreage in unregulated 

sub-basins and groundwater levels move in opposite directions throughout the study period. 

Temperature and precipitation correlate with groundwater levels the way they are expected: 

higher temperatures and lower precipitation correlate positively with DTW. Increases in housing 

units likely occurs in sub-basins whose groundwater levels are decreasing. No clear relationship 

is seen between per capita income and groundwater levels over time in any models. Lastly, 

active recharge projects are likely to occur in areas where groundwater levels increase over time 

once unobserved heterogeneity is controlled for.  

1.5 Social and Environmental Justice Considerations in the Larger 

Colorado River Basin 
While analyzing economic, climate, and regulatory signals in groundwater levels can help 

provide policy insight for communities facing groundwater scarcity risk, understanding which 

groups are most vulnerable provides further detail on where to aim such investments in 

environmental amenities and infrastructure. Chapter 7 provides further discussion and presents 

econometric models to investigate relationships between disadvantaged communities and 

environmental burdens regarding groundwater allocation, quality, and access.  

Results show ethnic and racial minorities, compared to mostly White non-Hispanic populations, 

are positively correlated with four different environmental burdens (lack of green space, 

households with incomplete plumbing, leaky underground storage tanks (USTs), and air 

pollution). Populations without a high school degree have positive correlations with each 

environmental burden. Areas with a higher mean income correlate positively with greener areas 

and air pollution, and negatively with leaky USTs and households with incomplete plumbing. 

Population density has the largest positive relationship with each of the four environmental 

burdens.  
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Chapter 2: Literature Review 
Past studies analyze influences of precipitation, temperature, and groundwater pumping on 

changes in groundwater levels (Shin et al., 2020; Li et al., 2020; etc.). On a national, 

international, and global scale, water databases are found to be inconsistent regarding measuring 

and defining indicators of groundwater conditions. There is a general lack of official statistics 

nationally in many countries and across the globe (Dantas et al., 2021). Groundwater level data is 

more attainable than groundwater pumping data and has a consistent definition and 

measurement.  

Prominent evidence suggests that water use is price inelastic in both the agricultural and 

municipal sectors (Foster et al., 2015; Hendricks et al., 2012; Alhassan et al., 2020; Sukcharoen 

et al., 2020; O’Donnell et al., 2018). In contrast, Bruno et. al. (2023) find increases in 

groundwater extraction prices led farmers in California to significantly decrease groundwater 

use. Moreover, an important factor to include in an analysis of agricultural water demand is well 

yield (the maximum capacity of a well) to avoid skewing the calculated elasticities (Mieno et al., 

2021). 

With strong evidence pointing to price inelastic municipal water demand, some studies focus on 

efforts to curb water use in municipal areas through other policy decisions besides targeting 

price. O’Donnell and Berrens (2018) break down the effects of different rebate programs in 

Clovis, New Mexico, a small municipal town. The authors find water saving toilet rebates are 

more effective than efficient washing machine or landscape rebates in decreasing water use 

(O’Donnell et al., 2018). In further regard to policy decisions other than increasing water prices, 

water use has been found to have decreased over time in large urban cities where population has 

increased, decoupling a commonly found positive relationship between the number of people and 

water use level. This finding suggests water management decisions being made in municipalities 

are working to improve groundwater conditions (Lee et al., 2022).  

There is a social cost to using water. The cost for water as an input for agricultural output has 

been modeled more recently to include environmental externalities while maximizing social 

welfare. Accounting for environmental externalities in establishing the price that farmers pay for 

water decreases individual farm profits while increasing social welfare (Bierkens et. al., 2024). 

Bierkens et. al. (2024) proceed to test their model by setting parameters for the amount of 
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groundwater pumped as well as hydrological features relating to groundwater levels (i.e. 

recharge, surface water characteristics, etc.) that likely occur in a semi-arid region. Results show 

the model that accounts for environmental externalities while maximizing social welfare leads to 

higher projected groundwater levels over time compared to alternative scenarios. Also modeling 

the value and demand for groundwater, Strand (2010) emphasizes that the cost to pump 

groundwater should be greater than its marginal cost when profit is maximized to account for the 

externalities presented when pumping. 

Some studies use various groundwater use estimation methods including hydrologic and 

demand-based modeling, remote sensing estimation with field-level evapotranspiration, water 

table fluctuation models, land cover estimation, and electricity use as a proxy for groundwater 

pumping (Brookfield et. al., 2024; Alam et. al., 2023; Martindill et. al., 2021; Burlig et. al., 2021; 

Wang et. al., 2020; Hurr and Litke, 1989). However, the usefulness of these methods requires 

different levels of data of which availability varies by region, and rural areas are no exception to 

data challenges that make these estimation efforts particularly challenging (Brookfield et. al., 

2024). This study takes a different approach by using regression analysis to analyze changes in 

groundwater levels. This method incorporates factors that directly relate to groundwater use to 

determine whether there is a relationship between them and DTW changes over time, while 

exploring whether this approach is useful when faced with groundwater use estimation 

challenges.  

There is much to say about changes in groundwater conditions in large municipalities and 

agricultural districts; however, little research can be found on this topic in small rural 

communities due to the lack of pumping data. This study aims to add to the sparse literature by 

looking at rural areas in Arizona. Preliminary work finds significant statistical relationships 

between groundwater levels and economic, demographic, climatic, and regulatory factors in 

portions of Arizona’s Santa Cruz and San Pedro watersheds. This project will refine and extend 

this work into other rural regions of Arizona over the period 2010 – 2021.  

Chapter 3: Theoretical Model 
Irrigated agriculture is the dominant water use in the state of Arizona, especially in the study 

areas included in this thesis. Of all water supplied in Arizona, 74%  is used by irrigated 
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agriculture (ADWR, n.d.a). In 2015, 4,400 million gallons per day were used for irrigated 

agriculture in Arizona, of which 42.9% came from groundwater sources (Pullen, 2023). To 

understand groundwater use behavior at the sub-basin level, one must first elaborate on the 

profit-maximization decisions of individual farmers. The theoretical model discussed in the next 

section follows discussion in Griffin (2005).  

3.1 Individual Producer Profit-Maximization Model 

First, the assumption is made that an individual farm in the study area is profit maximizing. To 

produce output, 𝑦, a specified level of groundwater, 𝑤, is required as an input with the 

assumption that any-nonzero amount of water makes a profit. The farm likely has other fixed and 

variable inputs used in production of 𝑦. Fixed variables can include land, buildings, and 

equipment. Variable inputs include seed types and fertilizer. Altogether, the individual farm’s 

production function is as follows. 

𝑦 = 𝑓(𝑤, 𝑥1, 𝑥2, … 𝑥𝑖 … , 𝑥𝑛)∀𝑖 ∈ 𝑁 

Where different levels of inputs are chosen simultaneously to both maximize profit and minimize 

costs, the former guarantees the latter. 

When analyzing the relationship between groundwater, as an input, and output, ceteris paribus, 

economic theory informs that a rational farmer chooses a level of groundwater to use where the 

marginal product (𝑦′ =
𝜕𝑓

𝜕𝑤
) is greater than or equal to zero. To visualize, the production function 

for an individual farm in Figure 2 shows that a profit maximizing farm ultimately chooses to use 

groundwater at 𝑤∗ to achieve a profit maximizing level of output, 𝑦∗.  
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Figure 2. Individual Farmer’s Production Function with Water Input, Ceteris Paribus 

We assume the farm’s output, 𝑦, sells for a constant per unit price, 𝑝𝑦. The firm also purchases 

𝑥𝑖 inputs for the constant per unit cost of 𝑝𝑥𝑖
. The price for pumping groundwater is not 

necessarily constant. Like Griffin (2005), the cost of water, denoted 𝑐(𝑤), is assumed to increase 

as more water is used. Thus, it follows that 

𝜕𝐶

𝜕𝑤
> 0 

However, if the firm pays one price for water, 𝑝𝑤, then 𝑐(𝑤) = 𝑝𝑤𝑤.  
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Accounting for the price received for the farm’s output and costs for inputs, the profit 

maximization function is as follows: 

max  𝜋 = 𝑝𝑦𝑓(𝑤, 𝑥𝑖 ) − 𝑐(𝑤) − ∑ 𝑝𝑥𝑖
𝑥𝑖 

Where 𝑝𝑦 is the output price, 𝑥𝑖 are inputs excluding water, and 𝑝𝑥𝑖
 are the prices for each non 

water input. Each input must be maximized to achieve maximum profit, 𝜋. To do this, first order 

conditions (FOC) are set where the first derivative of the profit function is taken with respect to 

each input, 𝑤 and  𝑥𝑖. Thus, the FOC are as follows.  

𝜕𝜋

𝜕𝑤
=

𝜕[𝑝𝑦𝑓(𝑤, 𝑥𝑖) − 𝑐(𝑤) − ∑ 𝑝𝑥𝑖
𝑥𝑖]

𝜕𝑤
 

and 

𝜕𝜋

𝜕𝑥𝑖
=

𝜕[𝑝𝑦𝑓(𝑤, 𝑥𝑖) − 𝑐(𝑤) − ∑ 𝑝𝑥𝑖
𝑥𝑖]

𝜕𝑥𝑖
 

Where setting each equation to zero and simplifying equates to 

𝜕𝜋

𝜕𝑤
= 𝑝𝑦𝑓𝑤 − 𝑐′(𝑤) = 0 

And 

𝜕𝜋

𝜕𝑥𝑖
= 𝑝𝑦𝑓𝑥𝑖

− 𝑝𝑥𝑖
= 0 

Therefore, solving for both 𝑤 and 𝑥𝑖 yields the optimal input values 𝑤∗ and 𝑥𝑖
∗. 

Observe that  

𝑐′(𝑤)

𝑓𝑤
=

𝑝𝑥𝑖

𝑓𝑥𝑖

 

This occurs only when profit is maximized. From here, one can rearrange to find the technical 

rate of substitution, 

𝑓
𝑥𝑖

𝑓
𝑤

=
𝑝𝑥𝑖

𝑐′(𝑤)
 

Which equals the ratio of input prices and marginal cost of water.  
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Furthermore, when rearranging the FOC equation for w, and plugging in the optimal value for w, 

𝑤∗, one can obtain the following. 

𝑝𝑦𝑓𝑤 = 𝑐′(𝑤∗) 

This shows the marginal product of water is equal to its marginal cost, only when profit is 

maximized. Hence, 

𝑀𝑉𝑃𝑤 = 𝑀𝐶𝑤. 

This relationship holds true for all inputs in a profit-maximizing farm’s production function.  

The profit-maximizing model only results in a socially optimal quantity of groundwater use if the 

price that farmers pay per unit of water includes the full social costs of their groundwater use.  

Bierkens et. al. (2024) develop a model that identifies the conditions for maximizing social 

welfare, instead of maximizing farmer profit. They find that including environmental 

externalities in the water price used in the model decreases farm water use, increases social 

welfare and decreases individual farm profits. The following section discusses the consequences 

of failure to incorporate full social costs in the price of water, neglecting to account for 

environmental externalities. 

3.2 Optimal Groundwater Use to Maximize Social Welfare 

Maximizing social welfare entails accounting for non-water inputs, water as an input, prices for 

water and other inputs and the social and environmental externalities of extracting that water. 

This section follows Bierkens et. al. (2024) to develop a conceptual model that identifies optimal 

groundwater use to maximize social welfare in a groundwater sub-basin. Such models can better 

inform drivers for groundwater demand. Maximizing social welfare is important to consider 

when groundwater withdrawals exceed natural recharge, increasing groundwater depletion and 

leading to environmental externalities. Groundwater withdrawal externalities include limiting 

water availability for other water users, negative impacts on nearby streams and wetlands, and 

reducing aquifer storage capacity (Bierkens et. al., 2024).  

To account for environmental externalities, one must include these externalities in the overall 

social cost of groundwater withdrawal. Recall the cost for water as an input in the individual 
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farm profit function, 𝑐(𝑤) = 𝑝𝑤𝑤. Adding the environmental externalities, we get the following 

cost equation. 

𝑐𝑒(𝑤) = 𝑝𝑤𝑤 + 𝜏𝑤 

Where 𝑐𝑒(𝑤) is the cost for water including environmental externalities from withdrawal and 𝜏 

represents the externality cost. While 𝜏 generally will be a function, 𝜏 (w), in this illustrative 

conceptual model it is treated as a constant monetary amount. See Bierkens et. al. (2024) for 

more sophisticated models of externalities related to water use that account for interactions 

between 𝜏 and various hydrologic factors.  

The equation above can be simplified to the following: 

𝑐𝑒(𝑤) = 𝑤(𝑝𝑤 + 𝜏) 

Now that the cost for water has been redefined to include externalities, we can construct a simple 

social welfare maximization equation. Maximizing social welfare means to maximize total 

Social Net Benefits (SNB) related to agricultural groundwater pumping in a sub-basin . SNB 

maximization considers individual farm profit functions, with water users paying a price per unit 

that reflects the environmental externalities. The social welfare maximization equation below is 

simplified to apply to decisions in a single time period. See Bierkens et. al. (2024) for examples 

of dynamic models.  

The SNB maximization problem for water users in a sub-basin in a particular year is as follows, 

given there are 𝑖 inputs for each of the 𝑗 water using entities: 

SNB = ∑ 𝑝𝑦𝑗
𝑓(𝑤𝑗, 𝑥𝑖𝑗) − ∑ [𝐶𝑒(𝑤𝑗) + 𝑝𝑥𝑖𝑗

] 

Where 𝑖 = 1 → 𝑁 𝑎𝑛𝑑 𝑗 = 1 → 𝑀. Maximizing each input for each water using entity to achieve 

maximized social welfare, we compute the following FOC’s.  

