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ABSTRACT 

The general purpose of this thesis is to investigate the small sample performances of 

various rating methodologies in estimating premium rates for catfish insurance policy.  

To accomplish this objective, we simulate the yield data by modeling the frequency, 

severity, temporal and spatial correlations of twenty major risk factors in catfish 

production.  In order to increase the applicability of this simulation study, twelve 

scenarios are considered to see how the methodologies will perform under different 

assumptions.  Simulation results show that, under these data generating processes, 

estimators that use extraneous data generally perform better than those that only use 

individual data when the sample size is small.   
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1. INTRODUCTION 

1.1 Introduction 

Aquaculture is defined as the farming of aquatic organisms, including fish, 

mollusks, crustaceans and aquatic plants, where farming implies some form of 

intervention in the rearing process to enhance production, such as regular stocking, 

feeding, protection from predators, etc. (FAO 1997).  Although aquaculture has existed 

for thousands of years, it only became a specialized agricultural business in the United 

States in the 1950’s.  Aquaculture species grown in the United States include finfish 

(catfish, trout, salmon, striped bass, tilapia, baitfish, ornamental fish, and others), 

crustaceans (crawfish, shrimp, and others), mollusks (oysters, clams, mussels, and 

others), aquatic plants (algae, seaweeds, water chestnuts, hyacinths, and others), and 

some reptiles such as alligators and turtles (Hanfman, 1993).  

For the past two decades, aquaculture has been the fastest growing segment of 

agriculture in the United States.  In 1983, aquaculture production was 308 million pounds 

with a final sales value of 259 million dollars.  In 2001, aquaculture production has 

exceeded 800 million pounds valued at 935 million dollars (see Figure 1.1).  Carlberg et 

al. (2001) explained several factors that have contributed to this phenomenal growth.  

First, per capita consumption of seafood has increased significantly as consumers become 

more aware of the health and nutritional benefits of fish and the fact that seafood is a 

good source of animal protein.  For example, the U. S. per capita consumption of seafood 

has risen from 12.5 pounds in 1980 to 15.6 pounds in 2002, a 25% increase (NMFS 

2002).  Furthermore, as the population of the United Stated continues to grow and capture 



                                                                                                                                            11                     

 

fisheries are approaching their maximum harvest levels, aquaculture will be the major 

source of additional seafood supply in meeting the increasing consumer demands.  The 

U. S. Congress summarized the importance of aquaculture in the National Aquaculture 

Act of 1980: “… aquaculture has the potential for reducing the United States trade deficit 

in fisheries products, for augmenting existing commercial and recreational fisheries, and 

for producing other renewable resources, thereby assisting the United States in meeting 

its future food needs and contributing to the solution of world resource problems. It is, 

therefore, in the national interest, and it is the national policy, to encourage the 

development of aquaculture in the United States.” 

Catfish farming originated in the Mississippi Delta region in the late 1960’s and 

early 1970’s (Dean et al., 2003).  Today, the catfish industry is the largest sector in the 

U.S. aquaculture industry.  Production of farm-raised catfish has grown rapidly to 

approximately 597 million pounds in 2001 and accounted for more than 70% of the 

annual aquaculture production in the United States (see Figure 1.2).  Farm-raised catfish 

generated a final sales value of 386 million dollars and accounted for 41% of the total 

sales of aquaculture products (see Figure 1.3).  It is now the fifth most popular fish in the 

United States behind shrimp, tuna, salmon, and Alaska pollock.  Table 1.1 shows the top 

10 fish and shellfish consumption in the United States.  Per capita consumption of catfish 

has doubled since 1990, reaching an all time high of 1.16 pounds in 1999 (see Figure 1.4).  

The popularity of farm-raised catfish is due to its consistent quality, delicate flavor, firm 

texture, versatility, year-around availability, and nutritional value (Robinson and Avery, 

2000). 
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Catfish production is concentrated in the southern United States consisted of 

Alabama, Arkansas, Louisiana, and Mississippi.  These states have warm climates, 

abundant water and heavy clay soils for pond construction, which are conditions 

favorable to commercial catfish production.  These four states account for 95% of catfish 

production.  Mississippi dominates the other three states by producing 70% of the total.  

The industry provides over 13,000 jobs in production, processing, feed manufacturing, 

and related support industries, and contributes more than $4 billion to the four states’ 

economy annually (Robinson and Avery, 2000).  The catfish industry has become the 

major source of economic activities and employment in these states. For example, in 

Mississippi, the catfish industry employs over 7000 direct employees with an annual 

payroll of $102 million (Dean et al., 2003).  Engle (2003) stated that the overall impact of 

this industry is even greater because it is centered in a region of the country that is 

characterized by low levels of economic development and high unemployment rates. 

As with other agriculture enterprises, catfish producers also face a variety of 

production hazards.  The major perils include diseases, water related problems, off-flavor, 

bird predation etc., which significantly affect the profitability of the industry and hinder 

its further development.  Given the importance of the catfish industry in terms of its 

economic value, the Risk Management Agency of the United States Department of 

Agriculture has begun to investigate the feasibility of providing insurance tools for 

catfish producers against losses.  

Due to the nature of the catfish aquaculture production practices, the 

implementation of aquaculture insurance to the catfish industry will present a number of 
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challenges (Shaik, 2001).  The first challenge is related to insurability issue.  It is difficult 

to differentiate random peril from management events, and epidemic from endemic 

hazards.  Also, as with crop insurance, there exist the problems of adverse selection and 

moral hazard.  The second challenge is the measurability problem.  It is difficult to 

determine the numbers or pounds of fish in the pond.  Difficulties are due to a number of 

factors: there are multiple batches in a pond at the same time; ponds may be in 

continuous operation for several years before completely drained; the majority of 

mortalities are unseen; and auditing practices are inconsistent (Avery, 2002).  Catfish 

insurance contracts require the verification of the numbers (or pounds) of fish to be 

insured, and the numbers (or pounds) of fish lost, when a claim is made.  For a contract 

that is made for a specific peril such as off-flavor, it also requires verification whether the 

cause of loss is associated with that peril.  All of these are not easy to achieve.  The third 

challenge is related to the actuarial issues.  In crop insurance contracts, premium rates are 

determined based on historical yield data available at the time of rating.  Catfish 

insurance is just a pilot program; the industry does not have the long-term production 

data.  Estimated catfish yields have not been systematically measured, and some of the 

information needed to calculated aggregate yields has only recently been collected 

(Kazmierczak and Soto, 2001).  Therefore, the data to estimate the probability and 

magnitude of losses is not available and the potential for subjective data to be collected is 

also low.  

