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ABSTRACT

The general purpose of this thesisis to investigate the small sample performances of
various rating methodol ogies in estimating premium rates for catfish insurance policy.
To accomplish this objective, we simulate the yield data by modeling the frequency,
severity, temporal and spatial correlations of twenty major risk factorsin catfish
production. In order to increase the applicability of this simulation study, twelve
scenarios are considered to see how the methodologies will perform under different
assumptions. Simulation results show that, under these data generating processes,
estimators that use extraneous data generally perform better than those that only use

individual data when the sample sizeissmall.
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1. INTRODUCTION
1.1 Introduction

Aquaculture is defined as the farming of aquatic organisms, including fish,
mollusks, crustaceans and aquatic plants, where farming implies some form of
intervention in the rearing process to enhance production, such as regular stocking,
feeding, protection from predators, etc. (FAO 1997). Although aquaculture has existed
for thousands of years, it only became a specialized agricultural businessin the United
Statesin the 1950's. Aquaculture species grown in the United States include finfish
(catfish, trout, salmon, striped bass, tilapia, baitfish, ornamental fish, and others),
crustaceans (crawfish, shrimp, and others), mollusks (oysters, clams, mussels, and
others), aquatic plants (algae, seaweeds, water chestnuts, hyacinths, and others), and
some reptiles such as aligators and turtles (Hanfman, 1993).

For the past two decades, aquaculture has been the fastest growing segment of
agriculture in the United States. In 1983, aquaculture production was 308 million pounds
with afinal sales value of 259 million dollars. In 2001, aguaculture production has
exceeded 800 million pounds valued at 935 million dollars (see Figure 1.1). Carlberg et
al. (2001) explained several factors that have contributed to this phenomenal growth.
First, per capita consumption of seafood has increased significantly as consumers become
more aware of the health and nutritional benefits of fish and the fact that seafood is a
good source of animal protein. For example, the U. S. per capita consumption of seafood
has risen from 12.5 pounds in 1980 to 15.6 pounds in 2002, a 25% increase (NMFS

2002). Furthermore, as the population of the United Stated continues to grow and capture
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fisheries are approaching their maximum harvest levels, aguaculture will be the major
source of additional seafood supply in meeting the increasing consumer demands. The
U. S. Congress summarized the importance of aguaculture in the National Aquaculture
Act of 1980: “... aguaculture has the potential for reducing the United States trade deficit
in fisheries products, for augmenting existing commercial and recreational fisheries, and
for producing other renewable resources, thereby assisting the United States in meeting
its future food needs and contributing to the solution of world resource problems. It is,
therefore, in the national interest, and it is the national policy, to encourage the
development of aguaculture in the United States.”

Catfish farming originated in the Mississippi Deltaregion in the late 1960’ s and
early 1970's (Dean et a., 2003). Today, the catfish industry isthe largest sector in the
U.S. aguaculture industry. Production of farm-raised catfish has grown rapidly to
approximately 597 million pounds in 2001 and accounted for more than 70% of the
annual aquaculture production in the United States (see Figure 1.2). Farm-raised catfish
generated afinal sales value of 386 million dollars and accounted for 41% of the total
sales of aquaculture products (see Figure 1.3). It is now the fifth most popular fish in the
United States behind shrimp, tuna, salmon, and Alaska pollock. Table 1.1 shows the top
10 fish and shellfish consumption in the United States. Per capita consumption of catfish
has doubled since 1990, reaching an all time high of 1.16 poundsin 1999 (see Figure 1.4).
The popularity of farm-raised catfish is due to its consistent quality, delicate flavor, firm
texture, versatility, year-around availability, and nutritional value (Robinson and Avery,

2000).
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Catfish production is concentrated in the southern United States consisted of
Alabama, Arkansas, Louisiana, and Mississippi. These states have warm climates,
abundant water and heavy clay soils for pond construction, which are conditions
favorable to commercial catfish production. These four states account for 95% of catfish
production. Mississippi dominates the other three states by producing 70% of the total.
The industry provides over 13,000 jobs in production, processing, feed manufacturing,
and related support industries, and contributes more than $4 billion to the four states
economy annually (Robinson and Avery, 2000). The catfish industry has become the
major source of economic activities and employment in these states. For example, in
Mississippi, the catfish industry employs over 7000 direct employees with an annual
payroll of $102 million (Dean et al., 2003). Engle (2003) stated that the overall impact of
thisindustry is even greater because it is centered in aregion of the country that is
characterized by low levels of economic development and high unemployment rates.

As with other agriculture enterprises, catfish producers also face avariety of
production hazards. The maor perils include diseases, water related problems, off-flavor,
bird predation etc., which significantly affect the profitability of the industry and hinder
its further development. Given the importance of the catfish industry in terms of its
economic value, the Risk Management Agency of the United States Department of
Agriculture has begun to investigate the feasibility of providing insurance tools for
catfish producers against losses.

Due to the nature of the catfish aquaculture production practices, the

implementation of aquaculture insurance to the catfish industry will present a number of
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challenges (Shaik, 2001). Thefirst challenge is related to insurability issue. It isdifficult
to differentiate random peril from management events, and epidemic from endemic
hazards. Also, aswith crop insurance, there exist the problems of adverse selection and
moral hazard. The second challenge is the measurability problem. Itisdifficult to
determine the numbers or pounds of fish in the pond. Difficulties are due to a number of
factors: there are multiple batches in a pond at the same time; ponds may bein
continuous operation for several years before completely drained; the majority of
mortalities are unseen; and auditing practices are inconsistent (Avery, 2002). Catfish
insurance contracts require the verification of the numbers (or pounds) of fish to be
insured, and the numbers (or pounds) of fish lost, when a claim is made. For a contract
that is made for a specific peril such as off-flavor, it also requires verification whether the
cause of loss is associated with that peril. All of these are not easy to achieve. Thethird
challengeisrelated to the actuarial issues. In crop insurance contracts, premium rates are
determined based on historical yield data available at the time of rating. Catfish
insurance isjust a pilot program; the industry does not have the long-term production
data. Estimated catfish yields have not been systematically measured, and some of the
information needed to calculated aggregate yields has only recently been collected
(Kazmierczak and Soto, 2001). Therefore, the data to estimate the probability and
magnitude of lossesis not available and the potential for subjective data to be collected is
also low.

The contribution of thisthesisisto conduct simulations to generate the yield data

based on some possibly relevant data generating processes, and to evaluate the
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performance of various parametric and nonparametric approaches in determining
premium rates. These data generating processes involve the various maor risk factors
associated with catfish production. After identifying the risks and making assumptions
about them, yield data can be ssimulated by modeling the frequency, severity, aswell as
the temporal and spatial correlations of all those risk factors. Then, various parametric
and nonparametric techniques are employed to estimate actuarially fair premium rates.
These approaches are considered in an attempt to minimize inefficiencies or inequitiesin
the catfish insurance program, to both the insurer and insured. Recovering accurate
premium rates is essential to an actuarially sound catfish insurance program. If the
premium rates are overestimated or underestimated, program losses will increase because
only producers whose rates are underestimated will participate in the program while
producers with overestimated rates will either not be able to purchase insurance (too
expensive) or will purchase insurance at a higher cost relative to afair level. Of course,
these adverse selection losses cannot be eliminated. Even with abundant data, one still
could not estimate the premium rates without any errors. However, the losses may be
minimized by appropriate choices of estimation methodologies. Hence, the performances
of the different methodol ogies are compared based on the mean squared errors of the
estimated rates.

The remainder of this chapter contains three sections. The next section outlines
the problems of moral hazard and adverse selection. These problems are common in any
insurance contracts and are the major causes of program losses. Hence the construction

of actuarialy fair premium rate is very important. Section 1.3 discusses the objectives of
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thisthes's, which isto improve the accuracy of premium rates under the situation of no

data available. The last section outlines the structure of thisthess.

1.2 Moral Hazard and Adver se Selection

As with crop insurance contracts, catfish insurance contracts are exposed to moral
hazard and adverse selection problems. Both problems are aspects of asymmetric
information. Asymmetric information arises due to differential information concerning
production practices and growing conditions held by the insured (catfish producers) and
theinsurers. Existence of information asymmetry increases the costs and challenges the
efficacy of insurance.

Moral hazard arises when the insurer faces a fixed payment scheme but the
insured can affect the probability of risks occurring by hidden actions that are not
observed by the insurer. Without insurance, a catfish producer will try his best to reduce
the likelihood of undesirable outcomes. However, after purchasing insurance, the
producer loses some of the incentive to reduce the probability of adverse outcomes and
hence may increase the probability of risks occurring. For example, the insurer cannot
observe production practices throughout the production season. A catfish producer may
fail to provide treatment for diseases or aeration equipments for catfish production.
Through actions unknown to the insurer at the time of the contract, the producer has
atered the yield distribution. The effect of moral hazard is that the post-insurance risk

has increased.
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Adverse selection arises when the insured has better information about the risk
probabilities than the insurer when setting the premium rate. 1n most cases, catfish
producers know more about their yield distributions than insurers. Producers whose
expected loss is larger than the insurance premium will tend to buy the insurance whereas
producers whose expected loss is smaller than the insurance premium will tend not to buy
insurance. Thus, the premiums calculated based on the information of all potential
clients tends to be too low to cover the indemnity payments, resulting in aloss to the
insurer.

Moral hazard and adverse selection problems have resulted in large losses in the
crop insurance program (Ker, 1996). To avoid the same losses in catfish aguaculture

insurance program, the construction of actuarially fair premium rate is crucial.

1.3 Objective of the Study

The main objective of thisthesisisto evaluate the small sample performances of
various rating methodol ogies under the situation of no data available, and come up with
some appropriate methodol ogies that may improve the accuracy of premium rates.
Accurate premium rates require proper representation of the conditional yield
distributions. In satisfying this objective, this thesis conducts simulations to generate
yield data and employs parametric and nonparametric approaches to determine premium
rates for two time periods through fifty time periods. These approaches to modeling
yield distributions include: normal distribution, beta distribution, kernel density

estimation, Bayesian nonparametric estimation, etc. This simulation study allows us to
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evaluate the different approaches at various levels of simulated historical yield data. 1f
historical yield data were available, one could employ time series models to predict future
yields and use parametric or nonparametric approaches to construct the premium rates.
However, catfish insurance, or aguaculture insurance is just a pilot program. While there
might be data on country-level and state-level, there is no data on county-level or farm-
level. Therefore, smulations are needed to generate possible yield data under relatively
reasonable assumptions. Comparison of the different methodologiesis based on mean
squared errors (MSE). The MSE is an error metric that captures both the bias and the
variance of an estimator. In order to increase the practicability of this simulation study,

different simulation scenarios are considered.

1.4 Plan of the Study

The remainder of thisthesisis organized asfollows.

Chapter 2 first reviews the catfish aguaculture farming practices and associated
production risks; then discusses how the mgjor risks are modeled based on the
characteristics of the risks. The production process of catfish involves three stages: egg
and fry production, fingerling production and food fish production. The mgor
production risks include: infectious diseases, water quality related risks, off-flavor, bird
predation, extreme weather conditions, etc. Twenty risk factors will be examined and
modeled in the simulations, based on the information about the frequency and severity of

each risk factor as well as their temporal and spatial correlations.
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Chapter 3 elaborates on various parametric and nonparametric rating
methodologies. The parametric methodol ogies include normal distribution and beta
distribution. The nonparametric methodol ogies include empirical rates, kernel density
estimation, Bayesian nonparametric kernel density estimation, and estimation of possibly
similar densities.

Chapter 4 presents the designs of twelve simulation scenarios and the
accompanying M SE results. It first describes the yield data generating processin the
base scenario and then considers three variations from the base scenario to design other
scenarios. The performances of the twelve methodol ogies are compared both
horizontally (in each scenario) and vertically (across scenarios, the first scenario being
the baseline).

Finally, Chapter 5 presents the concluding remarks and directions of further

research.



Figure1.1: US Aquaculture Production (data arein millions)
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Figure 1.2: Components of Aquaculture (Thousand Pounds)
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Figure 1.4: Per Capita Consumption of Catfish
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2. Economic Impact of the Mississippi Farm-Raised Catfish Industry at the
year of 2003

Table 1.1: Top 10 Fish and Shellfish Consumption in the US (2001, Edible M eat

Basis)

Per Capita

Spec ies Lb/ T
Shrimp(27% from Ag.) 3,40
[1ina 2.90
Salman (50% from Aq.) 2.02
Alaska Pollock .21
Catfish (100% from Aq.) 1.15
Cod 0,56

Clams 0,40
Crabs 0,441
Flacfish 0.39
[lapia 0.35

Source: Economic Impact of the Mississippi Farm-Raised Catfish Industry at the Y ear of
2003 Ag. = Aquaculture
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2. CATFISH AQUACULTURE FARMING PRACTICESAND RISKS
2.1 Channel Catfish

There are at least 39 species of catfish in North America, but only six of them
have been cultured or have the potential for commercial production (Wellborn, 1988).
The channel catfish, Ictalurus punctatus, dominates in farming because it has the best
combination of characteristics for commercial production (Jensen, 1997). Therefore, this
thesiswill focus on the culture of channel catfish. The word catfish refers to the channel
catfish unlessindicated otherwise.

Channel catfish are warm water fish native to central North America (Tucker et
a., 2004). Thefishissdender and scaleless, with a gently sloping dorsal profile anterior
of the dorsal fin and deeply forked tail. They prefer a substrate of sand and gravel and
usually dwell at the bottom of the water. The fish grow efficiently at 80 to 85°F in water.
Growth islimited when water temperature is less than 45°F or greater than 95°F (Morris,
1993). At lower temperature, since the metabolic rate is reduced, they eat less and hence
grow slowly. If the temperatureistoo low, the immune system of the fish will be
impaired and they are more vulnerable to diseases. On the other hand, at higher
temperature, the respiration rate of fish isincreased. Because fish need more energy to
maintain respiration, feed conversion and hence fish growth is reduced. If the

temperature is too high they can die (Jensen, 1997).
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2.2 Production Ponds

Catfish can be grown in ponds, cages, and raceways. Pond culture is the most
popular method. Other methods require more management efforts and cost more and
thus are less common. Based on water supplies and terrain, there are two types of ponds:
levee ponds and watershed ponds.

Levee ponds are built on flat land by excavating the pond area to a shallow depth
and using the soil obtained to build levees around the perimeter of pond. Levee ponds
have the advantages that catfish producers can harvest fish by seine without draining and
oxygen can reach all the way to the bottom of the ponds. The disadvantageisthat it is
more expensive to build. Levee ponds use ground water supplied by wells or surface
water such as springs and streams (Beem, 1998).

Watershed ponds are constructed by building dams across ravines or valleys.
They are less costly to build than levee ponds and producers are able to make use of
steeper sites. They can also serve as reservoirs and help to reduce land erosion. One
disadvantage is that ponds cannot be refilled at will because they depend on rainfall for
water supply. In addition, watershed ponds tend to stratify which canresult ina
phenomenon called turn-over that may cause oxygen depletion. Runoff from rainfal is
the main source of water for watershed ponds because the rainwater can be stored behind
the dams built across valleys (Whitis, 2002).

Levee ponds are usually built on flat land like the delta areas of western
Mississippi, southeastern Arkansas or northeastern Louisiana, while watershed ponds are

more common in hilly regions of Mississippi, Tennessee, Alabama, Georgia and Illinois
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(Whitis, 2002). Levee ponds account for 91.2% of the total acreage of catfish production,

while watershed ponds account for the remaining 8.8% (Avery, 2002).

2.3 Production Process

Information contained in this section depends heavily on publications by
Robinson and Avery (2000), Morris (1993) and Lewis (1994). The production cycle of
catfish can be divided into three phases. egg and fry production, fingerling production,

and food fish production.

2.3.1 Egg and Fry Production

The production process begins with careful selection and mating of quality brood
stocks to produce eggs. The brood stocks are placed into ponds for free spawning. The
spawning season is usualy in the spring when the water temperatures reach about 68° F.
Thisis generally around May in southeastern United States. Spawning containers are
placed in 2 to 3 feet of water, 1 to 10 yards apart to serve as nesting sites. Female brood
fish lay eggs in the containers and the male fertilize the eggs. After the eggs are fertilized,
depending on the preference of the producer, fertilized eggs may be left in the containers
for parental (male) hatching in the pond, or transferred to the hatchery. The first method
is cheaper but unreliable because the number of fry successfully hatched is not
immediately known and the survival rateisusually low. The most efficient way isto
hatch catfish eggsin a hatchery. The hatchery provides a controlled environment with

good water agitation and adequate quality. Troughs made of wood, fiberglass or metal
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are used to incubate the eggs. Paddles or aerators are used to circulate water in and
around the egg masses in order to provide adequate oxygenation. Depending on water
temperature, channel catfish eggs generally remain in the hatchery for 5 to 10 days.
Hatching begins when water temperature is around 75 to 85° F.

Immediately after the hatching, the young fish are called “sac fry” because they
have ayolk sac attached to their abdomens that serves as a nutrition source. After a
couple of days, the yolk sac is used up and the fry turn black and swim up to the surface
in the hatching troughs with their mouths open and heads moving back and forth,
searching for food. Feeding begins at this stage. Depending on the preference of the
producer, the fry may be left in the hatchery troughs for afew days and fed a 50% protein
diet, or moved to nursery ponds. The nursery pond method is commonly practiced. The
size of fingerlings desired at harvest determines the stocking rate of fry. For example,
stocking 10,000 fry per acre will produce fingerlings of 7 to 10 inchesin about 150 days,

while stocking 100,000 fry per acre will yield fingerlings of 3to 5 inchesin about 150

days.

2.3.2 Fingerling Production

The fry remain in schools after placed in the nursery ponds, where natural foods
in the pond are their main source of nourishment. The nursery ponds usually have been
fertilized 2 to 3 weeks before being stocked. The fertilization is necessary because it can
produce alarge number of zooplankton (small animals) for the young fish asfood. The

young fish are also fed a high-protein, powdered feed. But these feeds serve moreasa
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fertilizer for pond zooplankton than as a direct source of food for the fry. In 2 to 3 weeks
after stocking, the fry swim up to the water surface and daily feeding of fry begins. They
are fed food pellets that consist of 35 to 40% protein. These feeds are also made up of a
mixture of soybeans, corn, wheat, vitamins and minerals, which not only helpin
producing healthier fish, but also cleaner, milder tastes. When the size of the fry reaches
2 to 3inches, they are commonly called fingerlings. Fry stocked in the summer can grow
to 5to 6 incheslong by late fall or early winter. They are then transferred to grow-out

ponds.