𝜕SNB

𝜕𝑤𝑗
= 𝑝𝑦𝑗

𝑓𝑤𝑗
− 𝑐𝑒

′ (𝑤𝑗) = 0 

And 



18 
 

𝜕SNB

𝜕𝑥𝑖𝑗
= 𝑝𝑦𝑗

𝑓𝑥𝑖𝑗
− 𝑝𝑥𝑖𝑗

= 0 

Where 

𝑐𝑒
′ (𝑤𝑗) = 𝑝𝑤𝑗

+ 𝜏 

Solving for 𝑤𝑗
∗ and 𝑥𝑖𝑗

∗  yields the optimal values for water and all other inputs. When rearranging 

the FOC equation for 𝑤𝑗 and plugging in the optimal value, we find the following.  

𝑝𝑦𝑗
𝑓𝑤𝑗

∗ = 𝑝𝑤𝑗
∗ + 𝜏 

This optimality condition, the marginal product of water is equal to its social marginal cost, 

provides for maximizing SNB. When environmental externalities are not included into the price 

that farmers pay for water use, farm profits are larger, SNB are smaller and groundwater 

extraction will be larger, compared to the case in which the environmental externalities are 

incorporated into water prices.   

Arizona does not attempt to charge water users for the negative environmental externalities that 

come from pumping groundwater. Only nominal fees are charged to water users inside AMAs 

and those with specific wells statewide (these wells pertain to recharge and non-irrigation 

personal benefit) to fund groundwater administration and conservation programs (ADWR, 

2022b). All groundwater users, statewide, do pay for pumping costs through paying for 

electricity or other energy sources used to pump groundwater. These pumping costs are often 

cheaper than costs for using renewable alternatives to groundwater (ADWR, 2022c). Those using 

groundwater for irrigation outside of AMAs are not required to pay fees beyond the electricity 

costs to pump. 

3.3 Drivers of Sub-basin Water Demand 

Understanding drivers of sub-basin water demand can help build a conceptual model that 

investigates whether groundwater level changes reflect signals of these drivers over time.  

3.3.1 Agricultural Water Demand 

The demand for irrigation water in agriculture is driven by water prices, input prices, expected 

crop choice, and environmental characteristics, as described in Schoengold (2006). Also a driver 
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of agricultural water demand is whether water extraction or agricultural expansion regulations 

are in place. This section discusses the elements that pertain to individual farm water demand, 

which will be incorporated into a sub-basin aggregate demand function. 

The cost of water is directly related to prices or fees charged per unit of water pumped plus the 

energy cost it takes to pump it from the ground (Alam et. al., 2023; Martindill et. al., 2021; 

Burlig et. al., 2021; Wang et. al., 2020; Hurr and Litke, 1989). In most regions of the world, 

groundwater users pay for the energy used to pump groundwater but there are no additional costs 

charged to reflect externalities associated with groundwater pumping. Energy prices can vary 

over space and time, depending on the energy provider in specific areas as well as other factors. 

There can be high barriers to obtain this private data, however, trend controls can be 

incorporated into the analysis to control for changes in energy prices over time in each sub-basin 

and is discussed further in Chapter 5. The same is true for other input prices that may be time 

dependent only, but the same in each sub-basin, such as alfalfa seed prices, which can be 

controlled for by using year fixed effects.  

Expected crop choice varies both spatially and over time. Farmers can also choose to fallow their 

land, which requires significantly less water, if any at all. Common crops grown in the study area 

include alfalfa, cotton, and tree crops, which are relatively water intensive. The amount of 

planted acreage, regardless of crop choice, can be a major driver for water demand. Thus, a 

measure for land area can indicate groundwater irrigation intensity in each sub-basin over time. 

Environmental factors, such as temperature and precipitation, can alter irrigation patterns. Hotter 

temperatures increase evapotranspiration, causing plants to require more water. Less 

precipitation also requires more water to be irrigated to meet each crop’s water demand. Both 

scenarios often move together (i.e. hotter years on average have less precipitation on average) 

and incentivize more groundwater pumping in the study area. In this study, average yearly 

temperature and precipitation in each sub-basin are accounted for.  

Groundwater regulation and irrigation non-expansion requirements can change groundwater 

demand over time. Limits on agricultural expansion can lessen water demand and alter farmers’ 

crop choice decisions. Best management practices implementation can also allow farmers to 

increase their water use efficiency. This study accounts for whether regulation is in place in a 
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sub-basin. This study also accounts for the relationship between regulation and the amount of 

irrigated acreage planted.  

3.3.2 Municipal Water Demand 

Although a significantly smaller proportion of total sub-basin water demand, municipal water 

needs are still relevant to this study. Residential, commercial, and industrial water demand is 

found to be highly price inelastic, so the effect of water cost on municipal water users is not 

considered in the theoretical model (Foster et al., 2015; Hendricks et al., 2012; Alhassan et al., 

2020; Sukcharoen et al., 2020; O’Donnell et al., 2018). However, the amount of water used may 

be driven by how many people demand it, and their ability to make choices on how to use it 

(through investing in water efficient appliances or water-intensive landscaping). Therefore, the 

number of households in each sub-basin as well as per capita income is incorporated.  

Increases in new housing in a sub-basin can be indicative of expected water demand and the 

adoption of new, more water efficient appliances. Sub-basins with increases in per capita income 

can provide insight into  water use behavior by indicating greater ability to choose how to use 

groundwater water (i.e. landscaping choices, installing pools, etc.). Both aspects are further 

elaborated in Chapter 5. 

3.4 Sub-basin Water Demand Model 

A conceptual model for water demand at the sub-basin level is now defined since drivers of this 

demand have been examined. Water demand (𝑤𝑖𝑡) in each sub-basin 𝑖 and time 𝑡 is described as 

a function of planted acreage (𝑃𝑙𝑎𝑛𝑡𝑖𝑡), temperature (𝑇𝑒𝑚𝑝𝑖𝑡) and precipitation (𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡), 

number of households (𝐻𝑜𝑢𝑠𝑒𝑖𝑡), income (𝑃𝑒𝑟𝐶𝑎𝑝𝐼𝑛𝑐𝑖𝑡), and regulation status (𝑈𝑛𝑟𝑒𝑔𝑖) shown 

below.  

𝑤𝑖𝑡 = 𝑓(𝑃𝑙𝑎𝑛𝑡𝑖𝑡, 𝑇𝑒𝑚𝑝𝑖𝑡, 𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡, 𝐻𝑜𝑢𝑠𝑒𝑖𝑡, 𝑃𝑒𝑟𝐶𝑎𝑝𝐼𝑛𝑐𝑖𝑡, 𝑈𝑛𝑟𝑒𝑔𝑖) 

This model guides the econometric analysis in Chapter 5.  
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Chapter 4: Data 

4.1 DTW 

The dependent variable is DTW as a measure for groundwater level. DTW measures the distance 

from the ground surface to the top of the water table in a particular well. Measures for each well 

in the sub-basins of interest are found on the ADWR Wells 55 Registry.  

The ADWR measures DTW for individual wells multiple times a year. Well measurements used 

for analysis in a particular year were those taken only in winter months (October – April), and 

then averaged to a yearly value in the analysis. The number of measurements for each well in 

winter months varies by each year and well. Yearly averaged DTW values for individual wells 

that are missing for one or two consecutive years are then estimated using linear interpolation. 

Wells with missing measurements for more than two consecutive years from 2010 to 2021 are 

dropped from the analysis. DTW measures for each well are then averaged by year in each sub-

basin. Further elaboration for choosing individual wells to be included in the DTW calculation 

can be found in Appendix A2.  

4.2 Climate 

Mean monthly precipitation and temperature values are from PRISM Climate Group Gridded 

Dataset at a 16 km2 spatial scale. The mean monthly values are spatially averaged in each sub-

basin. Those measurements are then averaged up to the yearly time scale. Precipitation is 

measured in inches and temperature in Celsius. 

Prior studies recommend that temperature and precipitation be analyzed separately as opposed to 

together through an index such as the Standardized Precipitation and Evapotranspiration Index 

(SPEI), because they are known to interact with groundwater in opposite ways (Ndehedehe, 

2023; Crimmins, 2022; Condon, 2020). Higher precipitation is found to increase water quantity 

recharged into an aquifer, thus increasing groundwater levels (Ndehedehe, 2023). On the other 

hand, higher temperatures increase evaporation which inhibits groundwater recovery (Condon, 

2020). Consequently, analyzing temperature and precipitation separately can be more 

informative when it comes to studying groundwater level changes over time (Crimmins, 2022). 
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4.3 Census Data 

The number of households and income levels can give insight into water use behavior. Both 

aspects can have differing impacts on water use. More households in an area may indicate more 

water is being used while those with higher income can invest in higher water demanding 

amenities such as pools and higher water use landscaping, both of which may lead to lower 

groundwater levels. On the other hand, newer housing may have newer, more water use efficient 

appliances (Abraham et al., 2020; Richter et. al., 2020), and those with higher income have 

greater ability to choose lower water use landscaping amenities. 

Population was explored in preliminary analysis to be used instead of households. However, 

changes in the number of households over time seem to represent larger changes in groundwater 

use behavior. For example, water demand likely increases more significantly when one 

household of four moves into an area versus one person. Thus, the variable for number of 

households is chosen as a better indicator for groundwater use behavior changes.  

Housing and income characteristics are sourced from the US Census Bureau’s American 

Community Survey (ACS). Yearly values are calculated using a 5-year moving average. Data is 

chosen at the census tract level, the smallest spatial scale possible to get yearly measurements. 

The size and shape of census tracts are determined based on population density. Census tracts are 

drawn to fit within county boundaries. Geographic Information Systems (GIS) are used to choose 

which census tracts overlay the study areas, so the population accounted for is most relevant. 

Tracts that overlayed sub-basin boundaries but did not have over 50% of human activity within 

the intersection are excluded. This method is used to avoid accounting for human activity 

occurring outside the sub-basin of interest, at least as much as possible since census tracts do not 

perfectly overlay sub-basin boundaries.  

An important consideration is that tract boundaries were changed in 2020 to adjust to population 

changes, as is the practice at the start of every decade. The outcome of this can be seen as slight 

drops in each average value for housing units, shown in Figure A1. Average number of 

households and per capita income were extracted as yearly values at the tract level and averaged 

by sub-basin.  
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4.4 Land Cover 

The US Cropland Data Layer’s CropScape is a raster file derived using remote sensing imagery 

classification techniques. It is released yearly with each 30m pixel representing a particular land 

cover category. The file is used along with Python to extract pixel counts fitted to the sub-basin 

boundaries using ArcGIS Pro. Pixels are counted for each of the land cover variables by sub-

basin by year. The sums are then converted into acres using the conversion factor 0.222394. 

The land cover variable used in the analysis is planted acreage. This entails summing each 

individual crop acreage amount resulting in total amount of cropland cover in each sub-basin. 

Land use characteristics can give good insight into water use. Since the sub-basins in the study 

area are all groundwater dependent and yearly rainfall is low, planted acreage is groundwater 

irrigated. This aspect can be indicative of how agricultural activity interacts with groundwater 

levels over time. The more planted acreage in a sub-basin likely relates to more water extracted 

from the ground, especially since a majority of crops planted in this region are relatively water 

intensive, such as alfalfa, cotton, and tree crops as seen in Table 2 below. The perennial crop, 

alfalfa, covers the largest amount of land area in most sub-basins. Furthermore, it is likely that 

perennial crops like alfalfa and tree crops use more water on an annual basis than cotton.   

Sub-basin  Cotton 

Major 

Grains 

Other 

Crops 

Tree 

Crops Alfalfa 

Benson 210 451 16 139 1078 

Douglas 299 11534 498 3381 4022 

Gila Bend 835 10097 1970 3 41304 

Harquahala INA 

& Hassayampa  2077 3423 337 1 30804 

SCAMA North 77 33 1 229 617 

SCAMA South 62 47 0 94 265 

Willcox 2145 37033 3913 5756 9628 

Sierra Vista 9 33 4 231 101 

Avra Valley 11255 5286 27 898 3988 

Butler & 

McMullen 270 7858 5554 61 15481 
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Valley, Ranegras 

Plains 

Eloy 53660 21780 4149 1582 35747 

Maricopa-

Stanfield 13130 25256 8846 915 35814 

Rainbow Valley 24 1878 655 0 3722 

Table 2. Distribution of Crop Types (acres) in each Sub-basin Based on 2021 CDL Data 

4.5 Groundwater Regulation and Recharge 

Each AMA has specific goals unique to their economic activity when it comes to groundwater 

pumping regulation (ADWR, n.d.d). All of them have in place conservation and best 

management practices programs that limit agricultural expansion and increase water use 

efficiency (ADWR, 2020). In the study area, the Harquahala INA and Douglas AMA (previously 

Douglas INA until 2021) restrict irrigated cropland expansion throughout 2010 to 2021. Eight 

out of fourteen sub-basins in the study area are groundwater regulated. 

Active groundwater recharge projects occur in Harquahala & Hassayampa, Southern portion of 

the Santa Cruz AMA, Avra Valley, Eloy, Maricopa-Stanfield, and Sierra Vista sub-basins, each 

in different years throughout the study period. Records of active recharge projects are 

documented by ADWR (ADWR, 2024). Users deliver water to these facilities to be stored for 

later use, while policies at these Underground Storage Facilities and Groundwater Savings 

Facilities require that up to 50% of the water stored be recharged into the aquifer (Bernat, 2024). 

Recharge projects and groundwater regulation share the goal to increase groundwater levels. For 

the analysis they are indicated as dummy variables. The number one designates a sub-basin is not 

groundwater regulated. Moreover, active recharge projects are assigned a number one for each 

year in each sub-basin they are active.    