The contribution of this thesis is to conduct simulations to generate the yield data 

based on some possibly relevant data generating processes, and to evaluate the 
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performance of various parametric and nonparametric approaches in determining 

premium rates.  These data generating processes involve the various major risk factors 

associated with catfish production.  After identifying the risks and making assumptions 

about them, yield data can be simulated by modeling the frequency, severity, as well as 

the temporal and spatial correlations of all those risk factors.  Then, various parametric 

and nonparametric techniques are employed to estimate actuarially fair premium rates.  

These approaches are considered in an attempt to minimize inefficiencies or inequities in 

the catfish insurance program, to both the insurer and insured.  Recovering accurate 

premium rates is essential to an actuarially sound catfish insurance program.  If the 

premium rates are overestimated or underestimated, program losses will increase because 

only producers whose rates are underestimated will participate in the program while 

producers with overestimated rates will either not be able to purchase insurance (too 

expensive) or will purchase insurance at a higher cost relative to a fair level.  Of course, 

these adverse selection losses cannot be eliminated.  Even with abundant data, one still 

could not estimate the premium rates without any errors.  However, the losses may be 

minimized by appropriate choices of estimation methodologies.  Hence, the performances 

of the different methodologies are compared based on the mean squared errors of the 

estimated rates.  

The remainder of this chapter contains three sections.  The next section outlines 

the problems of moral hazard and adverse selection.  These problems are common in any 

insurance contracts and are the major causes of program losses.  Hence the construction 

of actuarially fair premium rate is very important.  Section 1.3 discusses the objectives of 
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this thesis, which is to improve the accuracy of premium rates under the situation of no 

data available.  The last section outlines the structure of this thesis.  

 

1.2 Moral Hazard and Adverse Selection  

As with crop insurance contracts, catfish insurance contracts are exposed to moral 

hazard and adverse selection problems.  Both problems are aspects of asymmetric 

information.  Asymmetric information arises due to differential information concerning 

production practices and growing conditions held by the insured (catfish producers) and 

the insurers.  Existence of information asymmetry increases the costs and challenges the 

efficacy of insurance. 

Moral hazard arises when the insurer faces a fixed payment scheme but the 

insured can affect the probability of risks occurring by hidden actions that are not 

observed by the insurer.  Without insurance, a catfish producer will try his best to reduce 

the likelihood of undesirable outcomes.  However, after purchasing insurance, the 

producer loses some of the incentive to reduce the probability of adverse outcomes and 

hence may increase the probability of risks occurring.  For example, the insurer cannot 

observe production practices throughout the production season.  A catfish producer may 

fail to provide treatment for diseases or aeration equipments for catfish production.  

Through actions unknown to the insurer at the time of the contract, the producer has 

altered the yield distribution.  The effect of moral hazard is that the post-insurance risk 

has increased.   
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 Adverse selection arises when the insured has better information about the risk 

probabilities than the insurer when setting the premium rate.  In most cases, catfish 

producers know more about their yield distributions than insurers.  Producers whose 

expected loss is larger than the insurance premium will tend to buy the insurance whereas 

producers whose expected loss is smaller than the insurance premium will tend not to buy 

insurance.  Thus, the premiums calculated based on the information of all potential 

clients tends to be too low to cover the indemnity payments, resulting in a loss to the 

insurer.  

Moral hazard and adverse selection problems have resulted in large losses in the 

crop insurance program (Ker, 1996).  To avoid the same losses in catfish aquaculture 

insurance program, the construction of actuarially fair premium rate is crucial.  

 

1.3 Objective of the Study 

The main objective of this thesis is to evaluate the small sample performances of 

various rating methodologies under the situation of no data available, and come up with 

some appropriate methodologies that may improve the accuracy of premium rates.  

Accurate premium rates require proper representation of the conditional yield 

distributions.  In satisfying this objective, this thesis conducts simulations to generate 

yield data and employs parametric and nonparametric approaches to determine premium 

rates for two time periods through fifty time periods.  These approaches to modeling 

yield distributions include: normal distribution, beta distribution, kernel density 

estimation, Bayesian nonparametric estimation, etc.  This simulation study allows us to 
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evaluate the different approaches at various levels of simulated historical yield data.  If 

historical yield data were available, one could employ time series models to predict future 

yields and use parametric or nonparametric approaches to construct the premium rates.  

However, catfish insurance, or aquaculture insurance is just a pilot program.  While there 

might be data on country-level and state-level, there is no data on county-level or farm-

level.  Therefore, simulations are needed to generate possible yield data under relatively 

reasonable assumptions.  Comparison of the different methodologies is based on mean 

squared errors (MSE).  The MSE is an error metric that captures both the bias and the 

variance of an estimator.  In order to increase the practicability of this simulation study, 

different simulation scenarios are considered.  

 

1.4 Plan of the Study  

The remainder of this thesis is organized as follows.  

Chapter 2 first reviews the catfish aquaculture farming practices and associated 

production risks; then discusses how the major risks are modeled based on the 

characteristics of the risks.  The production process of catfish involves three stages: egg 

and fry production, fingerling production and food fish production.  The major 

production risks include: infectious diseases, water quality related risks, off-flavor, bird 

predation, extreme weather conditions, etc.  Twenty risk factors will be examined and 

modeled in the simulations, based on the information about the frequency and severity of 

each risk factor as well as their temporal and spatial correlations.  
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Chapter 3 elaborates on various parametric and nonparametric rating 

methodologies.  The parametric methodologies include normal distribution and beta 

distribution.  The nonparametric methodologies include empirical rates, kernel density 

estimation, Bayesian nonparametric kernel density estimation, and estimation of possibly 

similar densities.  

Chapter 4 presents the designs of twelve simulation scenarios and the 

accompanying MSE results.  It first describes the yield data generating process in the 

base scenario and then considers three variations from the base scenario to design other 

scenarios.  The performances of the twelve methodologies are compared both 

horizontally (in each scenario) and vertically (across scenarios, the first scenario being 

the baseline). 

Finally, Chapter 5 presents the concluding remarks and directions of further 

research. 
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Figure 1.1: US Aquaculture Production (data are in millions) 

 
 

 

 

 

 

 

 

 

 

 
 
 
Source: 1. 2002 Fisheries of the United States, Fisheries Statistics & Economics Division 

2. http://www.msstate.edu/dept/crec/aquallspec.html 
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Figure 1.2: Components of Aquaculture (Thousand Pounds) 

US Farm-Raised Catfish
= 597,108

Other Species
= 221,835

 

Figure 1.3: Components of Aquaculture (Sales in thousand $) 

US Farm-Raised Catfish
= $386,369

Other Species
= $548,337

 

Source: 2002 Fisheries of the United States, Fisheries Statistics & Economics Division 
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Figure 1.4: Per Capita Consumption of Catfish 

Figure 1.4: Per Capita Consumption of Catfish
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Source: 1. http://www.catfishinstitute.com/About/Fact.asp 
             2. Economic Impact of the Mississippi Farm-Raised Catfish Industry at the  
                 year of 2003 

Table 1.1: Top 10 Fish and Shellfish Consumption in the US (2001, Edible Meat 

Basis) 

 

 
 

Source: Economic Impact of the Mississippi Farm-Raised Catfish Industry at the Year of 
2003                             Aq. = Aquaculture 



                                                                                                                                            22 

  

2. CATFISH AQUACULTURE FARMING PRACTICES AND RISKS 

2.1 Channel Catfish 

There are at least 39 species of catfish in North America, but only six of them 

have been cultured or have the potential for commercial production (Wellborn, 1988).  