2.3.3 Food Fisn Production

The number of fingerlings to stock into a grow-out pond depends on several
factors such as the surface acreage of the pond and management ability of the producers.
For experienced producers, the stocking rate can be 5,000 to over 10,000 fingerlings per
acre. Thefingerlings are fed a high-quality 28 to 32% protein once aday for 150 to 180
days before harvest. The best feeding period in the southeastern United Statesis from
May to October. When the fish are about 18 months old and averaging 1 to 1.5 poundsin
weight, they can be harvested for processing.

Once a crop of fish reaches the proper size to be harvested, two types of cropping
systems can be considered. Thefirst type of cropping system only harvests fish of
suitable size for processing and lets smaller fish remain in the pond. Thisisdone2to 3
timesayear. Once the ponds are partially harvested, new fingerlings of equal number are

restocked into the pondsto replace those that were removed. This cycle of incomplete
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harvest and restocking is repeated for afew years without draining the ponds. Therefore,
several different year-classes of fish arein the same pond at any given time. That’swhy
this method is sometimes called multiple batch. Thisisamore popular production
system. The second type of cropping system involves removing all fish from the pond,
draining and refilling the ponds for restocking. Because only a single crop of fish are
involved in the production cycle, this method is sometimes called single batch. The
annual draining required to remove all fish can significantly increase production cost, so
this method is used less extensively. Catfish are harvested in large seines and then
transported to processing plants alive, in which they are made into fillets, steaks, nuggets

and whole-gutted fish.

2.4 Associated Production Risks

This section addresses the primary production risks associated with commercial
catfish production. Therisk factors listed here follows from an invited presentation at the
2002 National Risk Management for Aquaculture Workshop (Avery, 2002). Information
presented here is drawn largely from the Southern Regional Aquaculture Center,
Mississippi State University Cooperative Extension Service, other extension services and

organizations.

2.4.1 Infectious Diseases
Infectious disease is one of the major perils facing catfish aguaculture production.

Ever since the start of commercial catfish production, diseases have caused significant
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economic losses and affect the profitability of the catfish industry. In the last decade, as
the culture practices have become more intensive, previously rare diseases have spread
among the catfish population, making the problem of diseases even more severe. Itis
estimated that disease related losses account for approximately 45-50% of all losses
incurred on farms annually and may account for as much as $100 million annually in
direct economic losses (USDA 2003). The normal mortality rate is 20-35% for fry to 5-
inch fingerlings, and 18-24% for larger fish (Avery, 2002).

Stress plays an important role in channel catfish diseases. Stress usually
predisposes catfish to diseases. Common stress conditions include: rough handling,
drastic water temperature fluctuations, low dissolved oxygen and other poor water quality
problems, insufficient nutrition, and overcrowding. Measures to minimize stress as much
as possible can reduce the severity, frequency and duration of disease outbreaks (Lewis et
al., 1994).

Infectious diseases are mainly caused by bacteria, parasites and viruses. The

following sections will discuss some of the major diseases in channel catfish production.

2.4.1.1 Enteric Septicemia of Catfish (ESC)

Information contained in this section is based on SRAC Publication No. 477
(Hawke et al., 1998) and the Catfish 2003 info sheet. Enteric septicemia of catfish (ESC)
is caused by the gram-negative bacterium Edwardsiéllaictaluri. It isone of the most
important infectious bacterial diseases of farm-raised channel catfish. Approximately
30% of all disease cases submitted to fish diagnostic laboratories in the southeastern

United States are ESC. In Mississippi, it has been reported at frequencies as high as 47%
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of the yearly total and causes millions of dollars of economic losses to the catfish
industry yearly. Outbreaks of ESC typically occur in the spring and fall when the water
temperatures are warm (68 to 82°F). Fish are more susceptible to ESC when they are
under stress. The transmissions of ESC can occur in three ways. First, the transmission
can be from fish to fish through water contamination with bacteria shed in feces, or by
cannibalism of dead or infected fish. Second, birds that pick up infected fish and drop
them into another pond can spread the disease to another pond. Third, wet nets and

equipments can transfer the disease pond to pond.

2.4.1.2 Columnaris

Information contained in this section is based on SRAC Publication No. 479
(Durborow et al., 1998). Columnarisis caused by a bacterium called Flavobacterium
columnare. It isthe second leading disease that causes fish deaths in the southeastern
United States. Channel catfish are susceptible to this disease when they are under some
type of environmental stress and when the water temperatures are in the range of 25 to
32°C (77 t0 90° F) in the spring, summer and fall. Affected fish usually have brown to
yellowish-brown lesions on their gills, skinand / or fins. The gill function is disrupted
because the bacteria attach and spread over the gill and finally cover individual gill
filaments, resulting in cell death. Also, the bacteria can produce enzymes that erode
portions of the gills. Damagesin the skin and fins may result in essential salts and fluids
release. The effect of columnarisis more devastating because it may expose the fish to

secondary infection or other diseases. For example, columnarisis often followed by
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winter saprolegniosis (another common bacterial disease that will be discussed later). In
a case study, 80% of catfish ponds infected with winter saprolegniosis also experienced

columnaris outbreaks in the preceding summer or fall.

2.4.1.3 Proliferative Gill Disease (Hamburger Gill Disease)

Information contained in this section is based on SRAC Publication No. 475
(Mitchell et al., 1998). Proliferative gill disease isacommon disease in farm-raised
channel catfish caused by a myxosporean parasite called Aurantiactinomyxon sp. This
parasite causes severe damage to the gills. The gills of infected fish swell and appear
mottled red and white like raw hamburger meat. Therefore, PGD is sometimes referred
to hamburger gill disease. The affected gills cannot remove sufficient oxygen from the
water, causing catfish to suffocate and die, even when the level of dissolved oxygenis
high enough. The most severe outbreaks of PGD are observed in the spring, but it can
also occur inthe fall and winter. The effect of PGD varies. It can kill afew dozen fish
over a couple of days, or up to 100% of the fishin lessthan 3 days. Newly stocked fish
are extremely vulnerable to this disease and account for the majority of losses associated

with PGD.

2.4.1.4 Winter Fungus (Saprolegnia)

Information contained in this section is based on SRAC Publication No. 4700

(Durborow et al., 2003) and Mississippi State University Extension Service Information
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Sheet 1392. Many fungi cause diseases that can infect and kill channel catfish. The
causative agent mostly belongs to the family Saprolegniaceae, so fungal diseasesin
channel catfish are commonly called saprolegniasis. Winter fungus, also called winter
kill, is the most common and economically important fungal disease of farm-raised
channel catfish. It usually occurs among fish of harvestable size in colder months
between October and March. Two factors lead to the occurrence of Winter Kill: arapid
decrease in the water temperature and a large number of motile fungal sporesin the water.
During colder months, if fish are unable to adapt to sudden fluctuation in the water
temperature, rapid drops in the water temperature can impair the fish’s immune system,
resulting in aloss of mucus from the skin and temporary suppression of mucus
production. Mucus protects the skin of fish from the contact and infection of fungal
spores. Without mucus, fugal spores can penetrate and damage the skin and muscles of
fish, causing fish death. The severity of winter fungus is variable and usualy resultsin
chronic and smaller losses. However, high mortalities and significant losses have been

observed.

2.4.1.5 Ich (White Spot Disease)

Information contained in this section is based on SRAC Publication No. 476
(Durborow et al., 1998). Ich isacommon name for the protozoan parasite
| chthyophthirus multifiliis and the disease that it causes. This parasite can kill alarge
number of fishin ashort time. Ichisusualy transmitted into a pond by a carrier fish,

other animals, or man. It can also come from ariver or stream that are used as a water
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source for the pond. In the pond, this parasite goes through three stages of itslife cycle
(tomont, theront, trophont) and survives in afish host, where they feed and mature. In
advanced stages of infection, Ich isfound under the mucus and epithelium (top layer of
cells) inthefish’sgillsor skin. Ich cells are about the size of salt granules (1 mm or 1/32
inch across). Infected fish may have small white spots on their skin asif they were
sprinkled with salt. That’s why Ich is sometimes called white spot disease. Ich can also
cause the fish to slough off large amounts of mucus on their skin producing a stucco-like
appearance. This parasite causes fish killsin three ways. First, respiration of fishis
hindered. The thickening of the epithelium as a reaction to the Ich invasion, the
deformation of the lamellae (the respiratory folds of the gills), and the Ich organisms
covering the gills can reduce oxygen transfer. Second, the epithelial layer of the gill may
separate and results in loss of electrolytes, nutrients and fluids. Third, the infection of Ich
can cause the fish more susceptible to other diseases. This disease usually occursin

spring and fall, and does not cause problems in warm summer months.

2.4.1.6 Trematode

Information contained in this section is based on SRAC Publication No. 1801
(Terhune et al., 2003) and the Catfish 2003 info sheet. Trematodes are parasites that
infest many types of fish and are common in fish ponds frequented by fish-eating birds.
Recently, one species of trematodes, Bolbophorus sp. has caused significant losses to
catfish producers from Louisiana, Mississippi and Arkansas. The life cycle of the

Bolbophorus is very complex, which involves one final host (the American white pelican)
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and two intermediate hosts (the ram’ s horn snail and catfish). The life cycle begins when
the mature trematode lays eggs in the gastrointestinal tract of the American white pelican,
which are then released into the pond together with the bird’ s feces. The eggs hatch and
infest the ram’s horn snail. Infected snailsrelease larval trematodes, which then infest
and encyst infish. Thelife cycleis completed when a pelican catches and eats the
infected fish. Studies show that the American white pelican and the ram’ s horn snail are
the only final and intermediate hosts for Bolbophorus, respectively. Without these hosts,
catfish could not be infested with Bolbophorus. Transmission of trematodes from fish to
fishisnot possible. Researches have shown that this trematode causes massive damage
to the excretory system such as kidneys and liver of infected catfish. Although
mortalities are usually in smaller fish, food-sized fish that survive still suffer from
anorexia and poor growth, making them unmarketable. The easiest way to control
Bolbophorus infection is to reduce the number of ram’s horn snail in the ponds and keep

fish-eating birds off ponds.

2.4.1.7 Channel Catfish Virus Disease

Information contained in this section is based on SRAC Publication No. 4702
(Camus, 2004). Channel catfish virus disease (CCVD) isthe only important viral disease
in channel catfish production. It existsin al catfish growing regions of the United States
and causes high mortalitiesin fingerlings and fry. The causal agent is a herpesvirus.

This virus causes damages to the kidneys, spleen, liver, intestinal tract, pancreas and

brain of the fish, resulting in kidney failure, destruction of blood-forming tissues and
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hemorrhage. Although this disease primarily affects fry or fingerlings less than one year
old and less than six inches long, larger fish such as the brood stock, if infected, may
transmit the disease to fry via eggs or semen. In addition to this vertical transmission,
this virus can be transmitted horizontaly, i.e., from fish to fish via the water or by direct
contact. The outbreaks of CCVD usually occur in the summer. The overall impact of
CCVD on the catfish industry is small, which accounts for only 1 to 2% of the total
disease losses, collectively. However, the effects on individual producers can be

significant. In some production units, the mortalities even approach 100%.

2.4.1.8 Channel Catfish Anemia

Information contained in this section is based on the annual report of the Animal
& Dairy Science Department, University of Georgia (Burtle, 1997) and the catfish
genetics research annual report (USDA and ARS 2003). Channel catfish anemia (CCV)
is a disease that causes mortalities in market size catfish, characterized by severe and
acute anemia. It has been reported across the southeastern U. S. since about 1981.
During the disease outbreak, fish swim to the pond banks and begin to die. In affected
fish, red blood cells account for only 1 to 5% of the blood. Since the red blood cells take
the role of carrying oxygen from the gills to other important tissues and organs of the fish,
scarcity of red blood cells would impair the oxygen carrying capacity and therefore
hinder the normal functioning of other tissues. Therefore, affected fish may have light
pink gills, pink or white internal organs and white mouth. That’s why sometimes this

disease is called the white lip disease. Preliminary findings show that the cause of this
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disease may be an interruption of the normal maturation sequence of red blood cell
precursors, but a complete characterization of the disease is not yet available. Other
factors that may increase the number of fish kills from anemia are low levels of dissolved

oxygen and rough handling that stresses the fish.

2.4.1.9 Visceral Toxicosisof Catfish

Visceral toxicosis of catfish (VTC) isanewly recognized problem. It wasfirst
noticed in Mississippi and Arkansas during the early spring of 1998 (APHIS 2000). At
that time, a few channel catfish producers reported catastrophic mortality eventsin their
brood or harvest-size fish. Most of the infected fish did not have gross external lesions,
but necropsies revealed extensive visceral lesions such as congested spleens, pale
proximal intestines where the blood vessels were prominent, multiple intestinal
intussusceptions, fat effusion, and areticular pattern to the liver due to vascular
congestions (Khoo et al., 2003). This disease affected food fish and brood fish every
spring and fall since 1998, causing extremely heavy losses to channel catfish producers.
Experiments have suggested that the cause of death by this disease might be some kind of

toxin.

2.4.2 Water Quality Related Risks
Poor water quality is one of the most serious threats to catfish production. Failure

to maintain good water quality may result in massive losses. The primary water quality
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concernsin channel catfish production include: low dissolved oxygen, nitrite toxicosis

and toxic algae.

2.4.2.1 Low Dissolved Oxygen

Jensen (1997) states that low dissolved oxygen is by far the most common water-
quality related problem in catfish production ponds. Oxygen is necessary for the survival
of catfish. Oxygen concentrations should be maintained above 4 ppm (parts per million)
for catfish to grow well. Chronically low oxygen not only reduces catfish growth, but
also causes stress in catfish and lowers their resistance to diseases.

Aquatic plants such as algae produce oxygen during the daylight hours as a by-
product of photosynthesis. Thisisthe main source of oxygen in ponds. Under normal
situations, photosynthesis produces adequate oxygen for respiration of aquatic animals,
plants and the decomposition of wastes by bacteria. But when oxygen demand exceeds
supply, oxygen depletion in a pond occurs. Excessive demands for oxygen usually occur
when there are very dense algae blooms that require oxygen for respiration, especially at
nighttime, and decomposition activities from algae bloom die-offs. Excessive demand
may also result from a phenomenon called turn-over which isrelated to weather changes
such asrain, wind and cold, and causes the algae to die off and oxygen to be removed
rapidly through bacterial decompositions. Furthermore, reduced sunlight and rapid
reduction in algae population from die-offs will inhibit oxygen production from
photosynthesis. Lack of agitation from wind will reduce the amount of oxygen dissolved
in the ponds. All these situations can reduce the supply of oxygen and result in low

levels of dissolved oxygen.



37

Because warm water does not contain as much oxygen as cold water, most low-
oxygen problems occur between May and September when temperatures are high. Thus,
during warm weather months, it is more important to monitor the level of dissolved

oxygen in the ponds.

2.4.2.2 Nitrite Toxicosis

This section depends largely on Jensen (1997) and Mississippi State University
Extension Service Information Sheet 1390. Catfish, like other animals, produce
nitrogenous wastes from the digestion of the protein feeds. Ammoniais the principal
nitrogen waste product. Ammoniais also produced from bacterial decomposition of
uneaten feed and dead animal or plant, including algae. Ammonia, although toxic to fish,
are nutrient source for algae and certain aerobic (oxygen-requiring) bacteria. These
bacteria use ammoniain a process called nitrification, during which ammoniais
decomposed into nitrite and nitrate. Nitriteistoxic to fish while nitrate is not. Under
normal conditions, nitrite can be converted to nontoxic nitrate, thus nitrite does not
accumulate to toxic levels. But if the bacterial decomposition (nitrification) is disrupted,
nitrite can build up and reach toxic levels. Nitrite enters the bloodstream through the gills
and attaches to hemoglobin of the blood, forming methaemogl obin which turns the blood
to chocolate-brown color. That’s why nitrite toxicosisis also called brown blood disease.
M ethoemoglobin cannot carry oxygen through the bloodstream. Affected fish may

suffocate and die, while fish that survive are susceptible to other stress related diseases.
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Most nitrite problems occur during fall and spring when fluctuating temperatures may

disrupt the bacterial decomposition.

2.4.2.3 Toxic Algae

Information contained in this section is based on SRAC Publication No. 466
(Brunson et al., 1994). The two most common types of algae in catfish ponds belong to
the green and blue-green families. Algae in catfish ponds play atwofold role. On one
hand, algae produce most of the oxygen in the pond through photosynthesis and
assimilate much of the ammonia, thus helping to maintain the oxygen level and alleviate
the problem of nitrite toxicosisin the water. On the other hand, algae may create a severe
problem for catfish. As mentioned before, algae blooms die-off can result in low
dissolved oxygen. Also, toxin-producing species of blue-green algae are common in
catfish ponds that might result in fish kills. These blue-green algae are often related to

the problem of off-flavor, which will be discussed below.

2.4.3 Off-flavor

Information contained in this section is based on Jensen (1997), Catfish 2003 info
sheet, Shaik (2001) and Avery (2002). Catfish producers are often faced with a problem
called off-flavor that causes undesirable tastes in the fish’sflesh. The flavor may be so
intense that it makes the fish unmarketable. Research has indicated that chemical
compounds produced by blue-green algae are the cause of most common off-flavors.

These compounds are 2-methylisoborneol (MIB) and geosmin. When catfish absorb
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these compounds, MIB causes a musty off-flavor and geosmin causes a muddy off-flavor.
Because blue-green algae are most abundant in the summer and fall, off-flavor during this
time is most severe, with 50-75% of ponds experiencing this problem. Depending on
temperature and other weather conditions, the duration of off-flavor varies from 2 weeks
to over 6 months (Avery, 2002). The economic consequences of off-flavor are
significant. First, it delays the harvest time of market-sized fish and increases production
cost. Fish haveto remain in the pond longer until the off-flavor goes off, which requires
extra feeds and management efforts, thus increases the overall cost of producing them.
The extension in production may increase risk of losses due to diseases and other
problems. Furthermore, off-flavor delays sales of fish, which may prevent the producer
from selling fish at a high price, resulting in fewer total sales revenue during a given year.
Finally, additional economic losses may arise from delays in stocking the next crop of
catfish. At the producer level, off-flavors increase catfish production costs by
approximately $15 to $23 million annually (Catfish 2003), or 4 to 7 cents/pound (Avery,

2002).