4.6 Summary Statistics 

Table 3 describes mean and standard deviation for each variable in the panel data set from 2010 

to 2021 in each sub-basin. For instance, the mean precipitation for Avra Valley is the average of 

all yearly means over the study period. The northern Santa Cruz AMA sub-basin has the highest 

per capita income on average while Gila Bend has the lowest by a significant amount. 
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Meanwhile, Gila Bend also has the lowest mean number of housing units, yet third highest 

cropland acreage, with the highest being Eloy with an average of 127,622 acres over time. 

Moreover, DTW is significantly smaller in the north and south portions of the Santa Cruz AMA 

compared to the levels in other sub-basins. All sub-basins are comparable in temperature and 

precipitation levels on average over time. A more detailed table of summary statistics can be 

found in Appendix A4. 

  DTW (Acre Ft.) Temperature (C) 

Precipitation 

(in) 

Sub-basin Mean 

St. 

dev. Mean St. dev. Mean 

St. 

dev. 

Avra Valley 245.64 4.96 19.80 0.49 1.07 0.26 

Butler, 

McMullen, 

& 

Ranegras* 340.84 5.27 20.87 0.53 0.56 0.14 

Benson* 241.44 5.19 17.60 0.51 1.14 0.26 

Douglas 190.00 10.10 17.32 0.57 1.08 0.25 

Eloy 239.24 3.55 21.74 0.51 0.72 0.19 

Gila Bend* 325.16 22.42 22.68 0.46 0.55 0.13 

Harquahala 

INA & 

Hassayampa 217.01 4.64 21.51 0.56 0.60 0.16 

Maricopa 

Stanfield 314.16 5.74 22.18 0.52 0.59 0.15 

Rainbow 

Valley 365.18 9.39 22.27 0.54 0.59 0.15 

SCAMA 

North 66.79 1.30 17.82 0.45 1.36 0.28 

SCAMA 

South 94.17 1.83 17.43 0.43 1.38 0.29 

San Simon 

Valley* 197.51 10.97 16.71 0.49 1.05 0.23 

Sierra 

Vista* 227.03 3.62 16.99 0.52 1.29 0.30 

Willcox* 264.00 12.24 16.16 0.53 1.25 0.27 

  

Planted Acreage 

(Acres) 

Per Capita Income 

(USD) Housing Units 

Sub-basin Mean 

St. 

dev. Mean St. dev. Mean 

St. 

dev. 

Avra Valley 21,990 1,587 22,352.06 2,369.90 1,892 88 

Butler, 

McMullen, 24,586 6,840 25,772.86 4,113.00 1,812 205 
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& 

Ranegras* 

Benson* 1,523 470 23,886.50 3,356.59 2,052 215 

Douglas 16,680 1,911 16,851.72 1,846.78 1,467 118 

Eloy 127,622 5,736 18,425.70 2,339.49 1,780 146 

Gila Bend* 49,242 7,174 7,681.20 861.63 523 31 

Harquahala 

INA & 

Hassayampa 37,773 4,442 23,917.57 1,618.33 1,861 239 

Maricopa 

Stanfield 86,391 3,096 29,668.07 1,784.95 1,675 40 

Rainbow 

Valley 4,446 1,815 24,026.58 5,438.16 1,844 396 

SCAMA 

North 970 343 32,871.42 4,376.04 1,678 144 

SCAMA 

South 553 169 17,521.43 2,047.94 1,573 155 

San Simon 

Valley* 14,882 2,899 20,668.08 1,379.98 1,150 236 

Sierra 

Vista* 525 303 28,745.19 2,145.61 2,096 139 

Willcox* 51,071 4,963 20,651.83 1,425.33 1,442 92 

*Groundwater not regulated 

Table 3. Summary Statistics 

4.7 Trends 

Figure 3 and 4 shows percent changes in DTW from 2010 for each sub-basin. The former 

presents only those sub-basins that have groundwater regulation in place while the latter shows 

groundwater unregulated sub-basins. The y-axis is flipped to better relate DTW percent changes 

with groundwater levels since increasing DTW means decreasing groundwater levels and vice 

versa. Decreasing trends in groundwater levels can be seen in most unregulated sub-basins. Gila 

Bend shows the largest groundwater level percent decreases since 2010, followed by Willcox 

and San Simon Valley. Consistent increases in groundwater levels over the entire study period 

are seen in Avra Valley and Maricopa-Stanfield. Both are sub-basins with groundwater 

regulations. The Santa Cruz AMA shows changes from year to year but no significant trends in 

either direction. Sierra Vista and Benson show a seemingly increasing trend after 2016. Also 

among the regulated sub-basins are those that show decreasing trends, including Douglas, 

Rainbow Valley, Harquahala INA and Hassayampa (noted as HarqHass in figure 3), and Eloy. 
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The varying trends in groundwater regulated sub-basins highlight the differences between each 

sub-basin that impact groundwater aquifers, demand and regulation.   

 

Figure 3. Percent Changes in DTW Regulated Sub-basins Since 2010 

 

Figure 4. Percent Changes in DTW Unregulated Sub-basins Since 2010 

Figure 5 and 6 show planted acreage percent changes over time since 2010 within each sub-

basin. Once again, the figures are split between regulated and unregulated sub-basins. Clear 
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increasing trends can be seen in Willcox, BMR (Butler Valley, McMullen Valley, and Ranegras 

Plain) and Gila bend, which are all unregulated sub-basins. Most regulated sub-basins show 

fluctuations but no major increases over time, while Eloy shows significant decreases in planted 

acreage.  

 

Figure 5. Percent Changes in Planted Acreage Regulated Sub-basins Since 2010 

 

Figure 6. Percent Changes in Planted Acreage Unregulated Sub-basins Since 2010 
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Trends in sub-basin housing units, temperature and precipitation, along with descriptions of 

trends, can be found in Appendix A3. 

Chapter 5: Econometric Models Estimated 

5.1 Choosing Most Suitable Econometric Model 

A few econometric model options, as well as the thought process for choosing one, are discussed 

to analyze the relationship between groundwater levels and economic, climate, and regulatory 

factors over time.  

When it comes to working with panel data, the first models considered are One-way and Two-

Way Fixed Effects (FE) models. A One-Way FE model demeans each variable at the sub-basin 

level, a process of subtracting the sub-basin mean over time of each variable from each 

observation on the same variable within that sub-basin, while a Two-Way FE model is the same 

with added year dummy variables. A FE regression could be advantageous in the analysis 

because the sub-basins are hydrologically and economically heterogeneous and I am primarily 

interested in investigating relationships over time within each sub-basin. However, one aspect 

that this model does not distinguish is groundwater regulation’s relationship with DTW. This is 

because regulation status is constant throughout the study period, and the demeaning process of 

the FE model equates all observations on time-invariant variables to zero. To be able to use a FE 

model while accounting for regulation, one could split the data into regulated and unregulated 

sub-basin groups and run two separate models. One drawback of this method is once the data is 

split, the number of observations for each model is quite small (96 and 48 observations for 

regulated and unregulated subsets), which may hinder the law of large numbers consideration 

that would allow the assumption that the data is normally distributed. An interaction variable 

could instead be incorporated between regulation status and another continuous variable, 

however the effect of regulation on its own would remain unreported. There is also the issue that 

some variables, such as cropland, in regulated sub-basins do not vary much over time due to 

conservation and best management practices standards. In this case, a FE model might lead to 

imprecise results (Wooldridge, 2010). Therefore, a model that does not demean the data needs to 

be considered to allow for time-variant and invariant variables to be included.  
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The Pooled OLS (POLS) Model discussed in Wooldridge (2010) analyzes relationships over 

time within each sub-basin, and can incorporate time constant explanatory variables, such as 

groundwater regulation status in this case. Regarding the relationships being studied, there are 

unobservable effects that introduce endogeneity issues if not controlled for. These are factors that 

vary across sub-basins but not over time, such as topography, groundwater flow direction, and 

aquifer depth, and also aspects that vary across time but have the same effect in each sub-basin, 

such as crop prices, economic shocks, and Covid-19. There are also other random effects (RE) 

that link the relationships between some of the variables of interest and DTW. For example, 

regulation status does not directly change groundwater levels. Instead, it puts plans in place that 

attempt to influence human behavior regarding groundwater extraction in both agricultural and 

urban settings. Consequently, what goes unobserved includes attitudes towards regulation which 

may influence water use behavior (i.e. shorter showers, using the dishwasher, changing irrigation 

times/patterns, etc.).  

There are tools one can use to control for unobserved heterogeneity across space and time 

(Mundlak, 1978 and Wooldridge, 2010). These can be year effects (dummy variable for each 

year) to control for time aggregate effects (i.e. those that impact DTW in each sub-basin the 

same), as well as heterogeneous time trends and unit specific time averages to control for 

unobserved shocks over time in each sub-basin and unobserved heterogeneity among sub-basins 

regardless of time (Wooldridge, 2010; Mundlak, 1978; Wooldridge, 2021).  Mundlak (1978) 

introduced the use of correlated random effects (CREs) as unit specific time averages and time 

specific unit averages to control for time constant unobservable characteristics that vary over 

space and space constant unobservable characteristics that vary over time. Unit CREs average 

each explanatory variable in each group (in this case sub-basins) over time. This averaging 

technique provides a time constant value for each observation that only differs for each group. 

Time CREs average each explanatory variable in each year across all groups. When 

incorporating these CREs into a POLS model, Wooldridge (2021) finds estimators equate to a 

Two-Way FE model, if one could control for all the unobservable effects in linear cases with 

balanced panel data (Wooldridge calls this model a Two-Way Mundlak Model). This paper only 

utilizes the unit CRMs along with trend and year dummies. Since the data in this study is 

balanced, and with the assumption that relationships are linear, the POLS model allows us to 
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obtain policy intervention’s relationship with DTW while also obtaining unbiased and consistent 

estimates that are close to a Two-Way FE model (Wooldridge, 2021).  

In this paper, a POLS model is used incorporating controls for unobservable aspects that relate to 

DTW. These controls include (1) a linear trend specification, (2) year effects, and (3) unit CREs. 

(1) Controls for unobserved trends that vary across time and differ in each sub-basin, (2) controls 

for aggregate shocks over time and (3) controls for time-constant differences between sub-

basins. 

5.2 Econometric Model 

A pooled OLS model is used because it allows time-varying and unvarying variables to be 

included. This model is best because we are interested in analyzing interactions between DTW 

and climate and economic variables over time within each sub-basin, while also incorporating 

the groundwater regulation aspect, which is constant throughout the study period.  

An endogeneity issue is likely present due to unobserved heterogeneity across time, space, and 

both simultaneously. To account for this, trend and year effects are included as well as sub-basin 

specific time averages (unit CREs) as discussed in Mundlak (1978) and further in Wooldridge 

(2021). Trend effects are specific to each sub-basin and provide a variable that counts each year 

starting in 2010, hence controlling for unobserved trend effects that vary across sub-basin and 

over time. Dummy variables for each year are also specified in the model to control for 

aggregate time effects that do not vary across sub-basins (Wooldridge, 2010). Sub-basin specific 

time averages calculate the mean over time for each explanatory variable in each sub-basin, thus 

controlling for factors that vary in each sub-basin but not over time. 

Planted acreage likely behaves differently over time in groundwater regulated sub-basins. Since 

water conservation programs exist that limit agricultural expansion, cropland amount likely does 

not vary much over time in 8 of the 14 sub-basins; however, crop mix can change over time. To 

account for this difference in the model, an interaction between planted acreage and regulation 

status is included to isolate the relationship between DTW and planted acreage in unregulated 

sub-basins.  

Fourteen sub-basins and 12 years makes 168 observations in the panel data set. While it would 

be better to have more years of data, some variables are limited in their availability. Land cover 
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variables were first released in 2008 and yearly census data at the tract level did not become 

available until 2010. However, data over 12 years is sufficient for exploring correlations between 

DTW and the economic and climate variables. With time, these analyses will improve as more 

years of data are available. 

Recall the conceptual model derived in Chapter 3 on sub-basin water demand.  

𝑤𝑖𝑡 = 𝑓(𝑃𝑙𝑎𝑛𝑡𝑖𝑡 , 𝑇𝑒𝑚𝑝𝑖𝑡, 𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡, 𝐻𝑜𝑢𝑠𝑒𝑖𝑡, 𝑃𝑒𝑟𝐶𝑎𝑝𝐼𝑛𝑐𝑖𝑡) 

This model informs the empirical modeling for groundwater level changes in this section.  

The pooled OLS regression model is specified as: 

𝐷𝑇𝑊𝑖𝑡 = 𝜌 + 𝛼𝑡𝑌𝑒𝑎𝑟𝑡 + 𝛽1𝑈𝑛𝑟𝑒𝑔𝑖 + 𝛽2𝑃𝑙𝑎𝑛𝑡𝑖𝑡 ∗ 𝑈𝑛𝑟𝑒𝑔𝑖 + 𝛽3𝑃𝑙𝑎𝑛𝑡𝑖𝑡 + 𝛽4𝑅𝑒𝑐ℎ𝑎𝑟𝑔𝑒𝑖𝑡

+ 𝛽5𝑃𝑒𝑟𝐶𝑎𝑝𝐼𝑛𝑐𝑖𝑡 + 𝛽6𝐻𝑜𝑢𝑠𝑒𝑖𝑡 + 𝛽7𝑇𝑒𝑚𝑝𝑖𝑡 + 𝛽8𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡 + 𝜎𝑖𝑈𝑖 + 𝜋𝑖𝑇𝑡+1

+ 𝑒𝑖𝑡 

Model components are as follows: 

● 𝐷𝑇𝑊𝑖𝑡 is DTW (feet) in sub-basin 𝑖 in year 𝑡. 

● 𝜌 is the intercept. 