The channel catfish, Ictalurus punctatus, dominates in farming because it has the best 

combination of characteristics for commercial production (Jensen, 1997).  Therefore, this 

thesis will focus on the culture of channel catfish.  The word catfish refers to the channel 

catfish unless indicated otherwise. 

Channel catfish are warm water fish native to central North America (Tucker et 

al., 2004).  The fish is slender and scaleless, with a gently sloping dorsal profile anterior 

of the dorsal fin and deeply forked tail.  They prefer a substrate of sand and gravel and 

usually dwell at the bottom of the water.  The fish grow efficiently at 80 to 85°F in water.  

Growth is limited when water temperature is less than 45°F or greater than 95°F (Morris, 

1993).  At lower temperature, since the metabolic rate is reduced, they eat less and hence 

grow slowly.  If the temperature is too low, the immune system of the fish will be 

impaired and they are more vulnerable to diseases.  On the other hand, at higher 

temperature, the respiration rate of fish is increased.  Because fish need more energy to 

maintain respiration, feed conversion and hence fish growth is reduced.  If the 

temperature is too high they can die (Jensen, 1997). 
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2.2 Production Ponds 

Catfish can be grown in ponds, cages, and raceways.  Pond culture is the most 

popular method.  Other methods require more management efforts and cost more and 

thus are less common.  Based on water supplies and terrain, there are two types of ponds: 

levee ponds and watershed ponds.  

Levee ponds are built on flat land by excavating the pond area to a shallow depth 

and using the soil obtained to build levees around the perimeter of pond.  Levee ponds 

have the advantages that catfish producers can harvest fish by seine without draining and 

oxygen can reach all the way to the bottom of the ponds.  The disadvantage is that it is 

more expensive to build.  Levee ponds use ground water supplied by wells or surface 

water such as springs and streams (Beem, 1998).                                                                                       

Watershed ponds are constructed by building dams across ravines or valleys.  

They are less costly to build than levee ponds and producers are able to make use of 

steeper sites.  They can also serve as reservoirs and help to reduce land erosion.  One 

disadvantage is that ponds cannot be refilled at will because they depend on rainfall for 

water supply.  In addition, watershed ponds tend to stratify which can result in a 

phenomenon called turn-over that may cause oxygen depletion.  Runoff from rainfall is 

the main source of water for watershed ponds because the rainwater can be stored behind 

the dams built across valleys (Whitis, 2002). 

Levee ponds are usually built on flat land like the delta areas of western 

Mississippi, southeastern Arkansas or northeastern Louisiana, while watershed ponds are 

more common in hilly regions of Mississippi, Tennessee, Alabama, Georgia and Illinois 
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(Whitis, 2002).  Levee ponds account for 91.2% of the total acreage of catfish production, 

while watershed ponds account for the remaining 8.8% (Avery, 2002). 

 

2.3 Production Process 

Information contained in this section depends heavily on publications by 

Robinson and Avery (2000), Morris (1993) and Lewis (1994).  The production cycle of 

catfish can be divided into three phases: egg and fry production, fingerling production, 

and food fish production.  

 

2.3.1 Egg and Fry Production 

The production process begins with careful selection and mating of quality brood 

stocks to produce eggs.  The brood stocks are placed into ponds for free spawning. The 

spawning season is usually in the spring when the water temperatures reach about 68° F.  

This is generally around May in southeastern United States.  Spawning containers are 

placed in 2 to 3 feet of water, 1 to 10 yards apart to serve as nesting sites.  Female brood 

fish lay eggs in the containers and the male fertilize the eggs.  After the eggs are fertilized, 

depending on the preference of the producer, fertilized eggs may be left in the containers 

for parental (male) hatching in the pond, or transferred to the hatchery.  The first method 

is cheaper but unreliable because the number of fry successfully hatched is not 

immediately known and the survival rate is usually low.  The most efficient way is to 

hatch catfish eggs in a hatchery.  The hatchery provides a controlled environment with 

good water agitation and adequate quality.  Troughs made of wood, fiberglass or metal 
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are used to incubate the eggs.  Paddles or aerators are used to circulate water in and 

around the egg masses in order to provide adequate oxygenation.  Depending on water 

temperature, channel catfish eggs generally remain in the hatchery for 5 to 10 days.  

Hatching begins when water temperature is around 75 to 85° F.  

Immediately after the hatching, the young fish are called “sac fry” because they 

have a yolk sac attached to their abdomens that serves as a nutrition source.  After a 

couple of days, the yolk sac is used up and the fry turn black and swim up to the surface 

in the hatching troughs with their mouths open and heads moving back and forth, 

searching for food.  Feeding begins at this stage.  Depending on the preference of the 

producer, the fry may be left in the hatchery troughs for a few days and fed a 50% protein 

diet, or moved to nursery ponds.  The nursery pond method is commonly practiced.  The 

size of fingerlings desired at harvest determines the stocking rate of fry.  For example, 

stocking 10,000 fry per acre will produce fingerlings of 7 to 10 inches in about 150 days, 

while stocking 100,000 fry per acre will yield fingerlings of 3 to 5 inches in about 150 

days.  

 

2.3.2 Fingerling Production 

 The fry remain in schools after placed in the nursery ponds, where natural foods 

in the pond are their main source of nourishment.  The nursery ponds usually have been 

fertilized 2 to 3 weeks before being stocked.  The fertilization is necessary because it can 

produce a large number of zooplankton (small animals) for the young fish as food.  The 

young fish are also fed a high-protein, powdered feed.  But these feeds serve more as a 



                                                                                                                                            26 

  

fertilizer for pond zooplankton than as a direct source of food for the fry.  In 2 to 3 weeks 

after stocking, the fry swim up to the water surface and daily feeding of fry begins.  They 

are fed food pellets that consist of 35 to 40% protein.  These feeds are also made up of a 

mixture of soybeans, corn, wheat, vitamins and minerals, which not only help in 

producing healthier fish, but also cleaner, milder tastes.  When the size of the fry reaches 

2 to 3 inches, they are commonly called fingerlings.  Fry stocked in the summer can grow 

to 5 to 6 inches long by late fall or early winter.  They are then transferred to grow-out 

ponds. 