2.4.4 Bird Predation

With the growth in catfish production in recent years, piscivorous birds have
become an increasingly serious problem. Bird predation of catfish, especially that of
double-crested cormorants and American white pelicans, causes millions of dollars losses
to catfish producers. Studiesin the National Wildlife Research Center (NWRC) showed

that captive cormorants consumed 7-9 catfish/bird/day, which resulted in a 30% reduction
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in fish abundance and a 23% loss in biomass in 2 ponds, with an annual impact of near $5
million to Mississippi Deltaregion aone. NWRC research also indicated that 99.6% of
the diet of pelicans collected in northwestern Mississippi is catfish, and pelicans consume
up to 3 pounds of catfish per foraging session. Great egrets and blue herons are also
predators of catfish. Great egrets usually eat smaller catfish, while great blue herons have
greatest impact on fish that are near the surface of the water. In addition to eating fish,
birds would wound fish that they don't eat, resulting in potential loss. Furthermore, these
birds can serve as hosts of tramotode infections and spread diseases from pond to pond.
Because most birds that cause problems are protected under the federal Migratory Bird
Treaty Act (MBTA), the most common control measures are harassment techniques to

frighten birds away from ponds (Jensen, 1997).

2.4.5 Extreme Weather Conditions

Extreme weather conditions can pose risks to catfish farms. Examples are
extreme hear or cold, flooding, ice-over and drought (Avery, 2002). Temperature, an
important factor in catfish production, depends heavily on weather condition. Therefore,
extreme heat or cold will affect the growth of catfish severely. Ice can block the water
supply. Flooding not only causes physical damage to the farm structures, but may also
change the quality of water, especialy if the floodwater contains pesticide residues from
nearby agricultural farms, the consequence is even more serious. Drought reduces the
water supply of the ponds due to high evaporation and no water replacement. Fish and

other aguatic plants depend on water for oxygen. As the water supply declines, the
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oxygen it can carry decreases and finally the fish may die. Catfish producers should be

alert to any of the extreme weather conditions.

2.4.6 Management Error
Management errors such as human error, mechanical failures and power outages
are also causes of fish kills. For example, pond-specific or farm-wide power lossin the

summer time can lead to aerator shutdown and oxygen depletion.

2.4.7 Theft and Vandalism
Theft and vandalism normally do not cause large-scale problems in catfish farms.
Thisis because of the good security procedures that catfish farmers put in place and the

difficulty of accessing fish farm facilities without detection.

2.5 Environmental |ssue

The remarkable growth of aquaculture has given rise to growing concerns about
its impact on the environment. According to Boyd et a. (2000), recent environmental
concerns include wetland destruction, conversion of agricultural land to ponds, water
pollution, loss of biodiversity, competition for water use, use of toxic or bioaccumulative
chemicals and negative social impacts. These concerns are mainly targeted at marine
shrimp farming and cage culture of salmon. The main environmental concern about
channel catfish production is water pollution caused by the discharge of pond effluents;

other environmental concerns seem less problematic. Aquaculture effluents, including
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catfish farming effluents, are regulated under the National Pollutant Discharge
Elimination System (NPDES) of the Clean Water Act. This Act designatesthe U.S.
Environmenta Protection Agency to administer and enforce the NPDES. In addition to
the federal regulation, states can develop and carry out their own programs (Tucker,
1999). With more and more states considering devel oping regulatory procedures, alot of
research has been done to evaluate the impact of pond effluents on the environment.

In adocument prepared for the United States Environmental Protection Agency
(EPA), Tucker and Hargreaves (1998) stated that, the current production practices enable
catfish farming to have minimal impact on the environment. First, because EPA
regulates the use of chemicalsin catfish pond, catfish pond effluents contain
environmentally insignificant amounts of pesticides and therapeutants. Second, the
concentrations of nutrients and organic substances are reduced by the longer hydraulic
residence time in catfish ponds. Therefore, any water that is discharged finally is diluted
and has less environmental impact. Third, the volumes of water that can be discharged
from catfish ponds are low, due to some water conservation measures such as reusing
water for multiple fish crops before it is discharged and managing the pond water levels
to capture the most rainfall. Finally, most water discharged from catfish ponds occurs
during the winter and spring periods. During that time, the high precipitation can greatly
dilute any water discharged, thus the effluent water quality is at its seasonal best.
Research done by Boyd et al. (2000) also showed that, channel catfish farming is not
harmful to the environment and is conservative of water, land, feeds, energy and other

resources. Tucker (1999) summarizes some management practices to reduce the impact
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of pond effluents on the environment, such as using effluents for irrigation of soybeans,

treating pond effluents using constructed wetlands and grass filter strips.

2.6 Modeling Risks

We will consider twenty major risk factors associated with the production of
catfish, which have been discussed in previous sections. The effects of therisks are
represented in the realized yields. We can model the risks by assuming that risks affect
yieldsin four aspects. frequency; severity; persistence across time; and persistence across
space. Frequency is defined as how often (in terms of probability) a particular risk occurs
in agiven production cycle, while severity is defined as how much loss (in percentage of
yields) is caused by a particular risk in a given production cycle. Persistence across time
isthe temporal correlation of a particular risk, which measures the relationship of risk
occurring events between two production cycles. Persistence across space is the spatial
correlation of a particular risk, which measures the relationship of risk occurring events
between two experimental units. The definition of experimental unitsis very broad. They
can be catfish ponds or farms; they can be in the same county or in different countiesin
the same state, or even in different states. But we are assuming they are equally spaced
and in an order such that the second experimental unit is closest to the first experimental
unit and the last experimental unit is the farthest.

Unfortunately, precise information about these four aspects of each risk factor is
not available. However, four aquaculture specialists provided their opinions on the

characteristics of the risks, which helped to build avery genera structure to our



simulations.! A summary of their opinionsisillustrated in Table 2.1. Although the
information they provided is subjective, it at least provides a starting point. A formal
survey will be sent out to the industry at the end of 2004. The result of the survey will
provide more accurate and precise information about the characteristics of therisksin
catfish production, and thus will improve the applicability of our simulation study, as the
parameters are refined.

Each of these four characteristics is categorized into four levels: high, medium,

low and negligible. The levels are quantified as follows. High frequency means the
probability of a particular risk occurring in a given production cycle is assumed to be
between 0.4 and 0.5. Medium frequency assumes a probability between 0.2 and 0.3.
Low frequency assumes the probability isless than 0.1, and negligible frequency assumes
aprobability of lessthan 0.01. High severity assumes a 20% to 30% lossin yields. For
example, if the risklessyield is 100 pounds/acre, then the realized yield isonly 70 to 80
pounds/acre when the risk factor occurs. Medium severity means a 10% to 15% |oss,
while low severity represents loss of less than 5%, with negligible severity meaning aless
than 1% loss. Both the temporal and spatial correlation coefficients for high, medium,
low and negligible levels are assumed to be 0.25, 0.1, 0.01 and O respectively. The
guantifications of the characteristics of risks are summarized in Table 2.2.

Temporal and spatial correlations are modeled together using correlation matrices,

which have blocks that represent spatial correlations of different experimental units and

' They are: Jimmy L. Avery, extension professor and extension aquaculture leader, James A. Steeby,
assistant extension professor and extension aquaculture specialist, both from Mississippi State University
Extension Service; Kevin M. Fitzssmmons, associate professor, Dept. of soil, water, environmental science,
University of Arizona; and another epidemiologist from the industry.



temporal correlations of different time periods (or production cycles) for the same
experimental unit. Specifically, let p denote spatial correlation coefficient and « the
temporal correlation coefficient. If d, isthe risk number representing a particular risk
factor at timet for experimental uniti, wheret=12,...,T,i=12,..., N,then, for a
series of temporally and spatially correlated risk numbers

d;,dp,,...,d;y, dyy,doyen, Aoy ey Opy,0psy. .., Dy, the correlation matrix is:
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and ; (j=1,...,T-1) isalsoa Nx N matrix
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One can see that Q represents the spatial correlation among the N experimental

units at agiven time period and w; represents the temporal correlation of an
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experimental unit at different time periods. Note that we are assuming there is no serial

correlation among different experimental units. That is, the correlation between d,; and
dg (t#s,i # j) iszero, resulting in off-diagonal elements of w, equal to zeros. For
example, let N=2, T=3, and assume high spatial correlation ( p =0.5) and medium
temporal correlation (a = 0.1), then the correlation matrix would be:

1 025 01 0 01 O
025 1 0 01 0 01
01 O 1 025 01 O
0 01 025 1 0 o1
01° 0 01 O 1 025
0O 01 0 01 025 1

6x6

Once the correlation matrix of a particular risk factor is constructed, a series of
temporally and spatially correlated risk numbers (for different experimental units and
time periods) can be generated using the Cholesky decomposition of the correlation
matrix. To be more specific, let r ~ multivariate standard normal (0, I,,) wherer isa nx1
vector and |, is an n-dimensional identity matrix. Let A be the correlation matrix such
that A=L 'L where L isan upper triangular matrix. Therefore, L'r isa vector of
multivariate normal random numbers with mean zero and correlation matrix equal to A.
A matrix must be symmetric and positive-definite to be decomposed. Although our
correlation matrix is symmetric by construction, sometimes it may not be positive-
definite, depending on the temporal and spatial correlation coefficients. Fortunately,

negative-definite correlation matrices do not occur in the ssmulation. Therefore, we
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reserve the discussion of the Cholesky decomposition of non-positive-definite matrix in
Appendix A.

Once a series of temporally and spatially correlated risk numbers are generated,
we can model the frequency of the risk factor. To model the probability that a particular
risk factor occurs, a uniformly distributed random number isrequired. Given that the
value of cumulative distribution function (CDF) is uniformly distributed between 0 and 1,
we can take the CDF of those multivariate normal random numbers and generate some
probability numbers. If the probability number isless than the quantification level of
frequency, it means the risk factor occurs. The severity of the risksis modeled using a
scaling factor on the yields. If the risk factor occurs, then a scaling factor is defined
according to the quantification level of severity. Otherwise, the scaling factor will be 1.
For example, if the severity level is medium, then the scaling factor will be between 85%
and 90%. That means, if the risk factor occurs, the realized yield is only 85-90% of the
risklessyield.

The same modeling procedure isimplemented for the twenty major risk factors
and twenty scaling factors come up. Assuming the effects of the twenty risks on the
yields are independent, the final smulated yield will be the average yield times all these

scaling factors.



Table2.1: Summary of the characteristicsfor each risk
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L . Temporal Spatial
Risk items Frequency Severity Correlation | Correlation
1 Enteric septicemia of catfish medium medium low — negligible
medium —low
2 Columnaris medium — medium | Medium-— low
high high
3 Proliferative gill disease low megi';rr]“ - low medium
. low — . low — low —
4 Winter fungus medium medium medium medium
5 Channel catfish virus low low low — negligible
medium —low
. . low — medium— | negligible low —
6 Channel catfish anemia medium high —low medium
7 Ich negligible— | negligible | negligible | negligible
low —low —low —low
low — . low —
8 Trematode low medium medium medium
. . . medium— | medium— low —
9 Visceral toxicosis of catfish low high high medium
10 Nitrite Toxicosis low — low — negligible | negligible
medium medium —low —low
11 Toxic Algae low medium neglllg\;\llale low
. medium — low — medium— | negligible
12| Low Dissolved Oxygen high medium high Zlow
13 Off-flavor meﬂ';vm ~ | medium | medium | medium
medium — low — medium— | medium—
14 Predators high medium high high
15 lce-over negligible— | negligible | negligible low
low —low —low
16 Flooding negligible | negligible | negligible “eg';gﬁ €
17 Extreme heat / cold low — low — medium medium
medium medium
low — medium —
18 Drought low medium low high
19 Management Error medium high neglllg\lAtl)le low
20 Theft and vandalism negligible— | igible | Medligible | negligible
low —low —low




Table2.2: Summary of the quantification of risksfor the base scenario

49

Characteristics of risk High | Medium | Low | Negligible
Fregquency (probability) 0.4-05 | 0.2-0.3 <0.1 <0.01
Severity (scaling factor) 0.2-0.3 | 0.1-0.15 | <0.05 <0.01

Persistence Across Time (correlation) | 0.25 0.1 0.01
Persistence Across Space (correlation) |  0.25 0.1 0.01
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3. RATING METHODOLOGIES

Accurate premium rates are essential to the actuarial soundness of the catfish
aguaculture insurance program. Determination of accurate premium rates requires
precise measurement of yield risks, which in turn depends on appropriate estimation of
the distribution of yields. Inthe crop insurance literature, there are various approaches to
modeling conditional yield distributions and hence, constructing premium rates. These
various approaches can be segmented into two primary groups, depending on whether
they use a known parametric distribution or nonparametric techniques. Most yield
distribution models are of a parametric nature. Under this approach, a specific parametric
distribution could be selected a priori and parameters of the distribution are estimated
using observed yield data. Conventional approaches to estimating conditional yield
distribution and rating crop insurance contracts have typically used the normal
distribution (Botts and Boles, 1957). Gallagher (1987) used a gamma distribution
function in attempts to capture the asymmetry and negative skewness of soybean yields.
Nelson (1990) confirmed negative skewness in county mean yield distributions for corn
and thus used a beta distribution. These approaches have the limitation that they relied
on apriori specification. If the distributional priori specification isincorrect, it could lead
to inaccurate predictions and misleading inferences. Therefore, a variety of
nonparametric approaches to estimating yield distributions have been developed to
overcome some of the problems associated with the parametric approaches. Goodwin
and Ker (1998), Ker and Coble (1997,1998), and Turvey and Zhao (1993) used univariate

kernel density estimators to estimate yield densities. Ker and Goodwin (1998) developed
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an empirical Bayesian nonparametric kernel density estimator that exploits the
similarities among the county yield densities.

Most of the methods in rating crop insurance contracts are also applied to rating
catfish aquaculture insurance contracts due to the large similarities of crop insurance and
aguaculture insurance. The first section of this chapter discusses the general formulafor
calculating premium rates and introduces the rating methodologies. The next section
presents the parametric approaches and the resulting premium rates. Following this,

nonparametric approaches are delineated and their resulting premium rates are reported.

3.1 Premium Rates

Premium rates can be expressed as expected |0ss as a percentage of total liability
(Ker, 1996). For acontract that guarantees 4x100% of the predicted yield, say y°, the
actuarially fair premium rate is given as

Expected Loss
Total Liability

Premium Rate =

Prob(Y < Ay®)E(Ay° -Y | y < Ay°)
Ay°

Prob(Y < Ay®)[Ay® — E(Y | y < Ay®)]
Ay*®

where 0< A <1 and Ay°® - representsaloss. For example, if 4 is0.8, y° is5000
pounds/acre, then the guaranteed level, or total liability would be
0.8x 5000 = 4000 pounds/acre. If aproducer’srealized yield is less than 4000

pound/acre, then loss happens and the producer will get an indemnity. If the probability
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of yield less than 4000 pound/acre is 0.3, and the expected yield given aloss has
happened is 3000 pound/acre, then premium rate is 0.3x (4000 — 3000) / 4000 = 7.5%.
Accuracy in premium rates is dependent on accuracy in determining the probability that a

loss will occur and the amount of loss that occurs. Both are given by the area under the
probability density function between 0 and Ay°. Thus, precise measurement of theyield
density iscrucial. Both parametric and nonparametric approaches attempt to recover

f (y) , the estimated yield density or curve. Inall our simulations, 4 ischosen to be 0.75,

and y° ischosen to be the average yield of the first experimental unit.

Recall the main goal of this thesisisto undertake a performance comparison of a
number of estimators based on simulated yield data. Twelve rating methodologies are
considered here. They are: (1) the empirical rate only for the first experimental unit; (2)
the empirical rate for all experimental units; (3) assuming normal distribution only for the
first experimental unit; (4) assuming normal distribution for all experimental units; (5)
kernel density estimation only for the first experimental unit; (6) kernel density
estimation for al experimental units; (7) kernel density estimation for all experimental
units with transformation of both location and scale parameters of the first experimental
unit; (8) kernel density estimation for all experimental units with transformation of the
location parameter of the first experimental unit; (9) Bayesian nonparametric kernel
density estimation; (10) assuming beta distribution only for the first experimental unit;
(11) assuming beta distribution for all experimental units; (12) nonparametric estimation

of similar densities.
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In addition to the parametric or nonparametric nature of these methodologies,
another distinction is whether they utilize only individual data or pooled data. Pooled
data means combining the data from all experimental units.> When estimating the
densities for an experimental unit of interest, the standard approach isto use only the
yield data of that unit. However, lack of historical yield datais one of the most
fundamental obstacles in rating catfish aquaculture insurance contracts. Although yield
data by county or farm tend to be extremely scarce, the number of counties or farms can
belarge. In some circumstances, the individual densities are believed to have some
structural similarities that can be utilized to produce improved estimates. For example, in
the same reporting area, weather patterns, water sources and technology use among other
factors could be considered similar across units. These similarities provide a reasonal
basis for assuming that the densities of the different units are related even though the
magnitude of such relationshipsis unknown. Therefore, an alternative to the standard
approach isto include the yield data from other experimental unitsin the estimation
process for potential efficiency gains. Inthisthess, given the relatively short length of
time series for each experimental unit in the smulation (only 2 to 50 time periods), in
determining the premium rate for the first experimental unit, it seems reasonable to use
yield information from other experimental units. Eight out of the twelve methodologies
use extraneous data in the estimation process. Extraneous data refersto the data from

other experimental units.

2| n the following discussion, we will use the term “pooled data’ quite often. It is defined as the data set
that consists of yield data from all experimental units.