● 𝛽
1,2,3,4,5,6,7,8

 are variable coefficients. 

● 𝛼𝑡𝑌𝑒𝑎𝑟𝑡 represent dummy variables for each year. 

● 𝑈𝑛𝑟𝑒𝑔𝑖 is a dummy variable for whether sub-basin, 𝑖, has no regulations on groundwater. 

● 𝑃𝑙𝑎𝑛𝑡𝑖𝑡 is the planted acreage in sub-basin 𝑖 in year 𝑡. 

● 𝛽
8

𝑃𝑙𝑎𝑛𝑡𝑖𝑡 ∗ 𝑈𝑛𝑟𝑒𝑔𝑖 is an interaction variable for planted acreage in unregulated sub-

basins only in sub-basin 𝑖 in time 𝑡. 

● 𝑅𝑒𝑐ℎ𝑎𝑟𝑔𝑒𝑖𝑡 is a dummy variable for whether sub-basin, 𝑖, has active recharge projects in 

year 𝑡.  

● 𝑃𝑒𝑟𝐶𝑎𝑝𝐼𝑛𝑐𝑖𝑡 is the per capita income in sub-basin 𝑖 in year 𝑡. 

● 𝐻𝑜𝑢𝑠𝑒𝑖𝑡 is a count of housing units in sub-basin 𝑖 in year 𝑡. 

● 𝑇𝑒𝑚𝑝𝑖𝑡 is mean annual temperature in sub-basin 𝑖 in year 𝑡. 

● 𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡 is total annual precipitation in sub-basin 𝑖 in year 𝑡. 

● 𝜎𝑖𝑈𝑖 represents sub-basin time averages in area 𝑖. 

● 𝜋𝑖𝑇𝑡+1 is the number of years, plus one, that have passed since 2010 for each sub-basin 𝑖 

in year 𝑡. 
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● 𝑒𝑖𝑡 is the error term in sub-basin 𝑖 in year 𝑡.   

Chapter 6: Econometric Results 
The model results are presented in Table 4. All models use the same dependent variable, average 

DTW measured annually. Model (1) shows results without any year, time average, or trend 

effects, Model (4) shows results with all these effects included, and Models (2) and (3) show 

combinations in between.  

The Breusch-Pagan Test is employed and suggests heteroskedasticity is likely present in each 

model, with chi-squared test statistics of 69.982, 80.766, 121.49, and 129.56 for Models (1) 

through (4), respectively, and all with p-values less than 0.001. Thus, robust standard errors 

(White’s Standard Errors) are calculated to correct for this. Furthermore, planted acreage and per 

capita income are scaled by 100 acres and $1000. 

Models (1) through (4) are presented to show changes in variable coefficients as more effects are 

added to control for unobserved heterogeneity across space and time. Looking at the 𝑅2 in each 

model, time trend effects seem to account for the largest amount of variation compared to the 

other effects. In all the models, a substantial amount of variation in DTW is accounted for. 

Coefficients on regulation status and the planted acreage interaction (planted acreage interacted 

with unregulated sub-basins) remain consistent throughout all four models. The results are 

expected as groundwater regulations aim to decrease DTW (i.e. increase groundwater levels). 

Thus, to see groundwater unregulated sub-basins are positively correlated with higher DTW is 

intuitive. In model 4, unregulated sub-basins have increasing DTW that is 55.86 feet larger than 

regulated sub-basins on average over study period. Roughly 56 feet is an economically 

significant difference as the largest DTW on average for a subbasin is about 340 ft. Most sub-

basins in the study area have DTW within 200 to 300 feet over time on average. Moreover, 

increases in planted acreage in unregulated sub-basins correlates with increases in DTW, as all 

the cropland in the study area rely on groundwater for irrigation. Model 4 shows unregulated 

sub-basins where planted acreage increases 100 acres also increase in DTW by 0.11 feet larger 

than regulated sub-basins on average over study period. While a 0.11 difference seems small, 

100 acres is a relatively small value to compare considering the average planted acreage among 

all subbasins over time is 31,304 acres.   
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Whether a sub-basin has an active recharge project in a particular year is negatively correlated 

with DTW in Model (4). Thus, sub-basins with recharge projects are also those with decreasing 

DTW that is 20-foot larger than those with no project. While a 20-foot difference is not large 

over 12 years, this variable is still associated with preventing DTW increases over time, which is 

economically significant. This recharge-DTW relationship is unsurprising since artificial 

recharge projects aim to decrease DTW (to replenish groundwater levels).  

When excluding trend and time average effects, housing, temperature, and precipitation show 

significant correlations with DTW of the expected signs. Higher temperatures lead to increased 

evaporation which leaves less water to replenish groundwater levels while less rainfall inhibits 

natural groundwater recharge. Housing units are found to be positively correlated with DTW. 

However, once more controls are added, the statistical significance disappears as these variables 

are likely correlated with the trend and time average effects.  

Irrigated acreage and per capita income show no significant correlations with DTW. Irrigated 

acres do not vary much in regulated sub-basins (8 out of the 14 units in the panel data set), and 

the variation that does occur is likely correlated with the planted acreage interaction.  

       

Dependent Variable: DTW Model (1)   Model (2)   Model (3)   Model (4)   

term estimate   estimate   estimate   estimate   

Unregulated (yes = 1) 67.14 *** 57.34 *** 37.80 *** 55.86 *** 

 (10.31)  (10.48)  (11.08)  (15.49)  

Planted Acreage * 

Unregulated 0.11 *** 0.12 *** 0.17 *** 0.11 ** 

 (0.03)  (0.03)  (0.03)  (0.04)  

Planted Acreage (Scaled 100 

Acres) 0.01  0.00  -0.010  -0.09  

 (0.01)  (0.01)  (0.11)  (0.07)  

Recharge Project (yes = 1) -13.59  -10.44  -4.52  -19.57 * 

 (9.07)  (9.98)  (12.16)  (10.02)  

Per Capita Income (Scaled 

$1000) -0.49  -1.08  -0.28  -1.58  

 (0.88)  (0.91)  (2.19)  (1.53)  

Housing Units 0.062 *** 0.07 *** 0.005  -0.029  

 (0.01)  (0.01)  (0.04)  (0.02)  

Temperature 11.55 *** 7.83 *** -0.98  -6.39  

 (1.43)  (1.78)  (14.15)  (6.22)  
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Precipitation -43.91 *** -106.24 *** 2.37  -21.25  

 (14.92)  (25.93)  (39.38)  (18.40)  

(Intercept) -621.06 *** -285.81 * 132.48  96.33  

  (107.46)   (143.38)   (169.06)   (201.97)   

Year Effects No  Yes  Yes  Yes  

Unit-Specific Time Average 

Effects No  No  Yes  Yes  

Time Trend Effects No   No   No   Yes   

Observations 168  168  168  168  

R2 0.6956  0.7436  0.7931  0.9597  

Adj. R2 0.6803  0.7107  0.7583  0.9482  

F Stat (8;df=159) | 

(19;df=148) | (24;df=143) | 

(37;df=130) 45.42 *** 22.59 *** 22.83 *** 83.66 *** 

*p<0.1;**p<0.05;***p<0.01         

Table 4. Econometric Results 

Chapter 7: Social and Environmental Justice in the 

Colorado River Basin 

7.1 Introduction 

About 40 million people reside in the Colorado River Basin (CRB) or rely on its water supply 

and benefit from the environmental amenities it provides (Richter et. al., 2024). Policy makers 

decide how to allocate the constrained water supply to meet demand for agricultural and 

municipal sectors, while ensuring good water quality, maintaining groundwater supply and 

conserving natural habitat. Moreover, multiple water disputes have been litigated and negotiated 

to decide water rights and build infrastructure for communities to utilize their rights, especially 

for those residing in tribal nations (Colby et al., 2005).  

Groundwater is an important component in water discussion in the CRB. A large portion of 

communities in the CRB relies on groundwater to meet water demand. Underground 

infrastructure and air quality contribute to groundwater quality. Figure 4 from the Groundwater 

Foundation (n.d.) portrays common sources of groundwater contamination. Underground storage 

tanks (USTs), such as those holding gas or oil, are subject to leaks over time. Air pollution 

increases contaminants in surface water supply, hindering groundwater quality as water 

recharges into the surrounding aquifers (Groundwater Foundation, n.d.). Groundwater quantity is 
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connected to surface water supply. For instance, aquifer depletion is found to negatively impact 

surface water supply, which is needed to support recreational activities and natural wetlands in 

the CRB (Condon, 2019). In addition, there are households in the CRB that lack complete indoor 

plumbing. Indoor plumbing includes hot and cold running water. For example, 40% of 

households in the Navajo Nation haul their water from groundwater wells outside the home 

(Tanana, 2021). 

 

Figure 4. Sources of Groundwater Contamination 

This chapter discusses several elements including air and water quality, access to green space or 

natural landscapes and complete water infrastructure for households. These elements are affected 

by decisions in the CRB regarding groundwater quality, allocations, and infrastructure and these 

effects are important for water user’s well-being. Air pollution has been shown to impact human, 

animal and plant health, rain and soil quality and to contaminate groundwater (Groundwater 

Foundation, n.d.). Leaky USTs can release toxic materials that can contaminate nearby wells and 
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other groundwater sources. Green and natural landscape requires water to maintain amenities 

such as trees, parks, and riparian habitat. Artificial surfaces, such as cement, roads and cropland, 

take space away from natural habitat, increasing temperatures and pollution sources and 

adversely affect mental health (Aram, et al., 2019; ADAA, 2023). Lastly, households with 

incomplete plumbing inhibit residents from utilizing their full water rights. Communities lacking 

clean air and water, green or natural landscape, and complete plumbing in households are 

defined by the Council on Environmental Quality (CEQ) to be “environmentally burdened”.  

While decisions have been made to mitigate pollution (i.e. the Clean Air and Clean Water Acts 

in 1970 and 1972), allocate ample amounts of water (i.e. through projects like the Central 

Arizona Project), and improve household plumbing, environmental burdens persist in the CRB 

(U.S. Executive Office of the President Council on Environmental Quality, 2022). This research 

examines whether the burdens relating to groundwater fall disproportionately on certain groups 

of people in the CRB. This chapter analyzes whether low-income households or racial and ethnic 

minorities experience higher environmental burden prevalence. More specifically, this chapter 

explores whether burdens that are known groundwater contaminators (i.e. air pollution and leaky 

USTs) affect some groups disproportionately. This chapter also explores burdens relating to how 

groundwater is allocated outside of meeting base level demand (i.e. maintaining natural space or 

investing in green landscape). Lastly this paper investigates who is more likely to live in areas 

with households lacking indoor access to water (i.e. households with incomplete plumbing). 

Incorporating multiple aspects that influence groundwater quality, allocations and access to 

explore disproportional adverse outcomes can help in guiding further water policy in the CRB in 

an environmental justice (EJ) context.  

The geographic area covered in this analysis is the CRB and areas that receive water exported 

from the CRB.  The analysis applies an OLS regression model to see whether correlations 

between these environmental burdens (lack of green space, air pollution levels, leaky USTs, and 

incomplete plumbing) and race, income, and education characteristics are statistically significant. 

This study adds to the literature by analyzing who is more likely impacted by burdens relating to 

groundwater and who receives less benefit from how water is allocated in the CRB and adjacent 

service areas. A newly released data set is utilized from the Council on Environmental Quality 

(CEQ) in 2022 that compiles environmental burdens, race, ethnicity, income, education, and 
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health variables at the census tract level. The census tract data is spatially matched to the CRB, 

and econometric analysis is applied to the cross-sectional data. Results align with past literature 

finding disproportional relationships between minority groups and environmental burdens. 

Findings highlight the need for increased diversity, equity, and inclusion (DEI) in policy 

discussion regarding groundwater water supply and access in the CRB, as lacking DEI in water 

dialogues can lead to environmental injustice (Williams et. al., 2023). 

The rest of this chapter is as follows: Chapter 7.2 discusses previous economic literature on EJ in 

broader contexts, chapter 7.3 summarizes and discusses the data used for the analysis, and 

chapters 7.4 and 7.5 explain the econometric method and present the results. Finally, the 

conclusions and policy implications are discussed in Chapter 8. 

7.2 Literature Review 

EJ literature connects low income, less educated and racial and ethnic minorities with 

environmental burdens in the United States and around the world. Income at age 35 for those 

who grew up in low-income families widely varies across the United States (Chetty et. al., 2018). 

Nonetheless, racial and ethnic minorities are found to be negatively associated with upward 

mobility (Chetty et. al., 2020). In parallel, low-income households and individuals face higher air 

pollution incidence, Safe Water Drinking Act violations, vulnerability to natural disaster, and 

incomplete plumbing prevalence (Miranda et. al., 2011; Kathuria and Khan, 2007; Jorgenson et. 

al., 2020; Kodros et. al., 2022; Bell and Ebisu, 2012; Bae and Lynch, 2023; Mueller and 

Gasteyer, 2023; Deria et. al., 2020; Mueller and Gasteyer, 2021; Bandala et. al., 2022). 

Environmental burdens may negatively contribute to upward mobility, and this is especially an 

issue if these burdens fall disproportionately on disadvantaged communities. 