 

2.3.3 Food Fish Production 

The number of fingerlings to stock into a grow-out pond depends on several 

factors such as the surface acreage of the pond and management ability of the producers.  

For experienced producers, the stocking rate can be 5,000 to over 10,000 fingerlings per 

acre.  The fingerlings are fed a high-quality 28 to 32% protein once a day for 150 to 180 

days before harvest.  The best feeding period in the southeastern United States is from 

May to October.  When the fish are about 18 months old and averaging 1 to 1.5 pounds in 

weight, they can be harvested for processing.  

Once a crop of fish reaches the proper size to be harvested, two types of cropping 

systems can be considered.  The first type of cropping system only harvests fish of 

suitable size for processing and lets smaller fish remain in the pond.  This is done 2 to 3 

times a year.  Once the ponds are partially harvested, new fingerlings of equal number are 

restocked into the ponds to replace those that were removed.  This cycle of incomplete 
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harvest and restocking is repeated for a few years without draining the ponds.  Therefore, 

several different year-classes of fish are in the same pond at any given time.  That’s why 

this method is sometimes called multiple batch.  This is a more popular production 

system.  The second type of cropping system involves removing all fish from the pond, 

draining and refilling the ponds for restocking.  Because only a single crop of fish are 

involved in the production cycle, this method is sometimes called single batch. The 

annual draining required to remove all fish can significantly increase production cost, so 

this method is used less extensively.  Catfish are harvested in large seines and then 

transported to processing plants alive, in which they are made into fillets, steaks, nuggets 

and whole-gutted fish.  

 

2.4 Associated Production Risks 

 This section addresses the primary production risks associated with commercial 

catfish production.  The risk factors listed here follows from an invited presentation at the 

2002 National Risk Management for Aquaculture Workshop (Avery, 2002).  Information 

presented here is drawn largely from the Southern Regional Aquaculture Center, 

Mississippi State University Cooperative Extension Service, other extension services and 

organizations.  

 

2.4.1 Infectious Diseases 

Infectious disease is one of the major perils facing catfish aquaculture production.  

Ever since the start of commercial catfish production, diseases have caused significant 
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economic losses and affect the profitability of the catfish industry.  In the last decade, as 

the culture practices have become more intensive, previously rare diseases have spread 

among the catfish population, making the problem of diseases even more severe.  It is 

estimated that disease related losses account for approximately 45-50% of all losses 

incurred on farms annually and may account for as much as $100 million annually in 

direct economic losses (USDA 2003).  The normal mortality rate is 20-35% for fry to 5-

inch fingerlings, and 18-24% for larger fish (Avery, 2002). 

Stress plays an important role in channel catfish diseases.  Stress usually 

predisposes catfish to diseases.  Common stress conditions include: rough handling, 

drastic water temperature fluctuations, low dissolved oxygen and other poor water quality 

problems, insufficient nutrition, and overcrowding.  Measures to minimize stress as much 

as possible can reduce the severity, frequency and duration of disease outbreaks (Lewis et 

al., 1994).  

Infectious diseases are mainly caused by bacteria, parasites and viruses.  The 

following sections will discuss some of the major diseases in channel catfish production.  

2.4.1.1 Enteric Septicemia of Catfish (ESC) 

Information contained in this section is based on SRAC Publication No. 477 

(Hawke et al., 1998) and the Catfish 2003 info sheet.  Enteric septicemia of catfish (ESC) 

is caused by the gram-negative bacterium Edwardsiella ictaluri.  It is one of the most 

important infectious bacterial diseases of farm-raised channel catfish.  Approximately 

30% of all disease cases submitted to fish diagnostic laboratories in the southeastern 

United States are ESC.  In Mississippi, it has been reported at frequencies as high as 47% 
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of the yearly total and causes millions of dollars of economic losses to the catfish 

industry yearly.  Outbreaks of ESC typically occur in the spring and fall when the water 

temperatures are warm (68 to 82°F).  Fish are more susceptible to ESC when they are 

under stress.  The transmissions of ESC can occur in three ways.  First, the transmission 

can be from fish to fish through water contamination with bacteria shed in feces, or by 

cannibalism of dead or infected fish.  Second, birds that pick up infected fish and drop 

them into another pond can spread the disease to another pond.  Third, wet nets and 

equipments can transfer the disease pond to pond.  

 

2.4.1.2 Columnaris 

 Information contained in this section is based on SRAC Publication No. 479 

(Durborow et al., 1998).  Columnaris is caused by a bacterium called Flavobacterium 

columnare.  It is the second leading disease that causes fish deaths in the southeastern 

United States.  Channel catfish are susceptible to this disease when they are under some 

type of environmental stress and when the water temperatures are in the range of 25 to 

32°C (77 to 90° F) in the spring, summer and fall.  Affected fish usually have brown to 

yellowish-brown lesions on their gills, skin and / or fins.  The gill function is disrupted 

because the bacteria attach and spread over the gill and finally cover individual gill 

filaments, resulting in cell death.  Also, the bacteria can produce enzymes that erode 

portions of the gills.  Damages in the skin and fins may result in essential salts and fluids 

release.  The effect of columnaris is more devastating because it may expose the fish to 

secondary infection or other diseases.  For example, columnaris is often followed by 
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winter saprolegniosis (another common bacterial disease that will be discussed later).  In 

a case study, 80% of catfish ponds infected with winter saprolegniosis also experienced 

columnaris outbreaks in the preceding summer or fall. 

 

2.4.1.3 Proliferative Gill Disease (Hamburger Gill Disease) 

 Information contained in this section is based on SRAC Publication No. 475 

(Mitchell et al., 1998).  Proliferative gill disease is a common disease in farm-raised 

channel catfish caused by a myxosporean parasite called Aurantiactinomyxon sp.  This 

parasite causes severe damage to the gills.  The gills of infected fish swell and appear 

mottled red and white like raw hamburger meat.  Therefore, PGD is sometimes referred 

to hamburger gill disease.  The affected gills cannot remove sufficient oxygen from the 

water, causing catfish to suffocate and die, even when the level of dissolved oxygen is 

high enough.  The most severe outbreaks of PGD are observed in the spring, but it can 

also occur in the fall and winter.  The effect of PGD varies.  It can kill a few dozen fish 

over a couple of days, or up to 100% of the fish in less than 3 days.  Newly stocked fish 

are extremely vulnerable to this disease and account for the majority of losses associated 

with PGD.  