3.2 Parametric Approaches
3.2.1 Assuming Normal Distribution for the First Experimental Unit

Under this approach, catfish yields of the first experimental unit are assumed to
follow the normal distribution. The mean and variance of the distribution are estimated

using the sample moments. Specifically, if y,,,..., ¥1,, iISasample of yields for the first

experimental unit, then the sample mean and variance are given by:

T T AN2
~ Z, Yu ~ z_ (ytl_lul)
— t=1 and 0.2 — t=1
S ' T-1

Thus, the yields follow anormal distribution with mean £, and varianceé,?. The

premium rate based on a normal distribution with mean /, and variance 6,° isgiven

by:

-, . - A -, ).
cb(y : ﬂ(zy —m)w{y& ”1]01
Rate =

1 1

Ay
where @ isthe normal cumulative density function, and ¢ isthe normal probability
density function. Thisisderived from the first moment of the truncated normal
distribution. If z~Normal (#,0%) and ¢ isaconstant, then

E[z]|z< 0] =u—-od(a)! D(ax) where a = (0 — 1)/ o (Greene, 2000).

3.2.2 Assuming Normal Distribution for All Experimental Units
Under this approach, the yields of all experimental units are assumed to follow

one single normal distribution. The mean and variance of this normal distribution are
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estimated as the averages of the sample moments of each experimental unit. If there are
N experimental units, and vy, ,..., 5 (i=1 to N) isasample of yieldsfor the it

experimental unit, then its sample mean and variance would be:

T T ~
/j- _ Zt:l Yi and 6'-2 _ thl(yti _tui)z
T ' T-1

The mean and variance for the pooled data are given by:

i :m d 62= Zzlz;(yﬁ _,[li)z
NT N(T —1)

an

In this case, the pooled data are assumed to follow a normal distribution with mean i

and variance 6. The premium rate based on this distribution is given by:

N AV O Y. A
@(y6'“}ﬂy —u)+¢( Y ”]o

o

Rate =
Ay°

3.2.3 Assuming Beta Distribution for the First Experimental Unit

The general formula for the probability density function of the beta distribution is

_(x—a)PH(b-x)**

0= B b2

as<x<b;p,g>0

where p and g are the shape parameters, a and b are the lower and upper bounds,
respectively, of the distribution, and B(p,q) is the beta function. The lower bound of the
yields is assumed to be 0. Maximum likelihood estimation is used to recover the other
three parameters. Once the parameters are known, the yield densities are known. The

premium rate based on the beta distribution is given by:
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_P(Y < Ay*)(Ay* —E(Y |y <Ay®%)) _ P(Y <Ay*)E(Ay° Y |y < Ay°)
Ay® Ay®

Rate

P <ay) [ (Ay* =Y)P(Y |y < Ay°)dy
- N

£(Y)

P(Y < Ay®) fye (Ay°-Y) W

Ay®

[ (y )T (V)dy
Ay°

For beta distribution, there is no closed form for thisintegral and as such, a numerical

approximation is used to recover the estimated premium rate.

3.2.4 Assuming Beta Distribution for All Experimental Units

In this case, the yield data from all experimental units are combined and assumed
to follow a single beta distribution. Maximum likelihood estimation is used to recover
the four parameters of this beta distribution based on the pooled data. Premium rates are

estimated in the same way as in the previous section.

3.3 Nonparametric Approaches
Parametric approaches assume that the distribution of the catfish yields follows a
known functional form. Nonparametric density estimation techniques do not assume a

particular functional form for the yield distributions. Instead, they allow the datato
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“gpeak for themselves’. Thus nonparametric approaches are fully flexible and essentially

nest alternative parametric specifications.

3.3.1 Empirical Ratefor the First Experimental Unit

The simplest approach to nonparametrically estimating a probability density
function is the histogram. The empirical premium rate is analogous to a histogram where
no smoothing is undertaken. An empirical rate is simply the average lossrealization. It
represents the expected loss if the sample size islarge enough. If yield datawere
abundantly available, the empirical rate would recover a reasonably accurate estimate.

The empirical rate for experimental unit 1 isgiven by:

T e
ot - zt_lwlax(jy ~¥a0) / -

3.3.2 Empirical Ratefor All Experimental Units
When we incorporate the yield data from other experimental units, the premium

rateisgiven by:

Rate =

S ST Max(Ay*® - y,.,0) / .
NT y

3.3.3Kernel Density Estimation for the First Experimental Unit
One of the limitations of empirical rate isthat the density estimateis
discontinuous because no smoothing is undertaken. An alternative is to smooth between

observations to build a continuous density estimate. Kernel density estimation techniques
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offer a consistent approach to smoothing observations to build a continuous density
estimate. For greater details about kernel density estimation, please see Appendix B.1.
For T independent and identically distributed observations of a univariate series of yields

from experimental unit 1, Y, = (Y,..., ;) , the kernel density estimate at support point y

is defined as:

=y

Th& h

where K(-) ischosen to be a symmetric probability density function centered at zero, and
h is the smoothing parameter or bandwidth. The kernel density estimator places a bump
or individual kernel at each observation. Intuitively, the estimate of the density at any
support point is simply the sum of the height of the bumps, or kernels at that particular
point. In regionswhere there are alot of observations, the estimates will be large because
the closeness of the data points raises their weights represented in the kernels, whilein
regions with few observations, the spread of the data points decreases the weights of the
support point, resulting asmall density estimate.

K(-) isaso caled the kernel function. In most casesit is chosen to be the

standard normal distribution although a variety of alternatives may be used, such asthe
Epanechnikov kernel. The individual kernel being a probability density function
guarantees that the kernel estimate itself isadensity. The standard normal kernel is used
throughout this thesis because of ease of use. Choosing the proper smoothing parameter
is another important issue in nonparametric kernel density estimation. This parameter

determines the weight to assign to neighboring observations in constructing the density
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and thus corresponds to the amount of smoothing to be done. A larger bandwidth will
assign more weight to neighboring observations and thus will result in aflatter, smoother
density function, while a smaller bandwidth will yield arough and irregular density. A
variety of methods are available to estimate the bandwidth, including cross-validation,
Silverman’s “rule-of-thumb”, and other plug-in approaches. For computational
consideration, a rule-of thumb approach is used to determine the bandwidth parameter for
all kernel methods discussed in thisthesis. The rule-of-thumb bandwidth is given by:
h=0.79*g*T ¢
where o isthe standard deviation and T is the number of observation. Inthe
simulations, o can be estimated by the sample variance. Recall the actuarially fair
premium rateis given by:

P(Y < Ay*)(Ay° - E(Y |y < &%) _ ije (Ay® =Y) f(Y)dY
Ay*® Ay©

Rate =

Once the density estimates for a set of support points in the domain of (0, Ay®) are

recovered, numerical integration can be used to recover the estimated rate.

3.3.4 Kernel Density Estimation for All Experimental Units
When yield data from other experimental units are added in the estimation, the

pooled dataare: Y, = Yy, Yrqs Yioseens Yoosee Yinvees Yoy ) - 1HE KErNel density estimate at

support point y is defined as:

b LSSy VY
_NThZZK(

i=1 t=1
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Once the density estimates for a set of support pointsin the domain of (0, Ay°®) are

recovered, premium rates are constructed in the same way as in section 3.3.3.

3.3.5Kernel Density Estimation for All Experimental Unitswith Transformation of
both L ocation and Scale Parameters of the First Experimental Unit.

Thisisasdlight variation from the method discussed in section 3.3.4. Weare
trying to use the yield data from other experimental unitsin estimating the conditional
yield density for experimental unit 1, based on assumption of some kind of similarity
among the densities of all units. The concept of similarity isloosely used here because
the extent to which the set of yield densitiesis similar is unknown. If the set of curves
were indeed similar in shape, estimators that use extraneous data would improve greatly
in terms of efficiency. However, when the curves are not similar as assumed, then bias
will result. One of the reasons that the density curves are dissimilar is because they come
from distributions with different location or scale parameters. Although yields are
assumed to be normal, the location and scale parameters of other experimental units
yields may be different from those of the first experimental unit, which may introduce
bias. A transformation of the yield datafrom all experimental units may be invoked such
that the set of different densities collapsesto asingle density.

A very nice property of kernel estimatorsisthat they are invariant to transforming
the data. Invariance alows us to estimate the density with the transformed data, and then
take the inverse transformation on the estimated density to retrieve the original density.

To ensure our density estimates have mean and variance of the first experimental unit,
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yields from each experimental unit are first standardized according to its own parameters
prior to entering the density estimators, thus having mean zero and variance one.

Assuming vy, istheyield of the i™ unit at time t, the standardization processis given by:

7, = Yi A_ﬂi
O.

where . and o, are defined in section 3.2.2. The standardized yield data of each unit

are then combined together and kernel density estimation is undertaken. The kernel

density estimate at support point z is defined as:

Finally, the location and scale parameters of the first experimental unit, j and
0, , are used to transform these estimated densities back. The support point and the
corresponding density estimate are given by:
y=z*6,+/, and f(y)=f(2)/6,
Once the supports and densities of yields are available, premium rates are constructed in

the same way as in the previous sections.

3.3.6 Kernel Density Estimation for All Experimental Unitswith Transformation of
the Location Parameter of the First Experimental Unit.

This method is slightly different from the previous one in that it just uses the
location parameter of the first experimental unit in the transformation. The steps still

involve standardization of the pooled data and then kernel density estimation. But in the
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transformation step, we use the location parameter of experimental unit 1 (4, ) and the

scale parameter of the pooled data (& , defined in section 3.2.2). The support point and

the corresponding density estimate after the transformation are given by:

A A

y=2*0+[ and f(y)=f(2)/o

Premium rates are constructed in the same way as in the previous sections.

3.3.7 Bayesian Nonparametric Kernel Density Estimation

Ker (1998) derived an empirical Bayes nonparametric kernel density estimator
that exploits possible similarities among the set of unknown densities that are to be
estimated. Rather than placing a prior on a parameter space, the estimator uses empirical
Bayes techniques on the estimated densities from the standard kernel-type density
estimators discussed in previous sections. AsKer and Ergun (2003) point out, the main
strengths of the empirical Bayesian nonparametric kernel density estimator result from
using kernel density estimator asthe basis. First, since the Bayesian estimator depends
on the kernel estimator, all the variations of the kernel estimator, such as higher order
kernels, variable kernel methods and transformation-kernel density estimators, are also
applied to the Bayesian estimator. Second, when the set of densitiesis not identical, Ker

(1998) shows that the empirical Bayesian estimator convergesin probability at arate of

O, (T ") to the standard kernel density estimator, which is faster than the rate that the

kerne! density estimator converges to the unknown density of interest, O, (T ). As

such, the Bayesian estimator inherits the same asymptotic properties as the standard
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kernel density estimator and converges to the unknown density at the optimal rate of

O, (T ®?). Finally, the Bayesian estimator does not require any specification asto the

degree or form of similarities among the set of densities of the experimental units, which
isusually unknown in practice.

Under this approach, not only a single conditional yield density, but the entire set
of conditional yield densities, one for each experimental unit, will be considered. In our

analysis, we have N experimental units with densities{ f,, f,,..., f } and random samples
Y Yo 0 Yy from f, for i =1,2,...,N. Denote the kernel density estimate at support point
y; for experimental uniti as ﬁj . Based on the pointwise limiting distribution of kernel
density estimators, Ker (1998) proposed the following hierarchical model:

ﬁj | 4 ~ Normal (4 ,07)

#; ~Normal (u;,7,%)

where y; = f; + f;, f; isthe unknown density value for experimental unit i at support
point y,, B, isthebiasfor experimental uniti at support point y,, aijz is the variance of
the kernel density estimate for experimental uniti at support point y;, x; isthe mean
value of the densities across experimental units at support point y;, and sz isthe

variance of the densities across experimenta units at support point ;.

The empirical Bayesian nonparametric kernel density estimator at support point

y; for experimental uniti is:
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2 2
7] R o.
=i (") + i (")
7,°+0, 7,°+0,
where the unknown parameters (1,77 , 07 ) must be estimated.

Bootstrapping methods are usually used to estimate the variance o, but require a

o,
lot of computation time. Therefore, an alternative estimate of o7 is obtained by the
asymptotic variance formula. It is easy to show that (see Appendix B.2):

52 = £, 1(2J7Th)

Estimates of 4, and sz are obtained using the following method of moment estimators:

O L A f2 a2 1Y A )
fy==> f; and 7,°=§°-=> 0, where sz - Z( i —dl)” (see
NS N 1)

i=1
Appendix B.2). For 7,%, we use the positive part estimator.

Intuitively, as the estimated variance of the kernel estimates across experimental
unitsincreases (7, ? becomes larger), ﬂj will shrink less toward the overall mean (z;).
Conversdly, the larger the estimated variance of the kernel estimate for a given
experimental unit (o, ?), the more ﬂj will shrink toward the overall mean (,). The
greater the estimated variance within the experimental units relative to the estimated
variance across the experimental units, the greater ﬂ. will shrink toward the overall

mean, which implies greater potential efficiency gains. Ker (1998) indicates that the

empirical Bayes nonparametric kernel estimator may offer the largest efficiency gainsin
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small samples where the variance within experimental units tends to be relatively high as
compared to the variance across experimental units.

In our analysis, we are interested in estimating the premium rate for the first
experimental unit. The empirical Bayesian nonparametric kernel density estimator at

support point y; for the first experimental unit is:

flj = flj(

72 A
~ 2 ~ 2)+1uj(,\2 ~ 2)
Tj +O'1j Tj +0;

where flj is the kernel density estimates only for the first experimental unit, which is

derived in section 3.3.3. Premium rates are constructed in the same way as in the

previous sections. Appendix B.2 contains a more detailed description of this method.

3.3.8 Nonparametric Estimation of Similar Densities

Ker (2002) developed an estimator that offers greater efficiency if the set of
densities are similar while not losing much if the set of densitiesare dissimilar. This
method has the same objective as the Bayesian estimator discussed in the previous
section in that they are designed to exploit any similarities among the sets of densities.
The difference is that this method does not require a hierarchical model and thus the need
to know the relationship among the densities is circumvented.

If the densities were identical, one would pool the N samples and estimate asingle
density, aswe did in section 3.3.4. However, if the densities are not identical, this

estimator isinconsistent. In that case, a nonparametric estimator that combines a kernel
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estimate based on the pooled data with a kernel estimate based on the individual data may
be considered.

Theideaisto pool the data and obtain the kernel density estimates, denoted §(y)
(we derived thisin section 3.3.4), and then multiply an individual correction function

r.(y) = f.(y)/g(y) in order to adjust for individual effects. The correction factor

function isitself estimated nonparametrically by:

P = XLV Jrace).

Thus, the estimator of possibly similar densities for the i™ experimental unit is given by:

fi(y)= @(y)ﬁ(y)=T—1hZT_lK(y;Y“ J g((\?/.))

where (Y;;,Y,,...,Y;, ) isthe sample observations and y is a support point. Ker (2002)

shows that E is biased and the leading term of the biasis:
Ef () f(y)= —h ,Uz( —)"(y)

Let f (y) be the standard kernel density estimates based on individual data. Recall the
leading term of itsbiasis:

EF ()~ (1) =31 £(9)
Clearly, one can decrease the bias by reducing the curvature of f (y). Itiseasy to seethat
the bias of the estimator f~(y) is not afunction of the curvature of the unknown true

density asit isfor the estimator f(y). Rather, it isafunction of the second derivative of



67

the correction function r(y) = f (y)/ g(y) . If thestart, g(y), iscloseto the true density,

then the correction function r(y) will have less global curvature than that of individual

curves. Hence, F(y) may have less bias.

Ker (2002) enumerates the advantages of this estimator. First, it startsfrom a
nonparametric kernel density estimator, which does not assume any functional form and
hence avoids any wrong specification about the underlying density. Second, when the
sets of densities are similar, it has alower bias due to the correction factor and more
efficiency due to the pooling of data. Also, estimating the correction function
nonparmetrically can make it fluctuate around 1 and thus the curvature will be close to
zero. Asaresult, thetotal curvature that is estimated with the individual sample data
may be significantly reduced.

In our analysis, we are interested in the premium rate for the first experimental

unit. The estimator at support point y is:

f(y)= @(y)ﬂ(y)=T—th_lK(y_TY“]%

where §(y) isthe kernel density estimates based on pooled data, which isderived in

section 3.3.4. Premium rates are constructed in the same way as in the previous sections.
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4. SIMULATION ANALYSISAND RESULTS

The main objective of thisthesisisto investigate the small sample performances
of various methodologies for estimating premium rates. In satisfying this objective, we
undertake a performance comparison of different rating methodol ogies based on
simulated yield data. This chapter focuses on simulations and the accompanying results.
In section 2.5, we have discussed how the risks are modeled based on assumptions about
the frequency and magnitude of each risk factor as well astheir temporal and spatial
correlations. In the smulations, we also need to make some assumptions, such asthe
number of experimental units, the quantification of the characteristics of the risk factors
and the ranges of the means and variances of the yield distributions. It isimportant to see
how the methodologies will perform under different assumptions. we devel oped one base
scenario and eleven alternative scenarios.

Thefirst section of this chapter presents the yield simulator and the base scenario.
Section 2 discusses the relationship between sample size and similarities among
experimental units. The designs of the remaining scenarios will be addressed in section 3.
The last section presents the accompanying results of the twelve scenarios and the
performances of the methodol ogies are compared. The designs, M SE results,
performance comparisons of all twelve methodologies for each scenario can be found in

Appendix C, D and E, respectively.
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4.1Yield Smulator and Base Scenario

Under the base scenario, we simulate the yields of 30 experimental units (e.g.

farms or ponds) over a 50-year period (or 50 production cycles). Without loss of

generality, we focus on estimating the actuarially fair premium rate for the first

experimental unit. The yield simulation processis as follows.

1)

)

©)

(4)

Unconditional yields are assumed normally distributed. Unconditional means that
none of the risk factors have been applied.

In order to randomize the average yields of different experimental units, the means of
the yields of the 30 experimental units are drawn from U [50000, 100000].2 These
numbers are chosen for the following reason. The pond is our major experimental
unit of interest, so the mean yield should be based on the average yield of a pond.
Catfish production is about 5,000 pounds/acre.* The average size of apond is 10 to
20 acres (Robinson and Avery, 2000). As such, the average yield of a pond is 50,000
(5,000 times 10) to 100,000 (5,000 times 20) pounds.

The standard deviations of the yields of the 30 experimental units are drawn from
U[10000, 15000].