Factors contributing to poor environmental quality, such as high air pollution levels, increased 

natural disaster occurrences, higher temperatures, or lack of environmental amenities, are found 

to increase poor health outcomes around the world, potentially hindering productivity and 

exacerbating income equality (Oyedele and Tella, 2023; Oliveira et. al., 2023; Johar et. al., 2022; 

González et. al., 2021; Jorgenson et. al., 2020; Spotswood et. al., 2021; Dell et. al., 2009; Zaveri 

et. al., 2020; Dell et. al., 2009). Although many systems are in place to mitigate pollution in the 

United States, pollution and its negative impacts persist with disproportional adverse effects on 

low-income individuals or racial and ethnic minorities (Kodros et. al., 2022; Kathuria and Khan, 



39 
 

2007; Jorgenson et. al., 2020; Dell et. al., 2009; Bell and Ebisu, 2012). For example, lower 

income and minority communities as well as racially segregated areas are found more likely to 

be exposed to higher levels of air pollution (Miranda et. al., 2011; Kathuria and Khan, 2007; 

Jorgenson et. al., 2020; Kodros et. al., 2022; Bell and Ebisu, 2012). Moreover, regarding water 

pollution, Safe Water Drinking Act violations are found to likely occur in areas with higher 

minority populations, while water infrastructure investment benefits decrease as low income or 

minority populations increase over time (Bae and Lynch, 2023; Mueller and Gasteyer, 2023).  

A lack of infrastructure contributes to pollution’s deleterious impacts. Nigra et. al. (2023) model 

lead water service pipes in New York City and find Hispanic populations are more likely to be 

exposed (Nigra et. al., 2023). Moreover, lower income communities are found to be more 

vulnerable to natural disasters, such as flooding (Deria et. al., 2020). Across the United States, 

489,836 households lacked complete indoor plumbing in 2018, while American Indian 

communities are found to have higher incidence of housing with incomplete kitchens or 

plumbing (Mueller and Gasteyer, 2021; Bandala et. al., 2022). Those on reservations also forgo 

income that could be earned from utilizing senior water rights due to the lack of infrastructure 

investments (Sanchez et. al., 2023).  

Policies undertaken to mitigate pollution’s negative impacts include the Clean Air and Safe 

Drinking Water Acts’ standards and enforcements, tree canopy increases, water infrastructure 

improvements, and access to green space.  These policies seem to have disproportional benefits 

for higher income, non-minority populations (Zhang et. al., 2022; Williams et. al., 2020; 

Spotswood et. al., 2021; Neier, 2021; Mueller and Gasteyer, 2023; Miranda et. al., 2011; Liu et. 

al, 2021; Bae and Lynch, 2023). Access to green space and tree canopy, especially in urban 

areas, can have positive benefits on mental and physical health and improve home values (Zhang 

et. al., 2022; Williams et. al., 2020; Liu et. al, 2021; Li, 2022). However, studies often find only 

certain groups benefit from these pollution mitigation strategies. Access to safe parks in cities is 

less likely for low-income or racial and ethnic minorities while, in areas excluding school yards, 

there is likely less tree canopy in communities with higher minority populations (Williams et. al., 

2020; Zhang et. al., 2022). Where programs exist to plant more trees, minorities may face higher 

risk of gentrification as housing values increase as Li found for New York city (Li, 2022). 
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Regarding negotiations for polluting activity placements, such as locations for oil and natural gas 

mining, wealth is shown to have a positive relationship with bargaining outcomes. This can leave 

low-income communities vulnerable to drilling violations due to inability to negotiate proper 

protections (Timmins and Vissing, 2022).  State and federal entities can help facilitate and 

implement transparent and fair decision making, while stakeholder participation is essential in 

achieving sustainable outcomes (Berggren, 2018).   

7.3 Data 

This section introduces the Climate and Economic Justice Screening Tool (CEJST) data, defines 

specific variables used in the econometric analysis, and discusses some potential data limitations.  

The newest version of the CEJST data set was released by the CEQ in 2022 (U.S. Executive 

Office of the President Council on Environmental Quality, 2022). This data set is unique as it 

compiles demographic, housing, income, and environmental information at the U.S. Census 

Bureau census tract level. The CEJST consists of indicators for different environmental burdens 

on communities such as housing, health, income, and environmental burdens. The CEQ 

combines these data from various sources and also offers each variable as a percentile. The 

CEJST also contains an indicator for disadvantaged communities based on a set criterion that 

relates tracts that are at or above the 65th percentile for low-income and that qualify for at least 

one other burden (White House Council on Environmental Quality’s Climate and Economic 

Justice Screening Tool (CEJST), 2022).  

The 2022 version of CEJST consists of cross-sectional data collected within the years 2014 to 

2022. The data is at the census tract spatial scale. Tracts included in the analysis are those that lie 

wholly or partially within the CRB boundary and adjacent areas receiving Colorado River water, 

such as tracts in Los Angeles. Overlapping census tracts with less than 50% impervious surface 

or cropland occurring within the CRB boundary intersection are excluded from the analysis.  

7.3.1 Environmental Burdens 

This section begins with more precise definitions of the environmental burdens which are then 

elaborated on below. Table 5 also includes the unit of measurement and the years available in the 

CEJST data.  
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Environmental 

Burden 

Definition Measurement Units Years Available in 

CEJST 

Lack of Natural or 

Green Landscape 

The percent of census 

tract that is artificial 

surface (i.e. cement, 

roads, etc.) or 

cropland. 

Percent 2019 

Households with 

Incomplete Plumbing 

The percent of 

households with 

incomplete kitchens 

or plumbing. 

Percent 2018 

Leaky Underground 

Storage Tanks 

(USTs) 

The density of leaky 

USTs and all active 

USTs within 1500 

feet of each census 

tract. 

Density 2021 

PM2.5 in the Air The amount of 

inhalable particles, 

less than 2.5 

micrometers, in the 

air. 

Micrograms per cubic 

meter of air 

2017 

Note. Environmental burdens measured at the census tract level 

Table 5. Summary of Environmental Burden Variables 

Lack of natural or green landscape is measured by CEJST is the percent of land that is 

impervious surface (i.e. concrete, pavement, or other artificial surfaces) or cropland. This data is 

sourced by the CEQ from the Multi-Resolution land Characteristics Consortium which compiles 

remote sensing land cover data including the National Land Cover Data (NLCD) 2019 Percent 

Developed Imperviousness. The NLCD provides information on the percent of pixels that are 

imperious surface, and The Trust for Public Lands converts that into an area at the census tract 

level (Multi-Resolution Land Characteristics Consortium (MRLC), 2019).  

Lack of indoor plumbing, as it is called in the CEJST data, measures the percentage of homes 

with incomplete indoor kitchens or plumbing. The Department of Housing and Urban 

Development (HUD) receives detailed data from the American Community Survey (ACS) on the 

number of households that lack indoor kitchens or plumbing. The ACS reports households that 

have incomplete plumbing and those with incomplete kitchens separately, and HUD combines 

them as a part of their Comprehensive Housing Affordability Strategy (CHAS) Data 

(Department of Housing and Urban Development, n.d.). The ACS data used is a five-year 

moving average from 2014-2018 at the census tract level. According to the U.S. Census Bureau, 



42 
 

households with incomplete plumbing are those that lack at least one of the following 

characteristics: hot and cold piped water, bathtub or shower, and flushable toilet; whereas 

households with incomplete kitchens are those that lack a sink with a faucet, stove or gas range, 

and/or a refrigerator (US Department of Commerce, 2015). Therefore, these criteria are 

combined by the ACS so that if a household is missing any of these characteristics, they are 

identified as lacking complete kitchen or plumbing. CEQ then uses the percentage of households 

in each census tract with incomplete kitchen or plumbing from HUD’s CHAS. For simplicity, 

this study refers to households with incomplete indoor kitchens or indoor plumbing as 

households with incomplete plumbing.  

Leaky underground storage tanks (UST’s) are calculated as the density of leaking UST’s to the 

number of active UST’s within 1500 feet of each census tract. Leaking UST’s can cause 

groundwater contamination, potentially presenting health risks through impacting drinking water 

quality and environmental risks creating fire and explosion hazard (US Environmental Protection 

Agency, 2024a). This data is from the Environmental Protection Agency’s (EPA) UST Finder in 

2021 and then compiled by EPA’s EJScreen (White House Council on Environmental Quality’s 

Climate and Economic Justice Screening Tool (CEJST, 2022).  

PM2.5 in the air is the level of inhalable particles, which are less than or equal to 2.5 

micrometers. These particles can be made up of various chemicals or heavy metals, which may 

cause cancer (US Environmental Protection Agency, 2020). This data comes from the EPA’s 

Office of Air and Radiation’s (OAR) fusion of model and monitor data in 2017. The EPA 

National Air Toxics Assessment (NATA) and the U.S. Department of Transportation’s (DOT) 

traffic data sources the PM2.5 data, which is then compiled by EPA’s EJScreen and included in 

the CEJST data. There are about 4000 State and Local Air Monitoring Stations (SLAMS) across 

the United States that track air pollution levels. Limitations include spatial gaps, filled by the 

EPA’s modeling techniques. Gaps occur especially in rural areas where the SLAMS are less 

likely to be located (US Environmental Protection Agency, 2020).  

7.3.2 Race and Ethnicity 

Race and ethnicity data are sourced from the U.S. Census American Community Survey (ACS) 

as a five-year moving average in 2019 at the census tract level (U.S. Census Bureau, 2019). 
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Races analyzed include American Indian, Black, and White non-Hispanic population counts. 

Also used is the population in each tract that identify as Hispanic regardless of race.  

While there are race and ethnicity categories included in the CEJST data, these groups overlap 

between race and ethnicity. For instance, each racial group can either identify as Hispanic or 

non-Hispanic and the CEJST includes only percentages for racial groups regardless of ethnicity. 

The ACS does provide data that splits racial groups by ethnicity (either Hispanic or non-

Hispanic). These are used to ensure no overlap occurs within the race and ethnicity populations 

in the models. For further elaboration on how the ACS categorizes race and ethnicity population 

counts, see figure 5 below. Population percentages by race and ethnicity are discussed in 

Appendix A4. 

 

Figure 5. U.S. Census Bureau’s Categorization of Race and Ethnicity Categories 

7.3.3 Income, Education, and Population 

Mean income is sourced from the U.S. Census Bureau’s ACS as a five-year moving average in 

2019 at the census tract level. The variable equates to the average household income in each 

tract. The variable to capture education level is one that measures the percentage of the 

population in each tract at or over the age of 25 that have obtained a high school degree. This 

education indicator is sourced from the CEJST data and is a five-year moving average estimate 

in 2019 (averaged value from 2015 to 2019). 

To control whether a tract is rural, population density is included in the analysis. It is calculated 

as the population divided by the area (in acres) in each census tract. This variable is incorporated 

Race

Ethnicity

Two Categories:
ACS 

Population 
Breakdown

Hispanic or 
Latino

White
People of 

Color (Black, 
Asian, etc.)

Non-Hispanic 
or Latino

White
People of 

Color (Black, 
Asian, etc.)
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into the model to avoid endogeneity issues as greater population density shows positive 

correlations with many of the environmental burdens data (as seen in Figure 5). 

7.3.4 Limitations 

One drawback of the cross-sectional data is that variables are measured in somewhat different 

time periods. For example, the leaky UST data is based on measurements for 2021 and the 

incomplete plumbing data for 2018, while the demographic data uses 2019 values. These 

variables are still reasonably comparable due to the lack of variability of the observations from 

year to year. While there are cleanup procedures for leaky USTs in place, the time taken to 

discover these leaks in the first place is unclear (US Environmental Protection Agency, 2024b). 

In addition, completing infrastructure for indoor kitchens or plumbing is a costly process that 

takes time.  

In addition to time mismatches between variables, there are also spatial mismatches between 

some tracts and the CRB. Tracts used in the analysis are those that lie wholly or partially within 

the CRB and areas which are served by water from the CRB. All tracts that intersect with those 

boundaries are included. However, the boundary line is not a perfect matchup. Some populations 

included in the analysis receive no benefit from the CRB, however this is a small percentage.  

7.3.5 Correlation Matrix 

Figure 6 shows correlations between the environmental burdens, race and ethnicity, income, 

education, and population variables. White non-Hispanic populations show slight to moderate 

negative correlations with all the environmental burdens. Tract-level mean income shows similar 

results except has a positive correlation with PM2.5 in the air, however the relationship is small. 

American Indian is the only racial group that shows a moderately strong positive correlation with 

percentage of households with incomplete plumbing. Hispanic and Black non-Hispanic 

populations show positive correlations with all environmental burdens, excluding the incomplete 

plumbing variable. 
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Figure 6. Correlation Matrix of Environmental Burdens and Demographics 

7.3.6 Summary Statistics 

Table 5 presents summary statistics for each variable discussed in this section as a summary of 

all the census tracts in the study area. The average share of impervious surface or cropland in 

CRB census tracts is roughly 50%. While most tracts have zero households with incomplete 

plumbing, there is a tract where .67% of households lack complete infrastructure, suggesting that 

lack of complete plumbing is concentrated in specific areas (Deitz and Meehan, 2019). The 

average income for all tracts in the CRB is $91,406.88, about $10, 000 above the median 

income. Population density varies across tracts, with the lowest density tract having zero 

residents (there are eight of these - typically tracts that consist of only an airport or body of 

water) and the highest density tract having 148.09 people per acre and located in Los Angeles. 

Variable Min Mean Median Max 

Stand. 

Dev. 

% Non-green space acreage 0.03% 49.49% 53.02% 97.29% 21.78% 

% Households with incomplete 

kitchen/plumbing 0% 0.01% 0% 0.62% 0.03% 
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Leaky USTs 0.00 3.44 2.24 42.16 3.98 

PM2.5 in the air 4.01 9.54 9.29 13.86 2.65 

% Hispanic 0.00% 36.17% 28.57% 100.00% 26.46% 

% American Indian  0.00% 1.68% 0.00% 100.00% 9.25% 

% Black  0.00% 5.14% 2.36% 84.71% 8.20% 

% Without high school degree 0.00% 15.20% 10.00% 75.00% 13.97% 

Mean Income $0.00 $91,406.88 $81,376.50 $434,685.00 $45,269.37 

Population Density 0.00 11.79 8.62 148.09 12.76 

Table 6. Summary Statistics 

7.4 Econometric Models Estimated 

This study explores the relationships between environmental burdens and income, race and 

ethnicity, and education in the Colorado River Basin at the census tract level. Correlations in this 

analysis are expected to align with past literature regarding disproportionate adverse effects that 

air and groundwater pollution, households with incomplete plumbing, and lack of access to 

environmental amenities may have on minority populations or communities that are low-income, 

as discussed in Chapter 2. 