 

2.4.1.4 Winter Fungus (Saprolegnia) 

 Information contained in this section is based on SRAC Publication No. 4700 

(Durborow et al., 2003) and Mississippi State University Extension Service Information 



                                                                                                                                            31 

  

Sheet 1392.  Many fungi cause diseases that can infect and kill channel catfish.  The 

causative agent mostly belongs to the family Saprolegniaceae, so fungal diseases in 

channel catfish are commonly called saprolegniasis.  Winter fungus, also called winter 

kill, is the most common and economically important fungal disease of farm-raised 

channel catfish.  It usually occurs among fish of harvestable size in colder months 

between October and March.  Two factors lead to the occurrence of Winter Kill: a rapid 

decrease in the water temperature and a large number of motile fungal spores in the water.  

During colder months, if fish are unable to adapt to sudden fluctuation in the water 

temperature, rapid drops in the water temperature can impair the fish’s immune system, 

resulting in a loss of mucus from the skin and temporary suppression of mucus 

production.  Mucus protects the skin of fish from the contact and infection of fungal 

spores.  Without mucus, fugal spores can penetrate and damage the skin and muscles of 

fish, causing fish death.  The severity of winter fungus is variable and usually results in 

chronic and smaller losses.  However, high mortalities and significant losses have been 

observed.  

 

2.4.1.5 Ich (White Spot Disease) 

Information contained in this section is based on SRAC Publication No. 476 

(Durborow et al., 1998).  Ich is a common name for the protozoan parasite 

Ichthyophthirus multifiliis and the disease that it causes.  This parasite can kill a large 

number of fish in a short time.  Ich is usually transmitted into a pond by a carrier fish, 

other animals, or man.  It can also come from a river or stream that are used as a water 
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source for the pond.  In the pond, this parasite goes through three stages of its life cycle 

(tomont, theront, trophont) and survives in a fish host, where they feed and mature.  In 

advanced stages of infection, Ich is found under the mucus and epithelium (top layer of 

cells) in the fish’s gills or skin.  Ich cells are about the size of salt granules (1 mm or 1/32 

inch across).  Infected fish may have small white spots on their skin as if they were 

sprinkled with salt.  That’s why Ich is sometimes called white spot disease.  Ich can also 

cause the fish to slough off large amounts of mucus on their skin producing a stucco-like 

appearance.  This parasite causes fish kills in three ways. First, respiration of fish is 

hindered.  The thickening of the epithelium as a reaction to the Ich invasion, the 

deformation of the lamellae (the respiratory folds of the gills), and the Ich organisms 

covering the gills can reduce oxygen transfer.  Second, the epithelial layer of the gill may 

separate and results in loss of electrolytes, nutrients and fluids.  Third, the infection of Ich 

can cause the fish more susceptible to other diseases.  This disease usually occurs in 

spring and fall, and does not cause problems in warm summer months.  

 

2.4.1.6 Trematode 

Information contained in this section is based on SRAC Publication No. 1801 

(Terhune et al., 2003) and the Catfish 2003 info sheet.  Trematodes are parasites that 

infest many types of fish and are common in fish ponds frequented by fish-eating birds.  

Recently, one species of trematodes, Bolbophorus sp. has caused significant losses to 

catfish producers from Louisiana, Mississippi and Arkansas.  The life cycle of the 

Bolbophorus is very complex, which involves one final host (the American white pelican) 
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and two intermediate hosts (the ram’s horn snail and catfish).  The life cycle begins when 

the mature trematode lays eggs in the gastrointestinal tract of the American white pelican, 

which are then released into the pond together with the bird’s feces.  The eggs hatch and 

infest the ram’s horn snail.  Infected snails release larval trematodes, which then infest 

and encyst in fish.  The life cycle is completed when a pelican catches and eats the 

infected fish.  Studies show that the American white pelican and the ram’s horn snail are 

the only final and intermediate hosts for Bolbophorus, respectively.  Without these hosts, 

catfish could not be infested with Bolbophorus.  Transmission of trematodes from fish to 

fish is not possible.  Researches have shown that this trematode causes massive damage 

to the excretory system such as kidneys and liver of infected catfish.  Although 

mortalities are usually in smaller fish, food-sized fish that survive still suffer from 

anorexia and poor growth, making them unmarketable.  The easiest way to control 

Bolbophorus infection is to reduce the number of ram’s horn snail in the ponds and keep 

fish-eating birds off ponds. 

 

2.4.1.7 Channel Catfish Virus Disease 

Information contained in this section is based on SRAC Publication No. 4702 

(Camus, 2004).  Channel catfish virus disease (CCVD) is the only important viral disease 

in channel catfish production.  It exists in all catfish growing regions of the United States 

and causes high mortalities in fingerlings and fry.  The causal agent is a herpesvirus.  

This virus causes damages to the kidneys, spleen, liver, intestinal tract, pancreas and 

brain of the fish, resulting in kidney failure, destruction of blood-forming tissues and 
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hemorrhage.  Although this disease primarily affects fry or fingerlings less than one year 

old and less than six inches long, larger fish such as the brood stock, if infected, may 

transmit the disease to fry via eggs or semen.  In addition to this vertical transmission, 

this virus can be transmitted horizontally, i.e., from fish to fish via the water or by direct 

contact.  The outbreaks of CCVD usually occur in the summer.  The overall impact of 

CCVD on the catfish industry is small, which accounts for only 1 to 2% of the total 

disease losses, collectively.  However, the effects on individual producers can be 

significant.  In some production units, the mortalities even approach 100%.  

 

2.4.1.8 Channel Catfish Anemia 

 Information contained in this section is based on the annual report of the Animal 

& Dairy Science Department, University of Georgia (Burtle, 1997) and the catfish 

genetics research annual report (USDA and ARS 2003).  Channel catfish anemia (CCV) 

is a disease that causes mortalities in market size catfish, characterized by severe and 

acute anemia.  It has been reported across the southeastern U. S. since about 1981.  

During the disease outbreak, fish swim to the pond banks and begin to die.  In affected 

fish, red blood cells account for only 1 to 5% of the blood.  Since the red blood cells take 

the role of carrying oxygen from the gills to other important tissues and organs of the fish, 

scarcity of red blood cells would impair the oxygen carrying capacity and therefore 

hinder the normal functioning of other tissues.  Therefore, affected fish may have light 

pink gills, pink or white internal organs and white mouth.  That’s why sometimes this 

disease is called the white lip disease.  Preliminary findings show that the cause of this 



                                                                                                                                            35 

  

disease may be an interruption of the normal maturation sequence of red blood cell 

precursors, but a complete characterization of the disease is not yet available.  Other 

factors that may increase the number of fish kills from anemia are low levels of dissolved 

oxygen and rough handling that stresses the fish.  