The information provided by the aquaculture specialists about the characteristics of
the 20 risk factors is summarized in Table 2.1 and quantified in Table 2.2. Thelevels
of the frequency and severity are operationalized using uniform distributions. We do

not assign afixed number to represent a certain level of frequency or severity of each

% U [50000, 100000] refers to the uniform distribution between 50,000 and 100,000. In all of the following
discussions, U [a, b] means a uniform distribution between aand b.
* This figure comes from Mississippi State University Extension Services.
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risk factor. Instead, we use arange. For example, medium frequency assumes that
the probability of a particular risk occurring is between 0.2 and 0.3. To
operationalize this probability, we take arandom draw from U [0.2, 0.3]. Likewise,
medium severity assumes a 10-15% loss to the unconditional yields. That means, if
the risk occurs, the realized yields are only 85-90% of the unconditional yields.
Hence the operationalized percentage loss in the ssimulation that represents medium
severity will be arandom draw from U [0.1, 0.15].

Based on the information and quantification about the temporal and spatial
correlations, a unique correlation matrix is constructed for each of the 20 risk factors.
For each of the 20 risk factors, a series of temporally and spatially correlated risk
numbers (for each of the 30 experimental units at each of the 50 time periods) are
generated using the Cholesky decomposition of the correlation matrix. Thisinvolves
multiplying the decomposition matrix with a series of multivariate standard normal
random numbers. To be more precise, we first draw a series of multivariate standard
normal random numbers. For example, let r ~ multivariate standard normal (0, 1)
wherer isa nx1 vector and |, isan n-dimensiona identity matrix. Then we
decompose the correlation matrix. Let A be the correlation matrix such that A=L L
where L isan upper triangular matrix. Finally, the decomposition matrix is
multiplied by the vector of multivariate standard normal random numbers, i.e., L'r is
avector (with dimension n) of multivariate normal random numbers with mean zero
and correlation matrix equal to A. Therefore, L r is made up of a series of

temporally and spatially correlated risk numbers.
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(7) To model the probability that an event occurs, a random number from U [0, 1] is
drawn. For example, if p is such arandom number, then p<0.1 means the probability
that an event occursis 0.1. In our simulations, given the fact that the cumulative
distribution function (CDF) is distributed as U [0, 1], we can use the CDF at each of
those multivariate normal random risk numbers as an indicator of risk occurring. 1f
the CDF isless than the operationalized probability defined in step (4), it means that
particular risk factor occurs in an experimental unit at a given time period. Consider
an example. If the risk number for the 10™ experimental unit at the 25™ time period
is—0.67, then the CDF of a standard normal distribution at —0.67 will be 0.25. If the
frequency level for that risk factor is medium, then the operationalized probability
that represents medium frequency will be arandom draw from U [0.2, 0.3]. Suppose
it is0.26. Because 0.25 is less than 0.26, then this risk factor occurs at the 10"
experimental unit in the 25™ time period. If the CDF is greater than the
operationalized probability, it means the risk factor does not occur.

(8) If therisk factor occurs, a scaling factor will be defined according to the severity
level operationalized in step (4). The scaling factor is actually one minusthe
percentage loss. For example, if the severity level is medium, it assumes a 10-15%
loss to the unconditional yields. Then the scaling factor will be a number between
0.85 and 0.9. In this case, the operationalized scaling factor is a random draw from
U [0.85, 0.9]. If the risk factor does not occur, the scaling factor will be equal to 1.

The same procedure is done for the 20 major risk factors and 20 scaling factors come

up.
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(9) Unconditional yields are drawn from a normal distribution with mean and variance
specified in the step (2) and (3).

(10) Scaling factors are applied to the unconditional yields. Assuming the effects of the
twenty risks on the yields are independent, the final realized yields will be the
unconditional yields multiplied by all those twenty scaling factors.

(11) Premium rates are estimated for 14 specific time periods, based on yield data up to
that time period. That is, in constructing the premium rate for timet, yield data from
1ltotareused.

(12) The simulation processis replicated 1000 times. For greater detail about the
simulation process, readers are directed to Appendix F where a pseudo code in SAS
IML isgiven.

(13) The performances of the twelve methodol ogies are compared based on the mean

squared error (MSE), which is given by:
_ 1000 . 2
MSE =Y "(estimated rate —truerate)?/1000

(14) Thetruerate is recovered by replications using the empirical rate method, where

25,000 yields are ssimulated and utilized.

4.2 Relationship between Sample Size and Similarity among Experimental Units
When estimating the yield density for the first experimental unit, the standard

approach isto use only the yield data from that experimental unit. However, yield data

from a particular experimental unit may not be abundant for estimation of the density.

Therefore, yield datafrom other experimental units are incorporated in the estimation
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process in hopes of potential efficiency gains. The incorporation of extraneous
information is based upon the assumption that other experimental units are similar in
structure to the first experimental unit. If the experimental units are, in fact, structurally
dissimilar, the use of extraneous data could lead to an efficiency loss. Hencethereisa
trade-off in making use of extraneous data, depending on the availability of dataand the
similarity among the experimental units. The relationship between the sample size and
the similarity among the experimental unitsis summarized in Figure 4.1.

In the second quadrant where the sample sizeisrelatively small and the degree of
similarity isrelatively high, the extraneous data are very important. In this case, the
available individual datais sufficiently scarce that estimators based on those datawill be
relatively inefficient. However, because the densities of the experimental units are
similar, incorporating the data from other experimental units could significantly increase
the efficiency. If the set of densities are not exactly similar bias will result, but the
decrease in variance may be sufficiently large so that gainsin efficiency result.

An opposite caseisin quadrant IV, where the sample sizeisrelatively large and
the degree of similarity isrelatively small. In this case, the extraneous data are not
important. As mentioned before, the problem with scarce datais that the estimators are
relatively inefficient. However, as we have more individual data, our estimators will
have less variance. The advantage of adding extraneous information for potential
efficiency gains may not be as prominent asin small sample. In addition, because the set

of densities are very dissimilar in this case, adding extraneous information will introduce
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Figure 4.1: Relationship Between Sample Size and Similarity Among Experimental

Units
Similar Densities
A
I
Sample Size Small Sample Size Large
1 AV
Dissimilar Densities
Note:

Quadrant I The importance of extraneous data depends on the trade-off between the
increase in bias and decrease in variance.

Quadrant I1: Extraneous data are important. Estimators do better because variance
decreases more than bias increases.

Quadrant I11: Theimportance of extraneous data depends on the trade-off between the
increase in bias and decrease in variance.

Quadrant | V: Extraneous data are unimportant. Estimators do worse because bias

increases more than variance decreases.
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large biases into the estimation process. Therefore, it islesslikely that any decreasesin
variance resulting from using extraneous data will be sufficient to offset the increasein
bias. Estimators using extraneous datawill do worsein this case.

In quadrant |, whether the estimators will do better or worse depends on the trade-
off between the additional biases relative to the decrease in variance resulting from the
incorporation of extraneous information. In this situation, because the set of densities are
relatively similar, biasincrease will be small. But at the same time, the decreasein
varianceis also small because of therelatively large sample size. Overal, if the bias
increases more than the variance decreases, then the estimators will do worse and vice
versa

In quadrant 111, there is again the trade-off between increased bias and decreased
variance. But in this case, biasincrease will be large due to the relatively large
dissimilarity among the experimental units. The decreasein varianceisaso large
because of the small sample size. Overal, if the variance decreases more than the bias

increases, the estimators will do better and vice versa.

4.3 Designs of Other Scenarios

4.3.1 The Relationship among the Twelve Rating M ethodologies

In Chapter 3, we discussed twelve rating methodol ogies for estimating the
actuarially fair premium rate of the first experimental unit. The notations for these
methodologies are contained in Table 4.1. We will follow these notations in all of our

discussions of results.
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Table 4.1: Notations of Rating M ethodologies

Method 1 Empirical Rate for Experimental Unit 1 (See Section 3.3.1)

Method 2 Empirical Rate for All Experimental Unit (See Section 3.3.2)

Method 3 Assuming Normal Distribution for Experimental Unit 1 (See Section 3.2.1)

Method 4 Assuming Normal Distribution for All Experimental Units (See Section 3.2.2)

Method 5 Kernel Density Estimation for Experimental Unit 1 (See Section 3.3.3)

Method 6 Kernel Density Estimation for All Experimental Units (See Section 3.3.4)

Kernel Density Estimation of All Experimental Units with Transformation of Both
Location and Scale Parameters of Experimental Unit 1 (See Section 3.3.5)

Method 7

Kernel Density Estimation of All Experimental Units with Transformation of
L ocation Parameter of Experimental Unit 1 (See Section 3.3.6)

Method 8

Method 9 Bayesian Nonparametric Kernel Density Estimation (See Section 3.3.7)

Method 10 | Assuming Beta Distribution for Experimental Unit 1 (See Section 3.2.3)

Method 11 | Assuming Beta Distribution for All Experimental Units (See Section 3.2.4)

Method 12 | Estimation of Similar Densities (See Section 3.3.8)

The relationship among the twelve methodol ogies is summarized in Figure 4.2.
In fact, they represent a continuation in the way that extraneous data are utilized in the
estimation process. Because we are trying to estimate the density for the first
experimental unit, if the shape, location and scale parameters are based on individual
data, we would consider they are unrestricted, in the sense that the characteristics of the
individual data are preserved. However, if they are based on the pooled data, which
consists of the data from all experimental units, we consider them to be restricted.
Restriction on the location parameter is the strongest because it has the largest effect on
the estimation of premium rate, followed by restrictions on the scale parameter and then

by the shape.
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Figure 4.2: Relationship Among the Twelve Rating M ethodologies
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Note:
Unrestricted: preserving the characteristics of the individual data

Restricted: preserving the characteristics of the pooled data
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At one extreme located at the | eft side of the figure, only individual data are used
(methods 1, 3, 5 and 10) and thus the characteristics of the individual data are completely
preserved. Located at the far right side, data from other experimental units are used in
the estimation of the density for the first experimental unit without any adjustments for
individual effect (methods 2, 4, 6 and 11). That is, the shape, location and scale
parameters of the density are derived entirely from the pooled data. There are four
methodol ogies that fall between these two extremes. They use the pooled data with
respect to either changing the shape, location or scale parameters of the density.
Depending on how they preserve the characteristics of the density of the individual data,
these four methodol ogies also comein order. Both methods 9 and 12 use the individual
datato correct the shape of the density while restricting the location and scale parameters
to the pooled data. Method 9 is closer to the left-hand side because it uses the densities
derived in method 5 as the base, while method 12 starts with the densities derived in
method 6 and then multiplies an individual correction function to adjust for individua
effect. Method 7 and 8 come before method 9 and 12. Both of them preserve the shape
of the density of the pooled data, but method 7 uses the location and scal e parameters of
the first experimental unit to transform the pooled data, while method 8 only uses the
location parameter in the transformation. In this sense, method 7 uses more individual
information and thus is |ess restrictive than method 8.

We can see that these twelve methodol ogies use the pooled data in different
degrees, from the lowest degree on the left-hand side to the highest degree on the right-

hand side. Therefore, varying the relevancy or heterogeneity of the pooled data should
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affect the performances of the different estimatorsin the reverse order. That is, methods

to the right are affected most and methods to the | eft are least affected.

4.3.2 Variationsfrom the Base Scenario
The base scenario is the starting point of our simulation study. Based on the
discussion in the previous sections, we can consider three distinct variations from the

base scenario to design other scenarios.

4.3.2.1 Variation in the Quality of Extraneous Data

Thefirst variation isin the quality of extraneous data. Essentially we have two
types of estimators. The first type of estimator only utilizes individual data, i.e., only the
data from the first experimental unit is used in estimating the premium rate for it. The
second type of estimator uses both individual data and extraneous data, i.e., information
in other experimental unitsis“borrowed” to recover the premium rate for the first
experimental unit. When the sample size is small, the extraneous data may assist in
improving the efficiency in estimating the premium rate for the first experimental unit,
depending on how much and how relevant the information contained in other
experimental unitsis. Therefore, by varying the information contained in other
experimental units and varying the similarities among the experimental units, we can
design scenarios that should affect the performances of estimators that use the extraneous
data. Thiskind of variation includes changes in the number of experimental units, in the

gpatial correlation and in the heterogeneity among experimental units.
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(1) Changing the number of experimental units. The number of experimental unitsin the
simulation is an important factor when we use extraneous data. The more
experimental units, the more potential information are added in the estimation and
vice versa. Therefore, we design scenarios 2, 3 and 4 to see the effects of increasing
(twice) and decreasing (once) the number of experimental units.

(2) Changing the spatial correlation. By increasing the spatial correlation, the
information contained in contiguous experimental unitsis decreased. By decreasing
the spatial correlation, the information contained in contiguous experimental unitsis
increased. Therefore, scenarios 5 and 6 are designed to check the effect of changing
the spatial correlation.

(3) Changing the heterogeneity of experimental units. As mentioned before, the
similarities among the experimental units play an important role on the performances
of the estimators that use extraneous data. Whether these estimators will perform
better or worse depend on how identical the densities of the experimental units are. If
the experimental units are, in fact, very dissimilar, incorporating extraneous data
could lead to efficiency losses. Therefore, scenarios 7 and 8 are constructed to
examine the effect of changing the degree of similarities among the experimental
units. By making the distributions of the yields among the experimental units more
heterogeneous, the information contained in neighboring unitsis less relevant or less
similar. Conversely, by making the distributions of the yields |less heterogeneous, the

information contained in the neighboring unitsis more relevant. We vary the
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heterogeneity by increasing or decreasing the ranges of the uniform distribution for

the mean and standard deviation of yields.

4.3.2.2 Variation in the Temporal Correlation

The second variation is the temporal correlation. Because we assume the
temporal correlation just occursin individual experimental unit, there is no serial
correlation among different experimental units. Although all estimators will be affected
by thiskind of variation, estimators that use only the individual data can be checked to
see the net effect of changing the quantification of the temporal correlation. As such,

scenarios 9 and 10 are designed.

4.3.2.3 Variation in the Severity Levels

The third variation is the quantification of the severity levels of therisks. It will
have influence on performances of all estimators because it changes the shape of the
density of theyields. If the quantification of the severity levelsis higher, that means,
when the risk occurs, it will cause more losses to the insured. The probability that catfish
producers will incur alossis higher. Therefore, the massin the lower tail—below the
guarantee—of the yield density will be greater. But if the quantification islower, then
the lower tail will be thinner. As such, scenarios 11 and 12 are designed to check these

effects.



82

The variations of other scenarios from the base scenarios are summarized in Table

4.2 and the detailed structures of designs for all scenarios are contained in Appendix C.

Table 4.2: Design of Other Scenarios

Scenario  How It Differs from the Base Scenario

Thisisthe base scenario

Decrease the number of experimental unitg
(from 30 to 10)

Increase the number of experimental units
(from 30 to 70)

Increase the number of experimental units
(from 30 to 100)

Increase spatial correlation

Decrease spatial correlation

Increase heterogeneity

Decrease heterogeneity

Increase temporal correlation

Decrease temporal correlation

Increase severity levels

Decrease severity levels

|_\
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Table4.3: The True Premium Ratein Each Scenario

Scenario True Rate

13.15%
13.15%
13.15%
13.15%
13.15%
13.15%
14.99%
11.72%
13.15%
13.15%
19.96%
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4.4 Simulation Results

This section discusses the M SE results for each scenario and the performances of
the twelve methodol ogies are compared both horizontally (within scenarios) and
vertically (across scenarios, the first scenario being the baseline). For a complete list of
results, readers are directed to Appendix D.

Thetruerate in each scenario isreported in Table 4.3. Note that the true ratesin
scenarios 2, 3, 4, 5, 6, 9 and 10 are the same as the true rate in scenario 1 because
variations in these scenarios do not change the distribution of the yields of experimental
unit 1. Therefore, the true rate should remain unchanged. But in scenarios 7, 8, 11 and
12, the distribution of the yields of experimental unit 1 ischanged. The true rates under

these scenarios are expected to change.

4.4.1 Comparison of Simulation Results within Scenarios

Although the performances of the twelve methodol ogies may be different under
different scenarios, they do show some consistent patterns. Appendix E contains a
graphic comparison of the performances of the twelve methodologies in each scenario.
In most of the scenarios, methods that use only individual data—methods 1, 3, 5 and
10—have larger M SEs than their counterparts—methods 2, 4, 6 and 11, which use
extraneous data. Thisis expected because the sample sizein our ssimulation isfrom 2 to
50. In addition, the data generating process might make the densities of the experimental
units quite similar. Therefore, adding external information from other experimental units

in estimating the premium rate for experimental unit 1 resultsin large efficiency gains.
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In all of the scenarios, methods 2, 6, 11 seem to have relatively small MSEs at all levels
of data. Recall that these methods use extraneous data without any adjustments for
individual effect. The fact that these estimators perform better than other estimators
overall, again, suggests the set of the densities of all experimental units are very similar
so that grouping the data will assist in improving the accuracy of the estimators.

For most of the estimators, when the sample size increases, M SEs decrease. But
for method 8, thisis not always the case. In some of the scenarios, as the sample size
increases from 40 to 50, the M SEs of method 8 increases. An extreme caseis in scenario
12, where the M SEs decrease until the sample size reaches 10 and then increase steadily
afterwards. Thisfact suggests that method 8 may be very sensitive to the similarities
among the experimental units. Recall that method 8 isthe kernel density estimation of all
experimental units with transformation of location parameter of experimental unit 1.
Hence the shape and the scale parameter are restricted by the pooled data. The more
restrictions, the higher the potential biases. In addition, in larger samples, we have less
variance of our estimators. The decrease in variance resulting from pooling the data may
be less than that in smaller samples. Therefore, as the sample size gets larger, the bias
introduced by incorporating extraneous data may outweigh the decrease in variance,
resulting in larger MSEs. In spite of this, method 8 overall performs competitively
relative to other methods. For sample size less than 5, methods 2, 6 and 11 have smaller
M SEs than method 8. But from sample size larger than 5, method 8 begins to dominate

other methods significantly.
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4.4.2 Comparison of Base Scenario and Scenarios 2, 3and 4

In scenario 2, we decrease the number of experimental units from 30 to 10.
Because this change will affect the information contained in other experimental units, we
would expect estimators that use extraneous data to be affected, while the performances
of the estimators that only use individual data will remain almost unchanged. Simulation
results show that, for most of the methods that use extraneous data, such as methods 2, 6,
8, 9 and 12, MSEs are larger compared to the base scenario. For methods 4 and 11,
MSEs are first larger and then smaller. For methods that only use individual data, such as
methods 1, 3, 5 and 10, MSEs don’t change significantly.