A linear regression model is used to analyze the relationship between each environmental burden 

and demographics, income, and education characteristics. This model produces the most 

efficient, consistent, unbiased, and linear estimate. The OLS estimator assumes the following: (1) 

the environmental burdens are linearly dependent on the explanatory variables, (2) the 

explanatory variables are linearly independent from each other, and (3) the error terms are not 

correlated with the explanatory variables (𝐸(𝑥, 𝜀) = 0), they are homoscedastic 

(𝑉(𝜀𝑖) = 𝜎2 ∀ 𝑖), and there is no autocorrelation (𝑐𝑜𝑣(𝜀𝑖𝜀𝑗) = 0 ∀ 𝑖). 

Because race and ethnicity characteristics are commonly found in the literature to be correlated 

with income and education (Chetty et. al., 2020; Povich et. al., 2015), further tests are done to 

ensure the variance is not overinflated due to collinearity between the explanatory variables 

(Michler and Wu, 2020). To check for this, the variance inflation factor (VIF) is calculated.  

The nature of the data analyzed is cross-sectional with 7,756 observations. Four models are 

presented, each with the same explanatory variables including race, ethnicity, income, and 

education. Each dependent variable is a different environmental burden. Excluded from the 

models as the comparison group (for race/ethnicity) are those that identify as non-Hispanic 
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White, Hawaiian or Pacific Islander, those that are two or more races, and those that identify as 

another race not accounted for in the ACS. (White population accounts for 78.7% of these 

excluded categories). 

To avoid endogeneity issues due to unobserved heterogeneity, state controls are included as 

dummy variables to account for differences in each tract due to the state in which it belongs. 

These unobserved characteristics could be attitudes and preferences towards these environmental 

burdens, political beliefs related to social and environmental policies, and environmental 

amenities that differ across states. Population density is incorporated into the model to account 

for urban versus rural tracts. The number of people per acre could impact differences in the 

amount of natural or green landscape, plumbing infrastructure, air pollution levels, and 

concentration of leaky USTs.   

The OLS model is specified below:  

𝐸𝑛𝑣𝐵𝑢𝑟𝑑𝑒𝑛𝑖 = 𝜌 + 𝛽1𝐻𝑖𝑠𝑝𝑖 + 𝛽2𝐴𝑚𝐼𝑛𝑑𝑖 + 𝛽3𝐵𝑙𝑎𝑐𝑘𝑖 + 𝛽4𝐸𝑑𝑢𝑖 + 𝛽5𝐼𝑛𝑐𝑖 + 𝛽6𝑃𝑜𝑝𝐷𝑒𝑛𝑠𝑖

+ 𝛽7𝐷𝑢𝑚𝐶𝐴𝑖 + 𝛽8𝐷𝑢𝑚𝐶𝑂𝑖 + 𝛽9𝐷𝑢𝑚𝑁𝑀𝑖 + 𝛽10𝐷𝑢𝑚𝑁𝑉𝑖 + 𝛽11𝐷𝑢𝑚𝑈𝑇𝑖

+ 𝛽12𝐷𝑢𝑚𝑊𝑌𝑖 + 𝜀𝑖  

Model components are as follows: 

● 𝐸𝑛𝑣𝐵𝑢𝑟𝑑𝑒𝑛𝑖 pertains to the four environmental burdens of interest including lack of 

green space, lack of indoor kitchens or plumbing, leaky USTs, and PM2.5 in the air in 

tract 𝑖.  

● 𝜌 is the intercept. 

● 𝛽
1,2,3,4,5,6,7,8,9,10,11,12

 are variable coefficients. 

● 𝐻𝑖𝑠𝑝𝑖 is the number of those who identify as Hispanic, regardless of race, in tract 𝑖. 

● 𝐴𝑚𝐼𝑛𝑑𝑖 is the number of those who identify as American Indian, non-Hispanic, in tract 𝑖. 

● 𝐵𝑙𝑎𝑐𝑘𝑖 is the number of those who identify as Black, non-Hispanic, in tract 𝑖. 

● 𝐸𝑑𝑢𝑖 is the percentage of those, 25 or older, without a high school degree in tract 𝑖. 

● 𝐼𝑛𝑐𝑖 is mean income in tract 𝑖. 

● 𝑃𝑜𝑝𝐷𝑒𝑛𝑠𝑖 is the population density in tract 𝑖. 

● 𝐷𝑢𝑚𝐶𝐴𝑖, 𝐷𝑢𝑚𝐶𝑂𝑖, 𝐷𝑢𝑚𝑁𝑀𝑖, 𝐷𝑢𝑚𝑁𝑉𝑖, 𝐷𝑢𝑚𝑈𝑇𝑖, and 𝐷𝑢𝑚𝑊𝑌𝑖 represent dummy 

variables for each state. 



48 
 

7.5 Econometric Results 

Table 7 shows the econometric results of four models with different environmental burdens as 

dependent variables. Table 7 reports VIF values, which all are less than 5.0, which is 

significantly different than 10.0, the threshold for indicating collinearity is a cause for concern 

(O’Brien, 2007). The Breusch-Pagan statistics are reported to test for heteroskedasticity, which is 

found likely to be present in all the models. To correct for this, all models in table 7 are run with 

White’s standard errors.  

The model for air pollution shows that much of the variation for this environmental burden is 

accounted for. The incomplete plumbing model has a relatively low 𝑅2, which is unsurprising as 

only 0.5% of all households in the CRB are considered to have incomplete indoor plumbing 

alone (this statistic excludes households with incomplete kitchens). Moreover, the 𝑅2 for the 

Leaky UST model is low. 90.91% of tracts contain a leaky UST density of at least .01, indicating 

either unobservable characteristics are likely present between tracts and/or having the data for 

the same time period might be more important than previously thought. Despite the low 𝑅2for 

three out of four models, the F-statistics are significant suggesting the independent variables in 

each model have good explanatory power.  

Relating to groundwater quality, models (1) and (2) show interesting results. Tracts with higher 

air pollution prevalence are positively correlated with tracts that are home to higher percentages 

of Hispanic and Black populations. Tracts with higher income, on average, and those that are 

more densely populated are also likely to be tracts with higher levels of air pollution. Tracts with 

a higher percentage of American Indian populations are the only group negatively correlated 

with air pollution. Areas with higher leaky UST density are less likely tracts with a greater share 

of Hispanic and American Indian populations. Black and less educated populations are more 

likely to live in areas where more leaky USTs occur. These areas are also likely densely 

populated. Moreover, tracts with higher income on average are also those with less leaky USTs.  

Corresponding to water allocations contributing to more impervious surface development or 

agricultural production and to less natural or green landscape is model (3). Census tracts with 

higher percentages of Hispanic and Black populations are also those with more impervious 

surface or cropland. American Indian and lower educated populations are likely to reside in areas 

with more natural or green landscape. Tracts with higher average income are likely to also have 
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more natural or green landscape. Lastly, more densely populated tracts are also likely those with 

more impervious surface or cropland.  

Access to running water in the home is represented in model (4). Those who identify as Hispanic 

are more likely to live in tracts with less households with incomplete plumbing. In contrast, 

American Indian populations and those with less education are more likely to live in tracts with 

higher incidence of households with incomplete plumbing. Higher income census tracts, on 

average, are likely those with more homes that have access to indoor running water. Population 

density is positively correlated with higher amounts of households with incomplete plumbing.  

The race and ethnicity variables follow the expected relationships as seen in past literature. 

Hispanic populations, regardless of race, show negative correlations with incomplete plumbing 

and leaky UST’s and a positive correlation with air pollution and impervious surface or cropland. 

One aspect to consider is the Hispanic variable includes the white Hispanic population. This 

categorization could impact the relationship between Hispanic populations with environmental 

burdens in opposing ways if race is a greater determining factor.  

Income and population density also have expected signs. One could infer that those with higher 

income can choose to live in areas surrounded by natural or green landscape. Air pollution, on 

the other hand, seems to be less avoidable, even for those with a greater ability to choose where 

they live. Moreover, the positive correlation between population density and each environmental 

burden suggests where there are more people there is also higher incidence of air pollution, leaky 

USTs, artificial land surfaces, and households with incomplete plumbing.  

 Dependent Variable: (1) PM2.5 in Air (2) Leaky USTs 

(3) Lack Green 

Space 

(4) Incomplete 

Plumbing 

Variable Estimate   Estimate   Estimate   Estimate   

(Intercept) 5.96 *** 2.16 *** 40.66 *** 0.0089 *** 

 (0.066)  (0.15)  (0.98)  (0.0009)  

% Hispanic 1.68 *** -0.81 ** 9.51 *** -0.018 *** 

 (0.14)  (0.36)  (1.66)  (0.0034)  

% American Indian (Non-Hisp) -0.95 *** -2.46 *** -33.48 *** 0.15 *** 

 (0.20)  (0.34)  (2.16)  (0.014)  

% Black (Non-Hisp) 3.06 *** 2.80 *** 21.67 *** -0.0041  

 (0.12)  (0.65)  (1.99)  (0.0046)  

% No HS Degree 0.0029  0.031 *** -0.064 ** 0.0003 *** 

 (0.0025)  (0.0077)  (0.032)  (0.0001)  
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Mean Income (scaled $10,000) 0.0001 *** -0.0001 *** -0.0007 *** -0.0000005 *** 

 (0.000004)  (0.00001)  (0.0001)  (0.0000001)  
Population Density (scaled 

1000) 28.80 *** 87.79 *** 769.51 *** 0.20 *** 

  (1.84)  (7.52)  (36.52)  (0.035)  

State Effects Yes   Yes   Yes   Yes   

Observations 7756  7756  7756  7756  

R2 0.7881  0.2106  0.4859  0.3286  

Adj. R2 0.7878  0.2094  0.4851  0.3275  

F Stat (12; df = 7743) 2400 *** 172.1 *** 609.7 *** 315.8 *** 

Breaush-Pagan Statistic 969.36 *** 467.44 *** 329.36 *** 793.02 *** 

Variable VIF Df             

Hispanic 4.91 1       

American Indian (Non-Hisp) 1.34 1       

Black (Non-Hisp) 1.14 1       

% No HS Degree 4.93 1       

Mean Income (scaled $10,000) 1.73 1       
Population Density (scaled 

1000) 1.50 1       

State Effects 1.95 6             

*p<0.1;**p<0.05;***p<0.01         
Table 7. Econometric Results 

Chapter 8: Conclusion and Policy Implications 

8.1 Motivation for Study 

Groundwater use data is lacking for much of rural Arizona as well as much of the world (Lall, 

2020, Dantas, 2021). This study seeks to improve understanding of how climate, economic and 

regulatory factors interact with groundwater in areas where groundwater pumping data is not 

available because groundwater use is unregulated and unmonitored. This is especially important 

to inform water management and policy decisions regarding areas where no groundwater 

regulation is present, leaving communities vulnerable to groundwater shortages.  

Chapter 7 explores several types of environmental burdens related to groundwater quality, 

allocation and access to further identify whether certain groups in the CRB are 

disproportionately exposed. These burdens include air pollution, leaky USTs, lack of natural or 

green landscape and households with incomplete plumbing. Environmental burdens around the 

world have disproportional effects on racial and ethnic minorities, as well as on low-income and 
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less educated individuals (Kodros et. al., 2022; Kathuria and Khan, 2007; Jorgenson et. al., 2020; 

Dell et. al., 2009; Bell and Ebisu, 2012). Not only do these burdens negatively impact 

groundwater, but they also lead to adverse health outcomes (Oyedele and Tella, 2023; Oliveira 

et. al., 2023; Johar et. al., 2022; González et. al., 2021; Jorgenson et. al., 2020; Spotswood et. al., 

2021; Dell et. al., 2009). Understanding whether there are disproportional adverse health effects 

in the CRB can help inform policy decisions ensuring equitable protection while improving the 

quality and quantity of the Colorado River water supply.  

8.2 Discussion of Empirical Findings 

8.2.1 Climate, Economic, and Regulatory Signals in Groundwater Level Data 

Panel data for 2010-2021 is analyzed through four Pooled Ordinary Least Squares regression 

models with varying degrees of controls. The models are used to analyze relationships between 

DTW and housing, climate, agricultural activity, and groundwater regulation. The models 

highlight correlational relationships only. DTW is the dependent variable and climate, economic, 

and regulatory factors are the explanatory variables. The models are run with robust standard 

errors as heteroskedasticity is found to be present.  

Model results show significant coefficients on regulation status and planted acreage interacted 

with regulation consistently in all four models. Sub-basins without groundwater regulation are 

likely to have 56 feet higher DTW than those with groundwater regulation in place from 2010 to 

2021. Unregulated sub-basins that increase in planted acreage by 100 acres are also those with 

.11 feet higher DTW than regulated sub-basins increasing in planted acreage by the same amount 

over the twelve year study period.     

Recharge is significantly negatively related to DTW changes over time in model 4. Sub-basins 

with a recharge project during at least one year in the study period are likely those with 20 feet 

lower DTW, on average over time, compared to sub-basins with no recharge projects occurring.  