 

2.4.1.9 Visceral Toxicosis of Catfish 

 Visceral toxicosis of catfish (VTC) is a newly recognized problem.  It was first 

noticed in Mississippi and Arkansas during the early spring of 1998 (APHIS 2000).  At 

that time, a few channel catfish producers reported catastrophic mortality events in their 

brood or harvest-size fish.  Most of the infected fish did not have gross external lesions, 

but necropsies revealed extensive visceral lesions such as congested spleens, pale 

proximal intestines where the blood vessels were prominent, multiple intestinal 

intussusceptions, fat effusion, and a reticular pattern to the liver due to vascular 

congestions (Khoo et al., 2003).  This disease affected food fish and brood fish every 

spring and fall since 1998, causing extremely heavy losses to channel catfish producers.  

Experiments have suggested that the cause of death by this disease might be some kind of 

toxin.  

 

2.4.2 Water Quality Related Risks 

Poor water quality is one of the most serious threats to catfish production.  Failure 

to maintain good water quality may result in massive losses.  The primary water quality 
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concerns in channel catfish production include: low dissolved oxygen, nitrite toxicosis 

and toxic algae. 

2.4.2.1 Low Dissolved Oxygen  

Jensen (1997) states that low dissolved oxygen is by far the most common water-

quality related problem in catfish production ponds.  Oxygen is necessary for the survival 

of catfish. Oxygen concentrations should be maintained above 4 ppm (parts per million) 

for catfish to grow well.  Chronically low oxygen not only reduces catfish growth, but 

also causes stress in catfish and lowers their resistance to diseases.  

Aquatic plants such as algae produce oxygen during the daylight hours as a by-

product of photosynthesis.  This is the main source of oxygen in ponds.  Under normal 

situations, photosynthesis produces adequate oxygen for respiration of aquatic animals, 

plants and the decomposition of wastes by bacteria.  But when oxygen demand exceeds 

supply, oxygen depletion in a pond occurs.  Excessive demands for oxygen usually occur 

when there are very dense algae blooms that require oxygen for respiration, especially at 

nighttime, and decomposition activities from algae bloom die-offs.  Excessive demand 

may also result from a phenomenon called turn-over which is related to weather changes 

such as rain, wind and cold, and causes the algae to die off and oxygen to be removed 

rapidly through bacterial decompositions.  Furthermore, reduced sunlight and rapid 

reduction in algae population from die-offs will inhibit oxygen production from 

photosynthesis.  Lack of agitation from wind will reduce the amount of oxygen dissolved 

in the ponds.  All these situations can reduce the supply of oxygen and result in low 

levels of dissolved oxygen.  
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Because warm water does not contain as much oxygen as cold water, most low-

oxygen problems occur between May and September when temperatures are high.  Thus, 

during warm weather months, it is more important to monitor the level of dissolved 

oxygen in the ponds.  

 

2.4.2.2 Nitrite Toxicosis 

This section depends largely on Jensen (1997) and Mississippi State University 

Extension Service Information Sheet 1390.  Catfish, like other animals, produce 

nitrogenous wastes from the digestion of the protein feeds.  Ammonia is the principal 

nitrogen waste product.  Ammonia is also produced from bacterial decomposition of 

uneaten feed and dead animal or plant, including algae.  Ammonia, although toxic to fish, 

are nutrient source for algae and certain aerobic (oxygen-requiring) bacteria.  These 

bacteria use ammonia in a process called nitrification, during which ammonia is 

decomposed into nitrite and nitrate.  Nitrite is toxic to fish while nitrate is not.  Under 

normal conditions, nitrite can be converted to nontoxic nitrate, thus nitrite does not 

accumulate to toxic levels.  But if the bacterial decomposition (nitrification) is disrupted, 

nitrite can build up and reach toxic levels.  Nitrite enters the bloodstream through the gills 

and attaches to hemoglobin of the blood, forming methaemoglobin which turns the blood 

to chocolate-brown color.  That’s why nitrite toxicosis is also called brown blood disease.  

Methoemoglobin cannot carry oxygen through the bloodstream.  Affected fish may 

suffocate and die, while fish that survive are susceptible to other stress related diseases.  
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Most nitrite problems occur during fall and spring when fluctuating temperatures may 

disrupt the bacterial decomposition.  

 

2.4.2.3 Toxic Algae 

Information contained in this section is based on SRAC Publication No. 466 

(Brunson et al., 1994).  The two most common types of algae in catfish ponds belong to 

the green and blue-green families.  Algae in catfish ponds play a twofold role.  On one 

hand, algae produce most of the oxygen in the pond through photosynthesis and 

assimilate much of the ammonia, thus helping to maintain the oxygen level and alleviate 

the problem of nitrite toxicosis in the water.  On the other hand, algae may create a severe 

problem for catfish. As mentioned before, algae blooms die-off can result in low 

dissolved oxygen. Also, toxin-producing species of blue-green algae are common in 

catfish ponds that might result in fish kills.  These blue-green algae are often related to 

the problem of off-flavor, which will be discussed below. 

 

2.4.3 Off-flavor 

Information contained in this section is based on Jensen (1997), Catfish 2003 info 

sheet, Shaik (2001) and Avery (2002).  Catfish producers are often faced with a problem 

called off-flavor that causes undesirable tastes in the fish’s flesh.  The flavor may be so 

intense that it makes the fish unmarketable.  Research has indicated that chemical 

compounds produced by blue-green algae are the cause of most common off-flavors.  

These compounds are 2-methylisoborneol (MIB) and geosmin.  When catfish absorb 
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these compounds, MIB causes a musty off-flavor and geosmin causes a muddy off-flavor.  

Because blue-green algae are most abundant in the summer and fall, off-flavor during this 

time is most severe, with 50-75% of ponds experiencing this problem.  Depending on 

temperature and other weather conditions, the duration of off-flavor varies from 2 weeks 

to over 6 months (Avery, 2002).  The economic consequences of off-flavor are 

significant. First, it delays the harvest time of market-sized fish and increases production 

cost.  Fish have to remain in the pond longer until the off-flavor goes off, which requires 

extra feeds and management efforts, thus increases the overall cost of producing them.  

The extension in production may increase risk of losses due to diseases and other 

problems.  Furthermore, off-flavor delays sales of fish, which may prevent the producer 

from selling fish at a high price, resulting in fewer total sales revenue during a given year.  

Finally, additional economic losses may arise from delays in stocking the next crop of 

catfish.  At the producer level, off-flavors increase catfish production costs by 

approximately $15 to $23 million annually (Catfish 2003), or 4 to 7 cents/pound (Avery, 

2002).  