Decreasing the number of experimental units has insignificant effect on methods
1, 3, 5 and 10 because this variation only affects the extraneous data. For methods 2, 4,
6, 7, 8 and 11, we will expect that, as the sample size gets larger, MSEs are first larger
and then smaller than those in the base scenario. Thisis because these methods use
extraneous data to improve efficiency. When the sample size is small, extraneous data
are very important. If we decrease the number of experimental units, the information
obtained from contiguous units is decreased and the efficiency gains will be decreased.
Therefore, MSEs will be larger. Although the externa information isless, the bias
introduced al so decreases because we are using less extraneous data. When the sample
sizeislarge and the decrease in variance resulting from using extraneous datais less, the
bias introduced by incorporating external information will outweigh the decrease in
variance. Using less external information will introduce less bias, which then results in

smaller MSEs. Note that the turning point differs across each method. In our simulation,
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results show that M SEs for method 4 becomes smaller when the sample size reaches 10,
while methods 2, 6, 8 have larger MSEs for all levels of data, which suggests that the
turning points for these methods may occur at larger sample sizes. For methods 9 and 12,
decreasing the number of experimental unitswill result in larger MSEsfor all levels of
data. Thisistrue because when the sample size is large, these estimators will converge to
theindividual estimators. Using extraneous data would not introduce large bias for these
two methods at large samples.

In scenario 3 and 4, we increase the number of experimental unitsto 70 and 100,
respectively. Again, we expect the changes in the performances of the estimators will
follow the trend described in the previous paragraph. For methods 1, 3, 5 and 10 in these
two scenarios, M SEs don’'t change much because increasing the number of experimental
units will only affect the methods that use extraneous data. 1n scenario 3, M SEs of
methods 4, 6 and 11 are smaller compared to the base scenario, while M SEs of methods 2
and 8 are first smaller and then larger than those in the base scenario. These results are
consistent with the trend we mentioned in the previous paragraph, which shows that, for
these methods, using more extraneous data will benefit more in small samples than large
samples. But for methods 9 and 12, we can see some inconsistent results. MSEs of both
estimators are larger than that in the base scenario, although they still converge in large
samples. This may suggest that if we have alarge number of experimental units,
incorporating all thisinformation will result in large biases, which may offset any
decreasesin variance, even in smaller samples. Thistrend is even more obviousin

scenario 4, where the number of experimental unitsis ever greater. In scenario 4, most of



87

the methods that use extraneous data have larger M SEs than they do in the base scenario.

Only methods 2, 6 and 8 behave normally in this scenario.

4.4.3 Comparison of Base Scenario and Scenarios 5 and 6

In scenario 5, we increase the spatial correlations among the experimental units,
while we decrease the spatial correlationsin scenario 6. The effects on the estimators
mimic the effects of changing the number of experimental units. By increasing the
gpatia correlations, the information contained in contiguous experimental unitsis
decreased, just as decreasing the number of experimental units. Conversely, by
decreasing the spatial correlations, the information contained in contiguous experimental
unitsisincreased, just like the effect of increasing the number of experimental units.
Simulation results show that, again, for methods 1, 3, 5 and 10 in these two scenarios,
M SEs do not change much because changing the spatial correlation only affect the data
contained in other experimental units. Thus methods that don’t use extraneous data will
not be affected. Resultsin scenario 5 show that methods 7, 8 and 9 have larger M SEs
than they do in the base scenario, which is expected because of the following reason.
When the sample size is small, we need extrainformation in the estimation for potential
efficiency gains. But if the information contained in other experimental unitsisless,
which isthe case in scenario 5, then MSEs will increase. Resultsin scenario 6 show that
methods 7, 9 and 12 have smaller M SEs than in the base scenario, which is another
consistent example. For other methods—those methods that using extraneous data—it

seems that they all behave amost similarly in three scenarios. This may suggest that
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changing the spatial correlations among the experimental units does not really have much
effect on the performances of most of the estimators. This may be true because of the
way we define the spatial correlations. Remember the spatial correlations among the
experimental units decrease exponentialy if the experimental units are farther away.
Therefore, only the most contiguous experimental units will really have influences on
experimental unit 1. Moreover, we use small number to quantify the levels of spatial
correlations. For example, we assign 0.5 as the highest level of spatial correlation. This

can also be reason for the insignificant effect of changing spatial correlations.

4.4.4 Comparison of Base Scenario and Scenarios7 and 8

In scenario 7, we decrease the similarity among the experimental units by making
their yield distributions more heterogeneous, while in scenario 8, we increase the
similarity by making the distribution less heterogeneous. Again, this variation will have
effects on the methods that use extraneous data. Simulation results show that, the
performances of the methods that only use individual data—methods 1, 3, 5 and 10—
don’t change much compared to the base scenario. However, for methods that use
extraneous data, things are different. In scenario 7, methods 2, 6, 7 and 9 have larger
M SEs than in the base scenario. Thisis dueto the lower similarity among the different
experimental units. If the experimental units are lessidentical, when we use the
extraneous data in the estimation, a larger bias will be introduced, which then resultsin
larger MSEs. In addition, the increase of MSEs will go up at afaster rate in larger

samples than in small samples. Recall that in a small sample, the extraneous data are
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very important, which will decrease the variance of the estimator significantly. Inthat
case, even though the experimental units are less similar, incorporating extraneous data
will end up with only dightly higher MSEs. However, when the sample sizeislarge, the
decreasesin variance are not large enough to offset the bias increases, M SEs will
increase even more, which explains the larger difference in MSEsin larger samples than
in smaller samples. Let’stake an example. For methods 9 in scenario 7, the increase in
MSE is 12% at sample size 3, 18% at sample size 7, 46% at sample size 30 and 49% at
sample size 50, compared to the base scenario. Other methods such as methods 2, 7 and
9 also show the same pattern. In scenario 8, methods 4, 7, 9 and 12 have smaller MSEs

than in the base scenario, which is a counter example to scenario 7 as expected.

4.4.5 Comparison of Base Scenario and Scenarios9 and 10

In scenario 9, we make the temporal correlations among time periods stronger,
while in scenario 10, we make the temporal correlations weaker. Methods 1, 3, 5and 10
are checked to see the net effect of changing temporal correlation. Results show that, in
scenario 9 these methods have higher M SEs than they do in the base scenario, whilein
scenario 10 they have smaller MSEs. This suggests that decreasing the temporal
correlations might improve the performances of the estimators. This situation is very
similar to the case when we change the spatial correlations among the experimental units.
When we use individual datato estimate the density, the more information contained in
the data, the better our estimates will be. If the temporal correlations are increased, the

information contained in the data is decreased and the estimators will do worse.
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Conversely, if the temporal correlations are decreased, the information contained in the

dataisincreased and thus the estimators will do better.

4.4.6 Comparison of Base Scenario and Scenarios 11 and 12

In scenario 11, we make the severity levels stronger, i.e., the risks will cause more
losses, while in scenario 12, the severity levels are made weaker. Thiskind of variation
will affect performances of all estimators because it changes the shape of the yield
distributions. The true rate under scenario 11 is significantly larger than in any other
scenarios. Thisis expected because when we increase the quantification of severity, the
associated loss also increases. Therefore, the probability that aloss occursis greater,
which resultsin afatter lower tail—below the guarantee—of the yield density. Premium
rates depend on the massin the lower tail. The larger massin the lower tail, the higher
premium rates. In addition, M SEs of each estimator in this scenario are significantly
higher than those in the base scenario. Thisis true because when the mass under the
yield density below the guarantee is greater, the variance of the density at each support
point in that areawill be larger. Since premium rates also depend on the density
estimates in that area, the estimators of premium rates will have larger errors. Conversely,
the true rate in scenario 12 is much smaller than those in any other scenarios. All

estimators perform significantly better than they do in the base scenario.
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4.5 Summary

study.

There exist some general results that may be ascertained from the simulation

Overall, estimators that use extraneous data perform better than those that only
use individual data. In most of the twelve scenarios, the performances of methods
1, 3and 5, which are the smplest methods that utilize individual data, are poorest.
This suggests that, only using the individual data may result in large inefficiency
in the estimated premium rates. Therefore, when the sample sizeissmall, itis
appropriate to include external information.

Using extraneous data does not necessarily improve the performances of the
estimators. Thisisdueto two reasons. First, when the sample sizeislarge, the
decrease in variance resulting from incorporating external information may be
small relativeto theincrease in bias. Therefore, the estimators will perform
worse. Second, extraneous data should be used only if one is reasonably
confident that there is some form of similarities among the experimental units. If
the similarities are too small, estimators will do worse.

In al of the scenarios, methods 2, 6, 11 have relatively small MSEs at all levels of
data. Method 8 also performs encouragingly, except in scenario 12. At sample
size lessthan 5, methods 2, 6 and 11 perform better than method 8, while in larger

sample, method 8 dominates al other methods with significantly smaller M SEs.
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5. SUMMARY AND CONCLUSION

For the past two decades, aquaculture has been the fastest growing segment of
agriculture in the United States. Given the importance of aguaculture, the Risk
Management Agency of the United States Department of Agriculture has begun to
investigate the feasibility of providing insurance tools for four aquaculture species,
catfish, trout, salmon and baitfish, because these species have the largest economic values.
This thesis focuses on catfish insurance.

Today, the catfish industry is the largest sector in the U. S. agquaculture industry in
terms of production and sales values. As with other agriculture practices, catfish
producers also face avariety of production hazards. The major perils include diseases,
water related problems, off-flavor, bird predation etc., which significantly affect the
profitability of the industry and hinder its further development. Due to the nature of
catfish aquaculture production practices, the implementation of aquaculture insurance to
the catfish industry will present a number of difficulties. Lack of historical yield datais
one of the most fundamental obstaclesin rating catfish insurance policies. If historical
yield data were available, one could employ time series models to predict future yields
and use various parametric and nonparametric approaches to construct the premium rates.
However, catfish insurance, or aguaculture insurance isjust a pilot program. While there
might be data on country-level and state-level, there is no data on county-level or farm-
level. Therefore, smulations are needed to generate possible yield data under relatively

reasonable assumptions.
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The contribution of thisthesisisto conduct simulations to generate the yield data
based on some possibly relevant data generating processes, and to evaluate the
performances of various parametric and honparametric approaches in determining
premium rates. These data generating processes involve the various major risk factors
associated with the catfish production that affect the yields negatively. Thisthesis
considers twenty major risk factors. Four aquaculture specialists provided their opinions
on the frequency and severity of each risk factor as well astheir temporal and spatial
correlations, which helped to build avery general structure to our simulations. Yield data
are generated by modeling these four characteristics of each risk factor.

Twelve rating methodologies are considered to determine the actuarially fair
premium rates based on the simulated data. These methodologies are distinct in two
ways. parametric or nonparametric, and whether they use individual data or pooled data.
The parametric methodologies include normal distribution and beta distribution. The
nonparametric methodol ogies include empirical rates, kernel density estimation, Bayesian
nonparametric kernel density estimation, and estimation of possibly similar densities.
These methodol ogies are common in the crop insurance literature. The second
distinction is motivated by the fact that data is scarce in reality. Incorporating extraneous
yield data may provide large potential efficiency gainsin the estimation. The twelve
methodol ogies are considered in an attempt to minimize inefficiencies or inequitiesin the
catfish insurance program. Recovering accurate premium rates is essential to an
actuarially sound catfish insurance program. |If the premium rates are overestimated or

underestimated, program losses will increase due to adverse selection and moral hazard
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problems. Of course, these losses cannot be eliminated. Even with abundant data, one
still could not estimate the premium rates without any errors. However, the losses may
be minimized by appropriate choice of rating methodologies. It is our hope that, through
this simulation study, we can eliminate some inappropriate rating methodologies. Inthe
quest of finding some appropriate methodologies for rating catfish insurance policies,
mean squared error is used as the criterion.

In order to increase the applicability of this simulation study, we developed
twelve scenarios to see how the methodologies will perform under different assumptions.
The performances of the twelve methodol ogies are compared both horizontally (within
each scenario) and vertically (across scenarios, the first scenario being the baseline). The
findings from the simulations are: First, estimators that use extraneous data perform
better than those that only use individual data when the sample sizeissmall. Second,
using extraneous data does not necessarily improve the performances of the estimators
because it depends on the availability of individual data and the similarities among the
experimental units. When the sample size is large, the decrease in variance resulting
from incorporating external information may be small relative to the increase in bias.
Therefore, the estimators will perform worse. Moreover, extraneous data should be used
only if oneis reasonably confident that there is some form of similarities among the
experimental units. If the similarities are too small, estimators will do worse. Third, in
most of the scenarios, methods 2, 6, 8 and 11 perform relatively better than other methods.
Methods 1, 3 and 5 perform poorly in all scenarios, which may suggest that these

methods are inappropriate in rating catfish insurance contract.
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Our simulation study also has an empirical application in that it provides a general
structure for simulating yield data when actual datais not available. Many agricultural
products also face the problem of scarce data or no data. In that situation, we can follow
the simulation process discussed in this thesis to generate yield data for estimation
purposes.

There are mainly two future studies on thisthesis. First, we might add more
rating methodol ogies such as semiparametric approach in the estimation. Second, a
formal survey will be carried out in the industry soon. Based on the results of the survey,
we might need to refine the parameters or assumptions in our simulation in order to make

it morerealistic.
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APPENDIX A: CHOLESKY DECOMPOSITION OF NON-POSITIVE-DEFINITE
MATRIX

The Cholesky decomposition of the correlation matrix is needed for the sampling
of correlated risk numbers. A matrix must be symmetric and positive-definite to be
decomposed. Although our correlation matrix is symmetric by construction, sometimesit
may not be positive-definite, depending on the values of the temporal and spatial

correlation. For example, when T=6, N=4, p =0.25 anda =0.5, the correlation matrix is

not positive-definite. An easy way to check the definiteness of a matrix is by looking at
the eigen values of the matrix. If all the eigen values are positive, then the matrix is
positive-definite. For the previous example, one of the eigen valuesis negative (-0.002),
hence it is not positive-definite. When the correlation matrix is not positive- definite, we
cannot carry out the Cholesky decomposition.

There are a number of ways to deal with the decomposition of a non-positive-
definite matrix and we think the following approach is most appropriate and easy to
implement in our situation. The key isto adjust the negative eigen values of the
correlation matrix. Recall, for a symmetric positive definite matrix A, it can be written as:

A - 0
A=PAP" =(v,---v,) 1 o ()T
0 - A

where 4,,---, 4, areeigen values of A, and P isamatrix of independent eigen vectors of A.

Our correlation matrix is constructed in the same way. First, we need to find out the
eigen values and eigen vectors of the correlation matrix and construct P and A . In case
any of the eigen values are negative, we will adjust them to a small positive value, 0.05.
Other eigen values that are greater than 0.05 will remain unchanged. Hence the new set
of eigen values are all positive numbers that are greater than or equal to 0.05. Suppose
the diagonal matrix with the new eigen values on the diagonal is A, then the correlation

matrix can be reconstructed using A and the origina P, i.e.,

A=PAPT
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The new correlation matrix is, by construction, symmetric and positive definite because

A is adiagonal matrix made up of positive numbers. We find that the difference
between the new correlation matrix and the original oneisvery small after this
adjustment. For instance, in the previous example, the maximal difference in elements of
the two matrices is only 0.006.
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APPENDIX B: NONPARAMETRIC TECHNIQUES

B.1 Kernel Density Estimation

For a set of independent observations (y,, Y,.,..., ¥, ), the kernel density estimator

at support point y isdefined as:
£ 1y
f(y)=—)» K+
(y) nh; ( H )

where h is the smoothing parameter or bandwidth and K () isthe kernel function. The
kernel estimator places bumps, or individual kernel at each observation and then sums
over those bumps. That is, the density estimate at any support point is the sum of the
height of the bumps, or kernels at that particular point.

The following assumptions are made on the smoothing parameter h:

(i)Li_[QhZO (ii)LL@nh:w

Assumption (ii) means that the smoothing parameter approaches zero at a slower rate
than n™*.

Mean Squared Error (MSE) isacommonly used error metric in density estimation

because it captures both the variance and bias of the estimator. It measures the distance
between the estimated function and the true function for a given point.

MSE = E(f (y) - f ())* = var(f (y))+bias( f (y))*
Using the Taylor’s series expansion, it can be shown that

Ef (y) = f(y)+%h2f"(y) IZZK(Z)dZ+ o(h?)

= f(y)+%h2uz(+<) £(y) +o(h?)

The biasistherefore

Bias=Ef (y) - f(y) =%h2ﬂz(K) f*(y)+o(h*)
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That means the kernel density estimator is biased. However, assumption (i) guarantees
that the estimator is asymptotically unbiased. The variance of the estimator can be shown
in the same way

var f (y) = (nh)™“R(K) f (y) +o(nh) ™
where R(K) = J' K (2)*dz. Aswith the bias, the variance of the estimator goesto zero as
the sample size goes to infinity because of assumption (ii). Therefore, the nonparametric

kernel density estimator is consistent. Once the bias and variance are known, the MSE is
given by:

MSE = (nh) *R(K) f (y) +%h2ﬂ2(K) f*(y)* +o(h* +(nh) ™)

The kernel function K(:) determines the shape of the bumps and the smoothing
parameter h determines their dispersion. Therefore, the choicesof K(-) and h are very

important. MISE isalogical criterion, which is the integration of MSE over the entire
support.

MISE= [EIT(y)- f(y)Idy

IEF - T ody+ [var f(yay

{(nh)l RK) £ ()5 (K)° °]f"(y)2} F.h)-+o(h + (nh) )

Thus, MISE isthe sum of the integrated squared bias and the integrated variance of the
estimator f(y).

The first decision is how to choose a kernel function. Epanechnikov (1969)
derived the optimal non-negative kernel function with respect to minimizing MI1SE of the
estimated density. Subsequently, Rosenblatt (1971) showed that choice of a suboptimal
kernel, such as the standard normal, resultsin only a moderate loss in the asymptotic
MISE. Therefore, the standard normal kernel function is often chosen in practice. For

our analysis, we use the standard normal kernel and evaluate the densities over arange of
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minus 5 standard deviations from the mean and up to the guarantee of the insurance
policy.