Temperature, precipitation, and housing units show up as significant in the first two models 

before controlling for correlated random effects. Per capita income and planted acreage, on its 

own, show no significant correlation with DTW over time. 
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8.2.2 Race, Income, and Education Relationships with Environmental Burdens in 

the CRB 

The econometric models utilize four different environmental burdens as the dependent variable: 

air pollution prevalence, leaky USTs, lack of natural or green landscape and households with 

incomplete plumbing. Race, ethnicity, income, education, and population density are included as 

explanatory variables. A cross-sectional data set is analyzed in four separate OLS models, each 

with the same explanatory variables but different environmental burdens as the dependent 

variable. The models are run with robust standard errors.  

The percentage of those who identify as Hispanic, regardless of race, in a census tract shows 

positive relationships with air pollution and impervious surface or cropland, and negative 

relationships with leaky UST’s and percentage of households with incomplete plumbing. 

American Indians and low educated populations are the most likely to live in areas with more 

households with incomplete plumbing while Black population size is positively correlated with 

each of the other environmental burdens. Those with higher income tend to live in places with 

more access to natural or green landscape, less households with incomplete plumbing, less USTs, 

and higher air pollution. To check for linear dependencies between explanatory variables, a VIF 

is calculated for each variable in the models. For all the parameters, the variance is not inflated 

enough to cause concern for collinearity.  

8.3 Policy Implications 

8.3.1 Groundwater Policy 

Understanding how economic, climate, and regulatory factors correlate with groundwater levels 

can help inform these policy decisions, especially where it is challenging or impossible to obtain 

water extraction data or estimations based on hydrologic models, remote sensing tools, or 

proxies, such as energy use to pump groundwater (Brookfield et. al., 2024; Alam et. al., 2023; 

Martindill et. al., 2021; Burlig et. al., 2021; Wang et. al., 2020; Hurr and Litke, 1989). 

Regulation and recharge projects are correlated with DTW in the way they are intended. Not 

only do groundwater regulated sub-basins show fewer decreasing trends in Figure 2, but also 

there is a likelihood that regulation relates to lower DTW over time, ceteris paribus. Moreover, 

sub-basins with recharge projects are also likely sub-basins with lower DTW on average over the 

study period. The positive relationship between regulation and groundwater levels can also be 
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seen through conservation and best management practices impacting planted acreage variation 

over time.  

When extra controls are not added to account for unobserved heterogeneity, temperature and 

precipitation have relationships that align with what is discussed in Condon (2020) and 

Ndehedehe (2023). This result emphasizes the need for continuing discussion about policy 

surrounding groundwater use as climate change increases. 

Housing units, likely correlated with population in this case, show a different relationship with 

DTW compared to other literature that find a decoupling trend between groundwater use and 

population growth (Lee et al., 2022). This result suggests rural areas may respond differently to 

economic growth compared to larger municipalities. Thus, a policy solution may be to 

incentivize new households in groundwater unregulated sub-basins to invest in newer more water 

efficient appliances or to require utilities to meet higher water use efficiency standards.  

8.3.2 Policy Implications for Vulnerable Communities 

Understanding which groups are likely vulnerable to the four environmental burdens examined 

can help inform policy regarding where to target water allocations, air pollution mitigation 

strategies, and investments in water quality and household infrastructure. The findings present 

evidence of positive correlations between minority, less educated and low-income communities 

and environmental burdens. Much of the literature finds similar results regarding relationships 

between environmental burdens and race, ethnicity, income, and education. These findings 

suggest environmental injustice surrounding water users in the CRB is present.  

Air pollution directly negatively impacts human and environmental health, and indirectly 

adversely affects groundwater quality. Findings for air pollution prevalence suggest this burden 

is pervasive among all groups, regardless of race, ethnicity, income, or education level, 

excluding American Indian populations who are found negatively correlated with air pollution. 

Higher leaky UST densities are more likely to impact Black and less educated populations. 

These results highlight the need for further policy focus on mitigating contaminants from point 

sources.  

Water allocations do not just pertain to satisfying base level agricultural and municipal demand. 

Policy makers also decide how to allocate Colorado River water towards maintaining natural 
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habitat, by ensuring sufficient flow levels, and investing in green landscapes, such as planting 

trees or building parks in cities, which require enough water to do so. Some cities, like Los 

Angeles, have programs that incentivize tree planting. One drawback to this beautification effect 

trees have on cities is that these programs lead to increases in home values, potentially leading to 

gentrification, like the scenario seen in New York City’s Million Trees Program (Li, 2022). 

Finding ways to maintain natural habitat and increase green landscape while avoiding 

gentrification impacts can be useful for creating equitable policy regarding groundwater 

allocations in the CRB. 

Households with incomplete plumbing exist within the CRB boundaries, inhibiting those 

residing in such households from utilizing access to their full water right. This problem seems 

most likely experienced by American Indian populations. Aiming household water infrastructure 

investments towards Reservations could help lessen the burden in the CRB. 

Relationships between racial and ethnic minorities as well as low income and less educated 

populations and environmental burdens found in this study corroborate the need for increased 

DEI in water dialogue, as discussed in Williams et. al. (2023). The more representation that takes 

part in water policy decisions, the broader perspectives there are to find an optimal solution for 

groundwater quality and quantity issues in the CRB while ensuring the well-being of all water 

users regardless of race, ethnicity, income, or education level.  

8.4 Future Research Directions 

There is much room for future research to improve upon the analyses regarding groundwater 

levels and environmental burdens. As more remote sensing data collection and analysis tools are 

developed, one can extend the areas that prompt use for groundwater level data (where other data 

obtaining challenges exist) while adding a longer time frame. One can also explore the 

relationships with environmental burdens and demographics over time with panel data as much 

of the data has only recently become attainable through technological advancements.  

It may be useful to further explore the relationship between income and DTW, as income may 

have competing effects on groundwater use behavior. For example, those with higher income 

have options to either invest in higher or lower water demanding amenities (i.e. pools, grass, etc.; 

newer more water efficient appliances and landscaping decisions, etc.). Those with higher 
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income could also choose to move out of an area completely, decreasing that areas groundwater 

demand. Thus, looking at influences of income on human behavior and regarding water use in 

groundwater dominated areas can be interesting.  

Modeling further the relationships between the environmental burdens and Hispanic populations 

split between White and non-White races can be useful in disentangling potentially opposing 

correlations. It would be interesting to know whether race alone is a larger driver for determining 

whether a particular group is disproportionately exposed to an environmental burden.  

Many census tracts in the study area are very sparsely populated. 30% of the census tracts have 

less than or equal to about 5 people per acre. It could be interesting to see if these correlations 

hold when looking at highly rural and urban tracts separately. This separation could also help 

capture a potential nonlinear relationship between income and population density, since both 

highly urban and rural areas have both high and low-income individuals. Population density may 

also have a non-linear relationship with impervious surface or cropland area. Those in less 

densely populated tracts are more likely to be surrounded by cropland, or just natural space. 

Those in more densely populated tracts are certainly surrounded by a higher portion of 

impervious surface. This suggests the relationship between population density and lack of natural 

or green landscape could be logarithmic and should be further explored.  

One might want to further explore models for leaky USTs as more data becomes available to see 

how much this environmental burden varies over time. This could provide further insight into 

why the model’s explanatory power is not high. Finally, looking into areas concentrated with 

households with incomplete plumbing to analyze differences between those with and without 

household water use infrastructure can be useful. 

8.5 Summary 

Analyzing the relationship between DTW and climate, economic, and regulatory factors shows 

promise in areas that lack explicit groundwater use data. Insight into policy decisions regarding 

groundwater extraction can be seen through the regulations and projects already in place 

compared to communities where such monitoring, use restrictions and recharge projects are 

lacking. This is especially important as housing continues to be developed in many of these 

unregulated areas (as seen in Figure A1), and as climate change persists (Crimmins, 2022). This 
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study hopes to provide another option for using sources apart from explicit groundwater use data 

to inform policy decisions about groundwater: a crucial environmental amenity that many in 

Arizona and other arid regions around the world rely on.  

The analysis on environmental burdens relating to groundwater quality, allocations and access 

and disadvantaged communities shows evidence that policies may be needed in the CRB to 

address impacts on communities which are particularly vulnerable to the environmental burdens 

examined in this study. While mitigation strategies are becoming more common, it is important 

to work toward more equitable access to water sources and less exposure to environmental 

burdens in CRB communities, regardless of race and ethnicity or income and education level. 
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Appendix  

A1 Further Elaborations on Sub-basins in Study Area 

The Harquahala INA borders the west side of the Phoenix AMA. It is surrounded by four 

mountain ranges. This rural area relies mostly on groundwater for economic activities including 

agriculture. Hassayampa is the west most sub-basin in the Phoenix AMA, sharing a border with 

the Harquahala INA on the left. This region lies outside of the Phoenix metropolitan area and has 

high agriculture activity. Due to census tract considerations, Harquahala and Hassayampa are 

evaluated as one entity, because most of each sub-basin’s human activity (agricultural and urban 

development) falls within one tract.  

The Gila Bend basin is roughly 821,968 acres and lies south of the Harquahala INA and 

Hassayampa sub-basin. It has had over 40,000 acres of irrigated cropland from 2010 and 2021, 

which is 100% reliant on groundwater. The sub-basin is home to the Gila River, which remains 

dry most months of the year (The Nature Conservancy, 2021). 

The Santa Cruz AMA is home to the City of Nogales and Santa Cruz River which flows north 

through the center. It is majority groundwater dependent and mostly rural, with more of the 

population residing in the south, in or near Nogales. The area varies in elevation as it 

encompasses mountain ranges including Pajarito, Tumacacori, and Santa Rita mountains. This 

paper analyzes the south and north portions as separate entities, splitting the area through the 

middle along a census tract line, due to differences in population, economic activity, and 

hydrological features.  

The Upper San Pedro watershed lies mostly in Cochise County, Arizona. Two sub-basins in this 

study splits the area into a north and south portion known as Benson and Sierra Vista sub-basins 

respectively.  The split is along a hydrologic division due to the different levels of agriculture 

and population size. The south portion is home to the city of Sierra Vista and Tombstone, while 

the north has the rural town of Benson. Groundwater use in both sub-basins is the majority. 

Douglas became an AMA in December 2022. The sub-basin is home to the city of Douglas and 

town of Bisbee. Topologically, it is relatively flat throughout and surrounded by mountains. The 

sub-basin has active agriculture, especially in the middle and north portion, and is fully reliant on 

groundwater as no surface water is present (The Nature Conservancy, 2021). Wilcox is the 



58 
 

largest sub-basin in the study area at about 1.2 million acres. There is active agricultural and an 

expanse of bare land. The area has a large amount of groundwater dependent agriculture activity 

with about 58,474 acres of irrigated cropland in 2021.  

Eloy is the sub-basin on the northeast side of the Pinal AMA. The main economic activity is 

irrigated agriculture of which the main water supply is groundwater. Northwest of Eloy are the 

Maricopa-Stanfield and Rainbow Valley sub-basins, which reside in the Pinal and Phoenix 

AMA’s, respectively. 90% of both sub-basins’ water supply was sourced from groundwater in 

2018 (ADWR, 2022a).   

Avra Valley is in the western portion of the Tucson AMA. About 75% of its water supply is 

groundwater to meet the demand of the dominant economic activity, irrigated agriculture 

(ADWR, 2020a). San Simon Valley is the southeastern most sub-basin in Arizona, sharing a 

border with New Mexico. The area has no surface water supply. 

Butler Valley, McMullen Valley, and Ranegras Plain sub-basins share a border with the 

Harquahala and Hassayampa sub-basins.  All three sub-basins have similar economic activity, 

dominated by irrigated agriculture that relies 100% on groundwater sources (ADWR, 2022a). 

Moreover, due to census tract coverage, these sub-basins are combined and analyzed as one sub-

basin.  

A2 DTW Calculation – Criteria for Inclusion of Wells 

A criterion is developed to further determine which wells should be included or excluded from 

the analysis. Regarding hydrological characteristics, wells on the outermost edges of sub-basins 

are excluded to avoid outlier well measurements due to topography changes or unusual activity 

such as mine site dewatering. Furthermore, wells chosen must be a comparable proximity to 

human activity (agriculture and/or urban activity) across each sub-basin. This is because each 

sub-basin has a different proportion of area to human activity. Thus, choosing a well to 

contribute to a yearly average that lies 50 km away from human activity in Avra Valley would 

not be comparable to choosing a well in the northern Santa Cuz AMA sub-basin where all wells 

lie within 20 km of similar activity. To keep average DTW values comparable in each sub-basin, 

a proximity from a well to human activity is chosen based on the proportion of sub-basin area to 
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acreage of human activity. A maximum well distance in each sub-basin is chosen to equate this 

proportion to 0.5.  

The equation for choosing well distances is as follows: 

(𝐼𝑟𝑟𝑖𝑔𝑎𝑡𝑒𝑑 𝑎𝑐𝑟𝑒𝑠 + 𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑑 𝑎𝑐𝑟𝑒𝑠)𝑘𝑚2

𝑥2𝑘𝑚2
= 0.5 

Hence, it follows that, 

𝑥𝑘𝑚 =  √
(𝐼𝑟𝑟𝑖𝑔𝑎𝑡𝑒𝑑 𝑎𝑐𝑟𝑒𝑠 + 𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑑 𝑎𝑐𝑟𝑒𝑠)𝑘𝑚2

0.5
 

Where 𝑥𝑘𝑚 is the maximum well distance used in each sub-basin. Any wells that exceed this 

distance in each sub-basin are excluded from the analysis. Table A1 shows the number of wells 

included in the yearly average DTW values for each sub-basin. 