 

2.4.4 Bird Predation 

With the growth in catfish production in recent years, piscivorous birds have 

become an increasingly serious problem.  Bird predation of catfish, especially that of 

double-crested cormorants and American white pelicans, causes millions of dollars losses 

to catfish producers.  Studies in the National Wildlife Research Center (NWRC) showed 

that captive cormorants consumed 7-9 catfish/bird/day, which resulted in a 30% reduction 



                                                                                                                                            40 

  

in fish abundance and a 23% loss in biomass in 2 ponds, with an annual impact of near $5 

million to Mississippi Delta region alone.  NWRC research also indicated that 99.6% of 

the diet of pelicans collected in northwestern Mississippi is catfish, and pelicans consume 

up to 3 pounds of catfish per foraging session.  Great egrets and blue herons are also 

predators of catfish.  Great egrets usually eat smaller catfish, while great blue herons have 

greatest impact on fish that are near the surface of the water.  In addition to eating fish, 

birds would wound fish that they don’t eat, resulting in potential loss.  Furthermore, these 

birds can serve as hosts of tramotode infections and spread diseases from pond to pond.  

Because most birds that cause problems are protected under the federal Migratory Bird 

Treaty Act (MBTA), the most common control measures are harassment techniques to 

frighten birds away from ponds (Jensen, 1997). 

 

2.4.5 Extreme Weather Conditions 

Extreme weather conditions can pose risks to catfish farms.  Examples are 

extreme hear or cold, flooding, ice-over and drought (Avery, 2002).  Temperature, an 

important factor in catfish production, depends heavily on weather condition.  Therefore, 

extreme heat or cold will affect the growth of catfish severely.  Ice can block the water 

supply.  Flooding not only causes physical damage to the farm structures, but may also 

change the quality of water, especially if the floodwater contains pesticide residues from 

nearby agricultural farms, the consequence is even more serious.  Drought reduces the 

water supply of the ponds due to high evaporation and no water replacement.  Fish and 

other aquatic plants depend on water for oxygen.  As the water supply declines, the 
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oxygen it can carry decreases and finally the fish may die.  Catfish producers should be 

alert to any of the extreme weather conditions.   

 

2.4.6 Management Error 

Management errors such as human error, mechanical failures and power outages 

are also causes of fish kills.  For example, pond-specific or farm-wide power loss in the 

summer time can lead to aerator shutdown and oxygen depletion.  

 

2.4.7 Theft and Vandalism 

Theft and vandalism normally do not cause large-scale problems in catfish farms.  

This is because of the good security procedures that catfish farmers put in place and the 

difficulty of accessing fish farm facilities without detection.  

 

2.5 Environmental Issue 

The remarkable growth of aquaculture has given rise to growing concerns about 

its impact on the environment.  According to Boyd et al. (2000), recent environmental 

concerns include wetland destruction, conversion of agricultural land to ponds, water 

pollution, loss of biodiversity, competition for water use, use of toxic or bioaccumulative 

chemicals and negative social impacts.  These concerns are mainly targeted at marine 

shrimp farming and cage culture of salmon.  The main environmental concern about 

channel catfish production is water pollution caused by the discharge of pond effluents; 

other environmental concerns seem less problematic.  Aquaculture effluents, including 
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catfish farming effluents, are regulated under the National Pollutant Discharge 

Elimination System (NPDES) of the Clean Water Act.  This Act designates the U.S. 

Environmental Protection Agency to administer and enforce the NPDES.  In addition to 

the federal regulation, states can develop and carry out their own programs (Tucker, 

1999).  With more and more states considering developing regulatory procedures, a lot of 

research has been done to evaluate the impact of pond effluents on the environment.  

In a document prepared for the United States Environmental Protection Agency 

(EPA), Tucker and Hargreaves (1998) stated that, the current production practices enable 

catfish farming to have minimal impact on the environment.  First, because EPA 

regulates the use of chemicals in catfish pond, catfish pond effluents contain 

environmentally insignificant amounts of pesticides and therapeutants.  Second, the 

concentrations of nutrients and organic substances are reduced by the longer hydraulic 

residence time in catfish ponds.  Therefore, any water that is discharged finally is diluted 

and has less environmental impact.  Third, the volumes of water that can be discharged 

from catfish ponds are low, due to some water conservation measures such as reusing 

water for multiple fish crops before it is discharged and managing the pond water levels 

to capture the most rainfall.  Finally, most water discharged from catfish ponds occurs 

during the winter and spring periods.  During that time, the high precipitation can greatly 

dilute any water discharged, thus the effluent water quality is at its seasonal best.  

Research done by Boyd et al. (2000) also showed that, channel catfish farming is not 

harmful to the environment and is conservative of water, land, feeds, energy and other 

resources.  Tucker (1999) summarizes some management practices to reduce the impact 
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of pond effluents on the environment, such as using effluents for irrigation of soybeans, 

treating pond effluents using constructed wetlands and grass filter strips.  

 

2.6 Modeling Risks 

We will consider twenty major risk factors associated with the production of 

catfish, which have been discussed in previous sections.  The effects of the risks are 

represented in the realized yields.  We can model the risks by assuming that risks affect 

yields in four aspects: frequency; severity; persistence across time; and persistence across 

space.  Frequency is defined as how often (in terms of probability) a particular risk occurs 

in a given production cycle, while severity is defined as how much loss (in percentage of 

yields) is caused by a particular risk in a given production cycle.  Persistence across time 

is the temporal correlation of a particular risk, which measures the relationship of risk 

occurring events between two production cycles.  Persistence across space is the spatial 

correlation of a particular risk, which measures the relationship of risk occurring events 

between two experimental units.  The definition of experimental units is very broad. They 

can be catfish ponds or farms; they can be in the same county or in different counties in 

the same state, or even in different states.  But we are assuming they are equally spaced 

and in an order such that the second experimental unit is closest to the first experimental 

unit and the last experimental unit is the farthest.  

Unfortunately, precise information about these four aspects of each risk factor is 

not available.  However, four aquaculture specialists provided their opinions on the 

characteristics of the risks, which helped to build a very general structure to our 
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simulations.1  A summary of their opinions is illustrated in Table 2.1.  Although the 

information they provided is subjective, it at least provides a starting point.  A formal 

survey will be sent out to the industry at the end of 2004.  The result of the survey will 

provide more accurate and precise information about the characteristics of the risks in 

catfish production, and thus will improve the applicability of our simulation study, as the 

parameters are refined. 

 Each of these four characteristics is categorized into four levels: high, medium, 

low and negligible.  The levels are quantified as follows.  High frequency means the 

probability of a particular risk occurring in a given production cycle is assumed to be 

between 0.4 and 0.5.  Medium frequency assumes a probability between 0.2 and 0.3.  

Low frequency assumes the probability is less than 0.1, and negligible frequency assumes 

a probability of less than 0.01.  High severity assumes a 20% to 30% loss in yields.  For 

example, if the riskless yield is 100 pounds/acre, then the realized yield is only 70 to 80 

pounds/acre when the risk factor occurs.  Medium severity means a 10% to 15% loss, 

while low severity represents loss of less than 5%, with negligible severity meaning a less 

than 1% loss.  Both the temporal and spatial correlation coefficients for high, medium, 

low and negligible levels are assumed to be 0.25, 0.1, 0.01 and 0 respectively.  The 

quantifications of the characteristics of risks are summarized in Table 2.2.  