A variety of methods are available for choosing the bandwidth h such as cross-
validation and Silverman’s “rule-of-thumb”. Cross validation usually involves repeatedly
estimating the density with a single observation omitted and selecting the bandwidth that
minimizesthe MISE. Parzen (1962) showed that the optimal choice of h that minimizes
the MISE is given by:

oy = kI JK @) ][ [£(y) cy) ¥ n 2
where k, = J'tZK(t)dt, f isthetrue density and f "' represents 9 f /dy*. However, one

can see that the optimal h depends on the unknown density f (y) being estimated.
Silverman (1986) suggests a rule of thumb for choosing h in empirical applications given
anormal kernel:

interquartilerange
1.34

Silverman found this decision rule to be robust against the level of skewness and the

~(U/5)

h,, = 0.79x min(standard deviation, )xn

degree of bi-modalness that would be present in the yield data.

There is another decision about the smoothing parameter as to whether it is global
or local. A global smoothing parameter gives equal weight to each datarealization. But
sometimes, this global parameter may undersmooth the detail in the tails of the
distribution. Thisis problematic particularly for long-tailed densities such as the
conditional yield densities. Because premium rates depend highly on the lower tail of the
conditional yield density, alocal smoothing parameter may be considered, and hence the
adaptive kernel methods. The adaptive kernel estimator allows the smoothing parameter
to vary with each realization. Therefore, a vector of smoothing parameters with
dimension equal to the datais used instead of just a single smoothing parameter. The
smoothing parameter would be inversely related to the denseness of the data so that the
tail realizations will not be undersmoothed. For more elaboration of the adaptive kernel
method, the readers are directed to Ker and Coble (1998), Ker and Goodwin (2000).
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B.2 Bayesian Nonparametric Kernel Density Estimation
Recall the following hierarchical model:
fij | 4 ~ Normal (4 ,07)
#; ~Normal (u;,7,%)

where y; = f; + f;, f; isthe unknown density value for unit i at support point y,, £,

j i

isthe biasfor uniti at support point y;, aijz isthe variance of the kernel density estimate

foruniti at support point y;, 4; isthe mean vaue of the densities across units at

support point y;, and ? isthe variance of the densities across units at support point y ;-

The posterior estimate for the hierarchical is:

2 2

o= (o) 4t ()
1] 1) j2+0-ij2 ] T12+O-IJ2

where the unknowns (;,7,%, o) must be estimated. o;,” is estimated by the
asymptotic variance:

aif = Var (f;)= (nh)™ f, R(K)
where R(K) = _[ K 2dt . If K isthe probability density function of the standard normal

distribution, then:

1 v 1 .
R(K) = [(—=—=e 2)%dt= |—e " dt
() '[( 2r ) -[275

Using a change of variable technique, let t = %,then:
1 Ydu 1 - 1 1
RK)=|—€ 2?2 == e?du=——2r=——+
K) J-Zﬂ J2 2\/575'[ 2\2r N3
Therefore,

o2 = f, I(2J/znh)
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where f(y;) isthetrue density at support point y; for experimental uniti. An estimate

of o} would be:

52 = f, 1(2J/znh)

An estimate of the mean and variance across units is obtained using the method of

. . 1 10 . > .2 1 10 ’
moment estimators: :Eé f; and 72 =§,"-—> 0," where

i=1

’ ~ 10— 1)2( i . The following shows the proof of these formulas,
S o 1 .

Lemma: E[S,-Z] :(Zilo'if/QHTf where sj2 :Q—_lziQ—l(fij —ﬂj)z and

. 1o :

H ZEZM j

If & ——Z. 1( —A1;)%, then

Er8) =L B3 2 -Qatl = [ T 1) QeraZ]
=00 ; i~ QU 0.1 i H;

=
since f; |u; ~ Normal(u;,0,) where g, ~ Normal (1;,7,°) then f2~N(u;,02 +77)
and E[ fijz] =0, +7; —u;. Similarly, under independence across counties, then:
Zinl fy ~N(Q, ’Zinlo-ijz +Q77)
;=20 (F1Q) ~ N(u,, (X7 07 1Q%) + (77 1Q)
Ela51= (3,00 1Q%) + (2] 1Q) -}

Hence,

L[> [erfa)- oera)

o ZQ o2
3 07 +0ef -t - 227t
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Q 2
= i Zi:lo-ij (Q—1)+Tj2(Q—1)

Q-1 Q
Q 2
— Zizlo-ll JrZ_Jz
Q

Q
Thus, 7,” is estimated by 72 :éf—lZaﬁz. Note, if 67 =67 Vi =1, ..., Q, thenthe
Q

i=1
common estimator 77 =§7 —&7 would result. Therefore, the empirical Bayes

nonparametric kernel density estimator at support point y; for experimental uniti is:



104

APPENDIX C: THE STRUCTURE OF SIMULATION DESIGN

Table C.1: Base scenario

Number of experimental units N=30
. . Mean Standard Deviation

Heterogeneity of yields

U [50000, 100000] | U [10000, 25000]
Characteristics of risk High | Medium | Low | Negligible
Frequency 0.4-0.5 | 0.2-0.3 <0.1 <0.01
Severity 0.2-0.3 | 0.1-0.15 | <0.05 <0.01
Temporal Correlation 0.25 0.1 0.01 0
Spatial Correlation 0.25 0.1 0.01 0

Table C.2: Scenario 2 (decrease the number of experimental units)

Number of experimental units N=10
_ _ Mean Standard Deviation

Heterogeneity of yields

U [50000, 100000] | U [10000, 25000]
Characteristics of risk High | Medium | Low | Negligible
Frequency 0.4-05 | 0.2-0.3 <0.1 <0.01
Severity 0.2-0.3 | 0.1-0.15| <0.05 <0.01
Temporal Correlation 0.25 0.1 0.01 0
Spatial Correlation 0.25 0.1 0.01 0

Table C.3: Scenario 3 (increase the number of experimental units)

Number of experimental units N=70
_ _ Mean Standard Deviation

Heterogeneity of yields

U [50000, 100000] U [10000, 25000]
Characteristics of risk High Medium | Low | Negligible
Frequency 0.4-05 | 0.2-0.3 <0.1 <0.01
Severity 0.2-0.3 | 0.1-0.15| <0.05 <0.01
Temporal Correlation 0.25 0.1 0.01 0
Spatial Correlation 0.25 0.1 0.01 0
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Table C.4: Scenario 4 (increase the number of experimental units)

Number of experimental units N=100

. . Mean Standard Deviation
Heterogeneity of yields

U [50000, 100000] U [10000, 25000]
Characteristics of risk High | Medium | Low Neggg' bl
Frequency 0.4-0.5 0.2-0.3 <0.1 <0.01
Severity 0.2-0.3 | 0.1-0.15| <0.05 <0.01
Temporal Correlation 0.25 0.1 0.01 0
Spatial Correlation 0.25 0.1 0.01 0
Table C.5: Scenario 5 (increase spatial correlation)

Number of experimental units N=30

_ _ Mean Standard Deviation
Heterogeneity of yields
U [50000, 100000] U [10000, 25000]
Characteristics of risk High Medium | Low | Negligible
Frequency 0.4-05 | 0.2-0.3 <0.1 <0.01
Severity 0.2-0.3 | 0.2-0.15| <0.05 <0.01
Temporal Correlation 0.25 0.1 0.01 0
Spatial Correlation 0.5 0.25 0.1 0
Table C.6: Scenario 6 (decrease spatial correlation)
Number of experimental units N=30
. . Mean Standard Deviation
Heterogeneity of yields
U [50000, 100000] U [10000, 25000]
Characteristics of risk High Medium | Low | Negligible
Frequency 0.4-0.5 0.2-0.3 <0.1 <0.01
Severity 0.2-0.3 | 0.1-0.15 | <0.05 <0.01
Temporal Correlation 0.25 0.1 0.01 0
Spatial Correlation 0.1 0.05 0.005 0




Table C.7: Scenario 7 (increase heterogeneity)

106

Number of experimental units N=30
. . Mean Standard Deviation
Heterogeneity of yields
U [30000, 120000] U [10000, 40000]
Characteristics of risk High Medium | Low | Negligible
Frequency 0.4-0.5 0.2-0.3 <0.1 <0.01
Severity 0.2-0.3 | 0.1-0.15| <0.05 <0.01
Temporal Correlation 0.25 0.1 0.01 0
Spatial Correlation 0.25 0.1 0.01 0
Table C.8: Scenario 8 (decrease heterogeneity)
Number of experimental units N=30
_ _ Mean Standard Deviation
Heterogeneity of yields
U [70000, 80000] U [10000, 15000]
Characteristics of risk High Medium | Low | Negligible
Frequency 0.4-0.5 0.2-0.3 <0.1 <0.01
Severity 0.2-0.3 | 0.1-0.15| <0.05 <0.01
Temporal Correlation 0.25 0.1 0.01 0
Spatial Correlation 0.25 0.1 0.01 0
Table C.9: Scenario 9 (increase temporal correlation)
Number of experimental units N=30
_ _ Mean Standard Deviation
Heterogeneity of yields
U [50000, 100000] U [10000, 25000]
Characteristics of risk High Medium | Low | Negligible
Frequency 0.4-0.5 0.2-0.3 <0.1 <0.01
Severity 0.2-0.3 | 0.1-0.15| <0.05 <0.01
Temporal Correlation 0.5 0.25 0.1 0
Spatial Correlation 0.25 0.1 0.01 0




Table C.10: Scenario 10 (increase temporal correlation)
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Number of experimental units N=30
. . Mean Standard Deviation
Heterogeneity of yields
U [50000, 100000] U [10000, 25000]
Characteristics of risk High Medium | Low | Negligible
Frequency 0.4-0.5 0.2-0.3 <0.1 <0.01
Severity 0.2-0.3 | 0.1-0.15| <0.05 <0.01
Temporal Correlation 0.1 0.05 0.005 0
Spatial Correlation 0.25 0.1 0.01 0
Table C.11: Scenario 11 (increase severity)
Number of experimental units N=30
_ _ Mean Standard Deviation
Heterogeneity of yields
U [50000, 100000] | U [10000, 25000]
Characteristics of risk High | Medium | Low | Negligible
Frequency 0.4-05 | 0.2-0.3 <0.1 <0.01
Severity 0.3-04 | 0.2-025 | <0.1 <0.05
Temporal Correlation 0.25 0.1 0.01 0
Spatial Correlation 0.25 0.1 0.01 0
Table C.12: Scenario 12 (decrease severity)
Number of experimental units N=30
_ _ Mean Standard Deviation
Heterogeneity of yields
U [50000, 100000] | U [10000, 25000]
Characteristics of risk High Medium | Low | Negligible
Frequency 0.4-05 | 0.2-0.3 <0.1 <0.01
Severity 0.1-0.2 | 0.05-0.1 | <0.01 0
Temporal Correlation 0.25 0.1 0.01 0
Spatial Correlation 0.25 0.1 0.01 0
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APPENDIX D: SSMULATION RESULTSFOR EACH SCENARIO

Notation:

Method 1: Empirical Rate for Experimental Unit 1

Method 2: Empirical Rate for All Experimental Units

Method 3: Assume Normal for Experimental Unit 1

Method 4: Assume Normal for All Experimental Units

Method 5: Kernel Density Estimation for Experimental Unit 1

Method 6: Kernel Density Estimation for All Experimental Units

Method 7: Kernel Density Estimation for All Experimental Units with Transformation of Experimental Unit 1's Mean and
Variance

Method 8: Kernel Density Estimation for All Experimental Units with Transformation of Experimental Unit 1's Mean
Method 9: Empirical Bayesian Nonparametric Density Estimation

Method 10: Assume Betafor Experimental Unit 1

Method 11: Assume Betafor All Experimental Units

Method 12: Estimation of Similar Densities
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TableD.1: MSE x 1,000 For Scenario 1

Time Method1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7 Method 8 Method 9 Method 10 Method 11 Method 12

2 1706 344 2202 596 8.61 2.93 1042  6.56 9.32 8.09 3.99 9.31
1150 222 1348 3.80 5.71 1.95 7.05 2.45 6.17 4.39 2.56 6.22
9.24 1.74 9.85 2.90 4.73 1.55 5.64 1.22 4.88 291 2.06 511
7.45 1.39 7.63 2.39 3.81 1.25 4.55 0.71 3.75 2.32 1.69 4.12

3

4

5

6 6.12 114 5.96 2.06 3.09 1.04 3.72 0.47 2.92 1.88 143 3.36
7 5.31 101 5.22 1.85 2.83 0.91 3.45 0.41 245 1.76 1.27 3.08
8 4.70 0.90 4.57 171 2.61 0.82 3.16 0.36 2.13 1.63 1.16 2.83
9 4.19 0.80 4.10 1.59 2.35 0.73 2.87 0.31 1.75 1.48 1.03 2.55
10 38 0.74 3.81 151 2.18 0.68 2.65 0.27 1.56 142 0.97 2.38
15 263 0.47 2.65 1.26 154 0.44 1.83 0.15 0.92 1.10 0.67 1.70
20 1.99 0.35 2.08 1.16 117 0.34 1.37 0.09 0.65 0.97 0.53 131
30 125 0.22 1.59 101 0.80 0.21 0.95 0.07 0.44 0.78 0.36 0.93

40 095 0.17 1.37 0.97 0.63 0.16 0.75 0.07 0.35 0.69 0.31 0.75
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0.76

0.14

1.24

0.95

0.52

0.14

0.63

0.08
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0.29

0.63

0.29

0.63
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TableD.2: MSE x 1,000 For Scenario 2

Time Method1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7 Method 8 Method 9 Method 10 Method 11 Method 12

2 1689 482 2151 657 8.61 3.62 9.73 7.00 941 7.99 4.81 9.61
1281 330 1552 436 6.02 243 6.90 3.54 6.51 4.61 3.33 6.78
9.77 253 1038 337 4.73 1.84 5.39 212 4.90 3.01 2.60 5.36
8.19 2.05 8.54 2.83 4.07 1.50 4.56 1.49 3.97 2.49 2.18 4.57

3

4

5

6 6.92 1.72 6.93 245 3.46 1.29 3.88 1.13 3.13 221 1.87 3.91
7 6.06 1.58 6.03 2.17 3.16 1.18 3.53 0.96 2.68 2.00 171 3.54
8 5.23 1.40 5.16 1.94 2.72 1.04 3.07 0.82 2.17 1.72 152 3.08
9 4.59 1.26 457 1.74 251 0.92 2.82 0.72 1.86 1.59 134 2.84
10 4.26 1.13 4.18 1.58 2.30 0.82 2.57 0.63 1.66 1.52 121 2.60
15 285 0.79 2.80 1.20 155 0.55 1.73 0.42 0.91 112 0.83 177
20 219 0.60 2.22 1.01 120 0.41 131 0.29 0.64 0.98 0.61 1.38
30 144 0.44 1.66 0.83 0.88 0.28 0.93 0.18 0.47 0.86 0.42 1.04
40 114 0.36 145 0.74 0.71 0.22 0.73 0.13 0.37 0.77 0.32 0.85

50 0.87 0.30 1.26 0.70 0.56 0.18 0.58 0.10 0.30 0.65 0.26 0.70
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Table D.3: MSE x 1,000 For Scenario 3

Time Method1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7 Method 8 Method 9 Method 10 Method 11 Method 12

2 1768 307 2251 557 8.95 2.73 1149 6.70 9.61 8.36 3.77 9.46
1205 197 1387 340 6.39 1.74 8.00 2.32 6.82 4.71 2.38 6.73

9.33 145 9.98 2.56 4.93 1.29 5.90 1.04 5.13 2.97 1.79 521

7.76 111 7.92 2.08 3.98 1.02 4.66 0.53 4.00 2.56 144 4.22

3

4

5

6 6.76 0.97 6.58 1.84 343 0.89 4.02 0.35 3.28 2.20 1.29 3.64
7 5.69 0.85 541 1.65 291 0.78 3.47 0.27 2.64 1.89 1.13 3.10
8 5.05 0.73 4.84 1.52 257 0.67 3.12 0.22 2.18 1.67 0.98 2.75
9 4.46 0.66 4.26 144 224 0.60 2.77 0.19 1.79 144 0.90 242
10 4.09 0.60 3.88 1.35 2.06 0.54 2.55 0.16 157 1.30 0.82 2.22
15 279 0.41 2.67 112 145 0.36 1.79 0.08 0.90 1.02 0.58 1.58
20 211 0.32 2.10 1.01 114 0.28 1.35 0.06 0.64 0.94 0.46 1.25
30 1.47 0.22 1.59 0.88 0.85 0.19 0.97 0.06 0.45 0.84 0.32 0.96
40 1.10 0.17 1.34 0.82 0.66 0.14 0.75 0.07 0.35 0.71 0.25 0.78

50 094 0.15 1.24 0.79 0.58 0.12 0.64 0.08 0.30 0.67 0.22 0.70
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Table D.4: MSE x 1,000 For Scenario 4

Time Method1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7 Method 8 Method 9 Method 10 Method 11 Method 12

2 1665 259 2060 643 9.17 2.51 1202 755 9.85 8.16 3.42 9.84
11.67 180 1340 436 6.39 1.79 8.09 2.76 7.01 4.57 2.46 6.87
9.23 1.35 9.68 3.36 5.20 1.37 6.32 1.27 5.56 311 1.95 5.58
741 1.06 7.51 2.89 4.19 111 5.03 0.68 4.37 247 1.63 451

3

4

5

6 6.23 0.86 6.09 2.57 3.49 0.91 4.21 0.42 3.48 2.16 1.38 3.79

7 5.35 0.76 5.20 241 3.06 0.82 3.74 0.32 2.92 1.92 1.29 3.34

8 4.86 0.68 4.66 2.26 2.83 0.74 3.49 0.28 2.61 1.79 1.19 311

9 4.31 0.62 4.19 2.17 254 0.68 3.19 0.23 2.28 1.60 1.13 2.80
10 397 0.58 3.87 212 231 0.65 2.90 0.20 2.03 144 1.09 2.55
15 269 0.41 2.80 1.84 1.65 0.47 2.09 0.09 1.30 1.14 0.87 1.88
20 206 0.33 2.35 1.73 1.32 0.39 1.68 0.05 0.95 0.98 0.78 1.55
30 141 0.25 1.85 1.62 0.96 0.30 1.20 0.03 0.67 0.86 0.67 1.16
40 111 0.20 1.65 1.54 0.80 0.24 1.01 0.02 0.56 0.80 0.60 0.99