Sub-basin Basin Number of Wells 

Benson Upper San Pedro* 5 

Douglas Douglas AMA 15 

Gila Bend Gila Bend* 12 

Harquahala INA & 

Hassayampa 

Harquahala Basin & 

Phoenix AMA 
44 

Santa Cruz AMA North Santa Cruz AMA 16 

Santa Cruz AMA South Santa Cruz AMA 24 

Sierra Vista Upper San Pedro* 36 

Willcox Willcox* 26 

Avra Valley Tucson AMA 45 

Eloy Pinal AMA 74 

Maricopa-Stanfield Pinal AMA 27 

Rainbow Valley Phoenix AMA 11 

Butler Valley, McMullen 

Valley, Ranegras Plain 

Butler Valley, McMullen 

Valley, & Ranegras 

Plain* 

40 

San Simon Valley Safford Basin* 19 
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*Groundwater not regulated 

Table A1. Well Counts by Sub-basin 

A2.1 Sensitivity Check on Well Inclusion Criterion 

Sensitivity in running models for DTW wells chosen with the .5 ratio is checked by testing what 

happens to the results if the criteria changes to .3 or .7 ratio. Sensitivity is found to be relatively 

low as signs and significance of results do not change from running models with slightly 

different DTW groups. Because sensitivity is found to be low, choosing a .5 ratio to equate well 

distances in each sub-basin seemed like the best choice to ensure human activity as well as other 

activity in the basin regarding groundwater is accounted for in the model. For example, choosing 

a .3 ratio might have restricted the model to only account for human activity fluctuations in 

groundwater levels, leading to bias results where a ratio of .7 might cause concern for picking up 

outlier wells in mountains surrounding a sub-basin. 

A3 Housing and Climate Trends 

Figures A1 and A2 show housing unit changes since 2010 for each sub-basin in the study area, 

separated into regulated and unregulated sub-basins. Housing development increases can be seen 

in both regulated and unregulated sub-basins throughout the study period. The largest increases 

are seen in Rainbow Valley and HarqHass (Harquahala INA and Hassayampa sub-basins). The 

drop off seen in all but one sub-basin trend in 2019 is due to census tract being redrawn for the 

new decade to adjust for population changes.  
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Figure A1. Percent Changes in # Housing Units Regulated Sub-basins Since 2010 

 

Figure A2. Percent Changes in # Housing Units Unregulated Sub-basins Since 2010 

Figures A3 and A4 show temperature trends in regulated and unregulated sub-basins from 2010 

to 2021. All sub-basins in the study area have similar trends at different magnitudes. The highest 

temperatures can be seen in Gila Bend, Maricopa-Stanfield, and Rainbow Valley, which lie in 

the center of the study area with the lowest elevation on average. The lowest temperatures on an 
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average each year are in Willcox, San Simon Valley, and Sierra Vista. The lowest temperatures 

experienced by most of the sub-basins was in 2019 and the highest in 2017. 

 

Figure A3. Temperature (C) Changes in Regulated Sub-basins from 2010 to 2021 

 

Figure A4. Temperature (C) Changes in Unregulated Sub-basins from 2010 to 2021 

Figures A5 and A6 show precipitation trends in regulated and unregulated sub-basins throughout 

the study period. Like temperature, trends in all sub-basins look similar with the least rain 
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occurring in 2020 and, for most of the sub-basins, the most inches of rain on average occurred in 

2015 and 2019. Sub-basin with the highest on average yearly rainfall from 2010 to 2021 are the 

Santa Cruz AMA, Sierra Vista, and Willcox, which are also those with the lower average 

temperatures over time.  

 

Figure A5. Precipitation (In.) Changes in Regulated Sub-basins from 2010 to 2021 

 

Figure A6. Precipitation (In.) Changes in Unregulated Sub-basins from 2010 to 2021 
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A4 Summary Statistics 

Table A2 presents further summary statistics for each variable in each sub-basin between 2010 

and 2021.  

  DTW (Acre Feet) Temperature (Celsius) Precipitation (Inches) 

Sub-basin Min Mean 

Media

n Max 

St. 

dev. Min Mean Median Max St. dev. Min 

Mea

n 

Med

ian Max 

St. 

dev

. 

Avra Valley 237.6 245.6 245.8 252.7 5.0 19.1 19.8 19.9 20.6 0.5 0.5 1.1 1.1 1.4 0.3 
Butler, 

McMullen, 

& 
Ranegras* 333.8 340.8 340.0 348.6 5.3 20.0 20.9 21.1 21.5 0.5 0.4 0.6 0.5 0.8 0.1 

Benson* 235.3 241.4 240.3 249.6 5.2 16.8 17.6 17.7 18.3 0.5 0.7 1.1 1.3 1.5 0.3 

Douglas 176.5 190.0 187.5 205.4 10.1 16.5 17.3 17.4 18.2 0.6 0.6 1.1 1.1 1.5 0.3 

Eloy 235.5 239.2 238.1 246.8 3.6 21.0 21.7 21.8 22.5 0.5 0.3 0.7 0.8 1.0 0.2 

Gila Bend* 293.8 325.2 324.9 363.5 22.4 22.0 22.7 22.8 23.4 0.5 0.4 0.5 0.5 0.7 0.1 

Harquahala 

INA & 

Hassayampa 211.8 217.0 215.7 224.6 4.6 20.6 21.5 21.6 22.2 0.6 0.4 0.6 0.6 0.9 0.2 

Maricopa 

Stanfield 307.8 314.2 312.3 322.8 5.7 21.5 22.2 22.3 22.9 0.5 0.3 0.6 0.6 0.8 0.2 

Rainbow 
Valley 348.6 365.2 365.0 379.8 9.4 21.5 22.3 22.4 22.9 0.5 0.4 0.6 0.6 0.8 0.2 

SCAMA 

North 64.7 66.8 66.9 69.5 1.3 17.2 17.8 17.9 18.6 0.4 0.9 1.4 1.4 1.8 0.3 
SCAMA 

South 91.4 94.2 94.2 96.7 1.8 16.8 17.4 17.5 18.2 0.4 0.9 1.4 1.5 1.7 0.3 

San Simon 

Valley* 184.6 197.5 193.8 215.3 11.0 16.0 16.7 16.8 17.5 0.5 0.6 1.1 1.1 1.3 0.2 
Sierra 

Vista* 223.1 227.0 225.6 235.0 3.6 16.2 17.0 17.2 17.7 0.5 0.8 1.3 1.3 1.7 0.3 

Willcox* 245.2 264.0 262.4 283.8 12.2 15.5 16.2 16.2 16.9 0.5 0.7 1.3 1.4 1.6 0.3 

  Irrigated Cropland (Acres) Per Capita Income (USD) Housing Units 

Sub-basin Min Mean 

Media

n Max 

St. 

dev. Min Mean Median Max St. dev. Min 

Mea

n 

Med

ian Max 

St. 

dev

. 

Avra Valley 18664 21990 21871 23808 1587 18963.44 22352.06 22335.29 27473.98 2369.90 1727 1892 1889 2035 88 

Butler, 
McMullen, 

& 

Ranegras* 14551 24586 23198 37091 6840 22458.06 25772.86 23707.99 35528.17 4113.00 1397 1812 1874 2047 205 

Benson* 826 1523 1793 1926 470 20710.73 23886.50 22577.39 29991.46 3356.59 1568 2052 2121 2217 215 

Douglas 13387 16680 17193 19734 1911 14917.32 16851.72 15934.37 19962.84 1846.78 1202 1467 1514 1577 118 

Eloy 116916 127622 129013 134587 5736 16499.63 18425.70 17358.63 23725.93 2339.49 1480 1780 1864 1887 146 

Gila Bend* 40644 49242 48719 59514 7174 6564.92 7681.20 7585.10 9216.38 861.63 472 523 527 559 31 

Harquahala 

INA & 
Hassayampa 32780 37773 36227 48541 4442 21953.00 23917.57 23731.81 27798.56 1618.33 1373 1861 1889 2209 239 
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Maricopa 

Stanfield 80281 86391 86988 90984 3096 26071.55 29668.07 29431.36 33552.97 1784.95 1574 1675 1684 1724 40 

Rainbow 

Valley 701 4446 4585 6279 1815 17500.00 24026.58 23207.00 32460.00 5438.16 1307 1844 1756 2546 396 
SCAMA 

North 207 970 1044 1473 343 26233.00 32871.42 31934.50 38724.00 4376.04 1287 1678 1686 1828 144 
SCAMA 

South 248 553 591 788 169 15001.23 17521.43 16782.76 21367.17 2047.94 1240 1573 1628 1675 155 

San Simon 

Valley* 10169 14882 15454 18875 2899 18784.00 20668.08 20908.50 22580.00 1379.98 623 1150 1228 1347 236 

Sierra 
Vista* 281 525 427 1356 303 26900.21 28745.19 27708.02 33672.65 2145.61 1801 2096 2137 2214 139 

Willcox* 40814 51071 50759 58475 4963 18113.10 20651.83 20756.47 23610.19 1425.33 1222 1442 1458 1536 92 

*Groundwater not regulated 

Table A2. Summary Statistics 

A4 Race and Ethnicity Population Breakdown in the CRB 

Figure A4 shows the percentage of each race and ethnicity residing in the CRB in 2019. These 

groups are mutually exclusive. All races (White, Black, American Indian, and Other) identify as 

non-Hispanic. Moreover, the Hispanic group represents anyone who identifies regardless of race. 

The Hispanic population makes up the largest proportion of the population in the CRB followed 

by the White non-Hispanic population. Among the lowest percentages are Black and American 

Indian non-Hispanic populations.  

 

Figure A4. CRB Race and Ethnicity Population Breakdown 

45%

5%2%
12%

36%
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White Black American Indian Other Hispanic
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A5 Nonlinear relationship among population density, income, and 

environmental burdens 

There is reason to suggest population density has nonlinear relationships with income and 

environmental burdens. This section discusses each and describes how one might model these 

relationships in future research.  

The relationship between population density and income is interesting. Low-income and high-

income households are both likely to live in more dense and less dense areas. Figure A5 below 

shows a scatter plot between income and population density, which highlights the denseness of 

census tracts in which those with different income levels live in the CRB. Each point represents a 

census tract. There is a large spread of high-income and low-income tracts in sparsely populated 

areas. The more densely populated tracts have a much smaller income range. The shape suggests 

tracts with lower population density are more segregated by income. Whereas highly densely 

populated tracts have a greater mix between high and low-income households.  

 

Figure A5. Scatter Plot of Population Density and Mean Income 

The relationship between income and each environmental burden when population density is 

held constant, as seen in Table 7 suggests lower-income tracts face higher environmental burden 
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incidence, except air pollution. Let’s look at the lack of natural or green landscape burden as an 

example. This dependent variable highlights which tracts have higher amounts of impervious 

surface or cropland. Because of how it is defined, tracts that have low population density can 

have large amounts of cropland while tracts with high population density likely have high 

amounts of impervious surface. Figure A6 shows a scatter plot of the relationship between 

population density and lack of natural or green landscape. Each point represents a census tract. 

The figure shows there is a large spread of low population density tracts that have high and low 

amounts of impervious surface or cropland. On the other hand, tracts with a high population 

density show high percentages of impervious surface or cropland (more likely to be the former 

than the latter).  

 

Figure A6. Scatter Plot of Population Density and Lack of Natural or Green Landscape 

To isolate the different spreads of population density at each end of the lack of natural or green 

landscape and income variables, one could split the data into low and high population density 

subsets. An interaction between population density and income may also be useful to determine 

whether low-income individuals are more exposed in rural versus urban areas and vice versa. 

Because of the distribution shape between population density and lack of natural or green 

landscape, it may be useful to take the log of population density in the model.  
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A6 Lack of Natural or Green Landscape Error and Solution 

This section describes an issue faced with the CEJST’s lack of green space variable and how this paper 

corrected the error. The data set used is Version 1.0 released on November 22, 2022. This version uses 

2010 census tract boundaries to align with the 2019 census data and lack of green space (in this paper 

“lack of green space” is referred to as lack of natural or green landscape). The lack of green space 

variable is defined by the Multi Resolution Land Characteristics (MRLC) consortium to be the percent of 

a tract that is impervious surface or cropland (MRLC, 2019). This consortium is what creates this lack of 

green space variable along the Trust for Public Land and provides it for the CEJST tool. However, in the 

CEJST’s “How to use the list of communities” document, the table with variable definitions describes the 

lack of green space variable as excluding cropland. This is an error which has been confirmed through 

conferring with the CEJST through their support email (U.S. Executive Office of the President 

Council on Environmental Quality, 2022). The original definition from the MRLC is correct and this 

was confirmed by the CEJST team, as well as staff at the Trust for Public Land. Additionally, the lack of 

green space variable in the raw data download from the screening tool website is formatted incorrectly (it 

is supposed to be a percent but has values with no decimals that are four digits). After consulting the 

CEJST team and Dale Watt, GIS project manager at the Trust for Public Land, we  concluded there is a 

decimal missing in each observation. To correct for this, we added zeros at the front of each observation 

to ensure each of them are four digits long. Then, we add a decimal between the first two and last two 

digits. We compared a number of observations with Dale’s Trust for Public Land data and found the 

formatting to be consistent. After correcting for this error, the lack of green space variable was able to be 

used in the analysis.   

 

 

 

 

 

 

 

  



69 
 

A7 Experts Conferred With 

Rebeccah Bernat 

Manager 

Arizona Water Banking Authority 

Mike Crimmins 

Extension Specialist in Climate Science & Professor  

University of Arizona  

Laura Condon 

Associate Professor in Hydrology & Atmospheric Sciences 

University of Arizona 

Linda Hwang 

Senior Director, Strategy & Innovation 

Trust for Public Land 

Dale Watt 

GIS Project Manager 

Trust for Public Land 

CEJST Support Team 

Screeningtool-Support@omb.eop.gov 

Council on Environmental Quality - Climate and Economic Justice Screening Tool 
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