50 094 0.17 1.57 1.49 0.72 0.21 0.92 0.02 0.52 0.75 0.55 0.91
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Table D.5: MSE x 1,000 For Scenario 5

Time Method1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7 Method 8 Method 9 Method 10 Method 11 Method 12

2 1607 342 2002 604 8.57 2.93 1049 6.70 9.24 1.77 3.83 9.31
1099 229 1227 374 6.13 197 7.44 2.69 6.55 4.50 2.57 6.69
8.79 172 9.08 2.87 4.92 1.52 5.81 1.35 5.10 2.96 2.00 5.33
7.38 1.39 7.58 243 4.13 1.26 4.88 0.80 4.06 2.54 1.70 4.46

3

4

5

6 6.31 1.16 6.07 214 3.55 1.05 4.21 0.52 3.34 2.26 145 3.85

7 5.42 0.98 5.24 1.93 3.07 0.90 3.67 0.40 2.75 1.95 125 3.37

8 4.86 0.87 4.74 1.80 2.76 0.81 3.33 0.34 2.33 181 114 3.03

9 4.42 0.78 4.36 1.68 2.49 0.73 3.04 0.30 1.99 1.67 1.03 2.74
10 4.03 0.71 3.98 1.56 2.33 0.67 2.85 0.27 1.78 1.52 0.94 2.57
15 280 0.46 2.98 1.30 1.75 0.44 2.17 0.15 112 1.22 0.65 1.94
20 210 0.35 243 114 1.40 0.33 1.72 0.10 0.82 1.06 0.51 1.58
30 1.37 0.24 1.80 1.02 0.93 0.23 1.16 0.06 0.54 0.89 0.38 1.09
40  0.98 0.17 1.49 0.99 0.69 0.17 0.85 0.06 0.40 0.72 0.32 0.83

50 0.78 0.13 1.33 0.95 0.57 0.13 0.71 0.06 0.34 0.64 0.27 0.70
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Table D.6: MSE x 1,000 For Scenario 6

Time Method1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7 Method 8 Method 9 Method 10 Method 11 Method 12

2 1706 345 2237 6.13 8.19 3.02 10.13  6.30 8.95 7.79 3.90 8.93
1142 240 1358  3.93 5.70 211 6.99 2.60 6.24 4.28 2.70 6.21

8.69 173 9.50 2.95 441 1.55 5.29 124 4.62 2.82 2.02 4.80

6.94 1.34 7.43 2.38 3.61 121 4.30 0.75 3.59 231 1.63 3.93

3

4

5

6 6.01 114 6.21 2.08 311 1.04 3.72 0.52 2.92 2.03 142 3.40
7 521 0.97 531 1.84 2.69 0.89 3.24 0.40 2.37 1.67 122 2.94
8 4.46 0.86 4.57 1.69 234 0.79 2.84 0.34 1.92 1.36 1.10 2.57
9 4.02 0.77 4.04 1.54 212 0.70 2.62 0.30 1.59 121 0.98 2.34
10 356 0.68 3.53 1.49 1.90 0.63 2.36 0.25 1.36 1.07 0.89 2.10
15 252 0.46 2.66 1.24 145 0.43 1.79 0.13 0.85 0.95 0.64 161
20 1.96 0.35 2.20 114 115 0.33 1.40 0.09 0.62 0.89 0.52 1.29
30 1.30 0.23 1.64 1.02 0.81 0.22 0.99 0.07 0.44 0.77 0.38 0.94
40 101 0.17 142 0.96 0.65 0.16 0.79 0.08 0.36 0.69 0.31 0.77

50 0.80 0.13 1.26 0.93 0.53 0.12 0.64 0.09 0.30 0.61 0.26 0.64
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TableD.7: MSE x 1,000 For Scenario 7

Time Method1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7 Method 8 Method 9 Method 10 Method 11 Method 12

2 1917 590 2318 558 1005 340 1183 395 1098 9.65 409 10.55
1239 424 1447 277 6.01 247 741 1.05 6.99 5.47 2.58 6.38
9.70 371 1048 1.83 4.68 2.03 5.83 0.55 5.47 3.49 2.06 4.99
7.66 3.23 8.02 1.35 3.64 1.70 4.64 0.44 4.26 2.60 1.68 391

3

4

5

6 6.17 2.95 6.22 1.05 2.97 1.48 3.87 0.42 3.46 2.04 142 3.22
7 5.36 2.84 5.36 0.90 2.71 131 3.62 0.37 2.99 177 1.26 2.94
8 4.80 2.71 4.68 0.79 2.50 121 3.33 0.35 2.69 1.60 1.13 2.71
9 4.26 2.59 4.07 0.69 221 1.10 2.99 0.32 2.30 1.47 1.00 241
10 3.90 2.52 3.75 0.63 2.07 1.04 2.81 0.32 212 1.33 0.95 2.26
15 258 213 2.45 0.41 1.46 0.77 2.01 0.27 147 1.03 0.64 1.60
20 191 197 1.85 0.30 1.13 0.63 1.58 0.23 1.13 0.89 0.48 1.25
30 121 185 1.32 0.19 0.82 0.46 1.23 0.19 0.82 0.76 0.31 0.94
40 093 177 1.07 0.14 0.66 0.39 1.04 0.17 0.67 0.67 0.25 0.78

50 0.76 171 0.93 0.12 0.57 0.36 0.94 0.16 0.57 0.62 0.23 0.67
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Table D.8: MSE x 1,000 For Scenario 8

Time Method1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7 Method 8 Method 9 Method 10 Method 11 Method 12

2 1566 294 2177 497 7.20 2.60 9.03 7.80 7.67 7.00 4.07 7.69
1085 193 1326 337 5.05 1.70 6.24 3.87 5.19 3.67 2.67 5.30

8.73 1.55 9.60 2.63 4.26 1.35 4.86 2.22 4.13 2.47 2.16 4.34

7.20 1.28 7.38 2.18 3.47 112 3.81 143 3.14 2.02 1.78 351

3

4

5

6 6.00 1.06 5.76 1.87 2.82 0.92 3.01 0.98 2.37 1.76 1.50 2.83
7 5.19 0.95 4.98 1.65 2.56 0.82 2.70 0.80 1.94 1.65 1.33 2.55
8 4.58 0.86 4.33 1.50 2.35 0.74 243 0.67 1.65 1.50 1.20 2.33
9 4.08 0.76 3.89 1.36 213 0.66 2.18 0.58 1.33 1.38 1.06 2.10
10 377 0.72 3.59 1.28 1.97 0.62 1.99 0.52 1.16 1.35 1.00 1.93
15 2.68 0.49 2.47 1.01 141 0.42 1.28 0.30 0.64 1.08 0.67 1.33
20 210 0.39 191 0.89 1.08 0.34 0.88 0.18 0.43 0.92 0.52 0.99
30 1.39 0.29 1.39 0.73 0.74 0.26 0.54 0.10 0.30 0.81 0.34 0.65
40 1.10 0.24 117 0.68 0.59 0.22 0.40 0.09 0.26 0.71 0.27 0.51

50 092 0.22 1.03 0.66 0.50 0.20 0.31 0.09 0.23 0.61 0.25 0.41
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Table D.9: MSE x 10,000 For Scenario 9

Time Method1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7 Method 8 Method 9 Method 10 Method 11 Method 12

2 1620 355 1950 6.56 9.02 3.12 1092  7.29 9.56 8.07 411 9.71
1127 244 1237 427 6.40 217 7.79 3.18 6.82 4.56 2.77 6.95
9.25 181 1006 335 5.14 1.64 6.19 1.74 5.29 3.16 2.16 5.56
7.82 1.46 8.18 281 4.31 1.35 5.17 1.10 4.24 2.70 181 4.67

3

4

5

6 6.73 1.19 6.87 2.48 3.63 111 4.39 0.74 3.39 2.26 152 3.93
7 5.95 1.06 5.94 2.25 3.27 0.99 3.96 0.60 2.90 2.09 1.37 3.54
8 5.29 0.95 5.29 2.07 2.99 0.89 3.62 0.50 254 1.96 1.26 3.24
9 4.69 0.86 4.73 1.96 2.65 0.81 3.19 0.42 2.15 1.75 1.16 2.86
10 432 0.76 4.27 1.87 2.39 0.73 291 0.36 1.86 154 1.06 2.59
15 282 0.48 2.88 1.53 1.65 0.48 2.03 0.19 1.13 1.18 0.73 1.84
20 219 0.36 2.36 1.34 134 0.37 1.65 0.12 0.82 1.06 0.58 151
30 151 0.24 1.85 1.19 0.96 0.25 117 0.07 0.56 0.90 0.44 112
40 112 0.18 157 111 0.75 0.19 0.93 0.06 0.44 0.79 0.36 0.91

50 0.90 0.14 142 1.06 0.63 0.16 0.79 0.05 0.38 0.70 0.32 0.79
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Table D.10: MSE x 1,000 For Scenario 10

Time Method1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7 Method 8 Method 9 Method 10 Method 11 Method 12

2 1636 344 2028 577 8.32 2.95 1030 6.39 9.00 7.69 3.77 9.00
1157 225 1343 359 5.94 1.95 7.31 2.40 6.32 4.42 251 6.44

8.99 161 9.42 2.67 4.59 1.43 5.46 1.19 4.74 2.81 191 4.96

7.19 1.28 7.43 2.22 3.68 1.16 4.43 0.70 3.62 2.33 1.56 4.01

3

4

5

6 5.78 1.03 5.74 1.92 3.05 0.95 3.66 0.48 2.82 197 1.30 3.33
7 4.99 0.86 4.80 1.75 2.56 0.80 3.13 0.37 221 1.60 112 2.81
8 441 0.77 431 1.63 2.33 0.72 2.85 0.32 1.90 1.45 1.02 254
9 4.00 0.70 3.93 1.50 215 0.64 2.65 0.27 1.66 1.36 0.92 2.35
10 359 0.62 3.51 1.40 1.97 0.57 243 0.24 143 1.30 0.82 2.16
15 243 0.43 2.53 1.18 141 0.40 1.76 0.13 0.90 0.99 0.59 1.58
20 1.88 0.31 2.05 1.06 1.10 0.29 1.35 0.09 0.61 0.86 0.46 1.25
30 1.28 0.20 1.55 0.95 0.77 0.19 0.91 0.08 0.40 0.77 0.33 0.89
40 1.00 0.16 1.35 0.90 0.62 0.14 0.71 0.09 0.33 0.68 0.27 0.73

50 0.78 0.12 1.22 0.88 0.50 0.11 0.60 0.10 0.28 0.61 0.23 0.61
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Table D.11: MSE x 1,000 For Scenario 11

Time Method1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7 Method 8 Method 9 Method 10 Method 11 Method 12

2 335 479 4266 1217 2210 627 2132 1568 2438 1928 741 2260
2381 293 2941 7.62 1596  5.23 1555 750 1851 1364 461 1631
1930 221 2292 580 1374 455 1380 597 1585 1077 363 1399
1587 1./8 1748 480 1186 4.07 1204 553 1343 858 295 1211
1294 147 1364 417 1041 374 1060 541 1158 6.83 249  10.60
1155 127 1191 377 9.75 3.39 10.00 535 1037 590 2.19 9.93
1037 111 1048 352 9.32 3.18 9.47 5.24 9.66 5.22 1.97 9.48

© 00 N o 0o b~ W

9.40 0.97 9.40 3.30 8.73 2.98 8.85 5.10 8.80 4.43 1.74 8.87
10 868 0.89 8.73 3.13 8.34 2.85 8.36 5.01 8.33 3.97 1.62 8.44
15 598 0.57 6.09 2.72 6.74 2.39 6.37 4.56 6.68 2.30 1.07 6.77
20 4.48 0.42 4.80 2.55 5.85 2.12 5.16 4.27 5.83 1.54 0.80 5.85
30 2.86 0.26 3.70 231 4.87 1.73 3.84 3.97 4.88 1.00 0.50 4.83
40 219 0.19 3.23 2.24 4.28 154 3.14 3.80 4.34 0.76 0.38 4.24
50 1.76 0.16 2.92 2.22 3.86 142 2.72 3.75 3.95 0.63 0.33 3.80
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Table D.12: MSE x 1,000 For Scenario 12

Time Method 1 Method 2 Method 3 Method4 Method 5 Method 6 Method 7 Method 8 Method 9 Method 10 Method 11 Method 12

2 5.67 2.06 7.98 1.89 3.30 2.02 451 2.40 2.40 1.92 1.96 2.74
4.08 131 451 1.19 2.75 1.30 3.29 1.35 1.57 0.76 1.22 1.96
3.28 1.05 3.20 0.89 2.37 1.07 2.54 1.16 1.25 0.75 1.00 1.64
2.60 0.83 2.44 0.71 2.05 0.86 2.05 1.07 0.99 1.03 0.79 1.36
2.19 0.70 1.93 0.59 1.79 0.73 1.68 1.03 0.82 121 0.66 1.13
1.88 0.64 1.64 0.53 161 0.67 1.50 1.01 0.74 1.32 0.60 1.03
1.65 0.58 141 0.48 1.46 0.61 1.32 1.00 0.67 142 0.54 0.93

© o0 ~N oo o b~ W

1.44 0.52 1.24 0.43 1.30 0.55 1.17 0.99 0.56 1.46 0.48 0.82
10 131 0.49 1.15 0.40 1.20 0.52 1.08 1.02 0.51 1.47 0.45 0.76
15 088 0.33 0.76 0.30 0.86 0.35 0.74 1.09 0.36 1.37 0.28 0.53
20 0.66 0.26 0.59 0.25 0.69 0.28 0.56 115 0.29 1.20 0.21 0.40
30 042 0.19 0.43 0.19 0.47 0.20 0.39 121 0.22 0.84 0.14 0.28
40 032 0.15 0.36 0.17 0.37 0.16 0.31 1.27 0.18 0.60 0.10 0.22
50 0.26 0.14 0.31 0.17 0.30 0.15 0.26 131 0.16 0.43 0.09 0.18
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Scenario 5
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Scenario 7
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Scenario 9
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Scenario 11
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APPENDIX F: ADDITIONAL SASIML CODE FOR YIELD SIMULATOR IN

THE BASE SCENARIO

/* scenario 1: method 1*/

proc iml symsize=95000000;

time=50; /* number of time periods */
space=30; /* number of experimental units */
sim=1000; /* number of simulations */
yield=3j (time, space, 0) ;

truerate=j(sim,1,0) ;

lambda=0.75; /* coverage level */
truerate=0.1315;
ratel=j(49,sim,0) ;

/* parameter values of severity */
sevhigub=0.3; sevhiglb=0.2; sevmedub=0.15; sevmedlb=0.1; sevlow=0.05;
sevneg=0.01;

/* parameter values of temporal correlation */
temhig=0.25; temmed=0.1l; temlow=0.01; temneg=0.000001;

/* parameter values of spatial correlation */
spahig=0.25; spamed=0.1; spalow=0.01l; spaneg=0.000001;

total=time*space;
iden=1 (time) ;

eee=1 (total) ;

/* randomize the mean and variance of yield distributions*/
mean=j (space,1,0) ;
var=j (space,1,0) ;
do j=1 to space;
mean[j]=50000+50000*ranuni (1234); /* mean is between 50000 and
100000 */
var[j]=100000000+525000000*ranuni (1234) ; /* variance is between
100000000 and 625000000%*/
end;

/* risk 1: enteric septicemia of catfish */

pl=0.2+0.1*ranuni (1234); /* frequency */
temrho=temmed* (2/3) +temlow* (1/3) ; /* temporal correlation */
sparho=spalow* (2/3) +spaneg* (1/3) ; /* spatial correlation */

omega=j (space, space, 0) ;

do i=1 to space;
do j=1 to space;
omega [i, j]l=sparho**abs(i-j) ;
end;
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end;
varcov=iden@omega;
upperl=root (varcov) ;

/*...modeling the remaining risk factors */

/* do simulations */
do s=1 to sim;

temp=j (total,1,0);
do i=1 to total;

temp [i] =rannor (1234) ;
end;

/* generate mutivariate normal risk numbers for risk factor 1 */
sample=upperl *temp;

mvn=shape (sample, time, space); /* reshape the vector sample into a
timeXspace matrice */

dl=cdf ('normal',mvn,0,1); /* take cdf to get U[0,1] number */

/*...do the same step for the remaining risk factors */

do i=1 to time;
do j=1 to space;

if di[i,jl<pl
then kl=ranuni (4321) * (sevmedub-sevmedlb) + (1-sevmedub) ;
else kl1=1;

/* do the same step for the remaining risk factors */

yield[i, jl=(rannor(1234) *sqrt (var[j])+mean[j]) *kl1l*k2*k3*kd4*k5*ke*k7*k8*
k9*k10*k11*k12*k13*k14*k15*k16*k17*k18*k19*k20;

end;

end;

do t=1 to 49; /* # of time periods we are going to consider */
c=0; /* time indicator */

if t<1l0 then c¢
if t=14 then c
if t=19 then c¢
if t=29 then c
c
c

[
HRRRRR

if t=39 then
if t=49 then

!
!
!
I
I
!

if c=1 then do;

y=yield[1l: (1+t),];

ones=j (t+1,1,1) ;

avg=y [+,1/(t+1);

std=sqgrt ( ((y-ones*avg) ##2) [+,]/(t+1-1));
guarantee=lambda*avg[1] ;
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/* method 1. empirical rate for farm 1 */
ratel[t,s]=sum((guarantee-y[,1])<>0)/(t+1l) /guarantee;

end; /* end of time indicator */

end; /* end of loop over different time periods */

end; /* end of simulations */

msel=((ratel-truerate) ##2) [, +]/sim; /* mse for method 1 */

print msel;
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APPENDIX G: KERNEL DENSITY ESTIMATESOF YIELDS

Note: Theyield distributions in scenarios 2, 3, 4, 5, 6, 9 and 10 arethe same asin
scenario 1.

Scenario 1: Kernel Density Estimates of Yields
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