Temporal and spatial correlations are modeled together using correlation matrices, 

which have blocks that represent spatial correlations of different experimental units and 

                                                
1 They are: Jimmy L. Avery, extension professor and extension aquaculture leader, James A. Steeby, 
assistant extension professor and extension aquaculture specialist, both from Mississippi State University 
Extension Service; Kevin M. Fitzsimmons, associate professor, Dept. of soil, water, environmental science, 
University of Arizona; and another epidemiologist from the industry. 



                                                                                                                                            45 

  

temporal correlations of different time periods (or production cycles) for the same 

experimental unit.  Specifically, let ρ denote spatial correlation coefficient and α the 

temporal correlation coefficient.  If tid  is the risk number representing a particular risk 

factor at time t for experimental unit i, where Tt ,,2,1 K= , ,,,2,1 Ni K= then, for a 

series of temporally and spatially correlated risk numbers 

,,,, 11211 Nddd K ,...,,,, 22221 Nddd K ,,,, 21 TNTT ddd K  the correlation matrix is:  
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where Ω  is a NN ×  matrix  
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and jω (j=1,…,T-1) is also a NN × matrix 
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One can see that Ω  represents the spatial correlation among the N experimental 

units at a given time period and jω  represents the temporal correlation of an 
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experimental unit at different time periods.  Note that we are assuming there is no serial 

correlation among different experimental units.  That is, the correlation between tid  and 

sjd ),( jist ≠≠  is zero, resulting in off-diagonal elements of jω equal to zeros.  For 

example, let N=2, T=3, and assume high spatial correlation ( 5.0=ρ ) and medium 

temporal correlation ( 1.0=α ), then the correlation matrix would be: 

66
2

2

2

2

125.01.001.00

25.0101.001.0

1.00125.01.00

01.025.0101.0

1.001.00125.0
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Once the correlation matrix of a particular risk factor is constructed, a series of 

temporally and spatially correlated risk numbers (for different experimental units and 

time periods) can be generated using the Cholesky decomposition of the correlation 

matrix.  To be more specific, let r ~ multivariate standard normal (0, In) where r is a 1×n  

vector and In is an n-dimensional identity matrix.  Let A be the correlation matrix such 

that A=LTL where L is an upper triangular matrix.  Therefore, LTr is a vector of 

multivariate normal random numbers with mean zero and correlation matrix equal to A.  

A matrix must be symmetric and positive-definite to be decomposed.  Although our 

correlation matrix is symmetric by construction, sometimes it may not be positive-

definite, depending on the temporal and spatial correlation coefficients. Fortunately, 

negative-definite correlation matrices do not occur in the simulation.  Therefore, we 
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reserve the discussion of the Cholesky decomposition of non-positive-definite matrix in 

Appendix A. 

Once a series of temporally and spatially correlated risk numbers are generated, 

we can model the frequency of the risk factor.  To model the probability that a particular 

risk factor occurs, a uniformly distributed random number is required.  Given that the 

value of cumulative distribution function (CDF) is uniformly distributed between 0 and 1, 

we can take the CDF of those multivariate normal random numbers and generate some 

probability numbers.  If the probability number is less than the quantification level of 

frequency, it means the risk factor occurs.  The severity of the risks is modeled using a 

scaling factor on the yields.  If the risk factor occurs, then a scaling factor is defined 

according to the quantification level of severity.  Otherwise, the scaling factor will be 1.  

For example, if the severity level is medium, then the scaling factor will be between 85% 

and 90%.  That means, if the risk factor occurs, the realized yield is only 85-90% of the 

riskless yield.  

The same modeling procedure is implemented for the twenty major risk factors 

and twenty scaling factors come up.  Assuming the effects of the twenty risks on the 

yields are independent, the final simulated yield will be the average yield times all these 

scaling factors.  
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Table 2.1: Summary of the characteristics for each risk 

 Risk items Frequency Severity 
Temporal 

Correlation 
Spatial 

Correlation 

1 Enteric septicemia of catfish medium medium 
low –

medium 
negligible 

– low 

2 Columnaris 
medium – 

high 
medium 

medium – 
high 

low 

3 Proliferative gill disease low 
medium – 

high 
low medium 

4 Winter fungus 
low – 

medium 
medium 

low – 
medium 

low – 
medium 

5 Channel catfish virus low low 
low –  

medium 
negligible 

– low 

6 Channel catfish anemia 
low – 

medium 
medium – 

high 
negligible 

– low 
low – 

medium 

7 Ich 
negligible – 

low 
negligible 

– low 
negligible 

– low 
negligible 

– low 

8 Trematode low 
low – 

medium 
medium 

low – 
medium 

9 Visceral toxicosis of catfish low 
medium – 

high 
medium – 

high 
low – 

medium 

10 Nitrite Toxicosis 
low – 

medium 
low – 

medium 
negligible 

– low 
negligible 

– low 

11 Toxic Algae low medium 
negligible 

– low 
low 

12 Low Dissolved Oxygen 
medium – 

high 
low – 

medium 
medium – 

high 
negligible 

– low 

13 Off-flavor 
medium – 

low 
medium medium medium 

14 Predators 
medium – 

high 
low – 

medium 
medium – 

high 
medium – 

high 

15 Ice-over 
negligible – 

low 
negligible 

– low 
negligible 

– low 
low 

16 Flooding negligible negligible negligible 
negligible 

– low 

17 Extreme heat / cold 
low – 

medium 
low – 

medium 
medium medium 

18 Drought low 
low – 

medium 
low 

medium – 
high 

19 Management Error medium high 
negligible 

– low 
low 

20 Theft and vandalism 
negligible – 

low 
negligible 

negligible 
– low 

negligible 
– low 
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Table 2.2: Summary of the quantification of risks for the base scenario 

Characteristics of risk High Medium Low Negligible 

Frequency (probability) 0.4-0.5 0.2-0.3 <0.1 <0.01 

Severity (scaling factor) 0.2-0.3 0.1-0.15 <0.05 <0.01 

Persistence Across Time (correlation) 0.25 0.1 0.01 0 

Persistence Across Space (correlation) 0.25 0.1 0.01 0 
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3. RATING METHODOLOGIES 

Accurate premium rates are essential to the actuarial soundness of the catfish 

aquaculture insurance program.  Determination of accurate premium rates requires 

precise measurement of yield risks, which in turn depends on appropriate estimation of 

the distribution of yields.  In the crop insurance literature, there are various approaches to 

modeling conditional yield distributions and hence, constructing premium rates.  These 

various approaches can be segmented into two primary groups, depending on whether 

they use a known parametric distribution or nonparametric techniques.  Most yield 

distribution models are of a parametric nature.  Under this approach, a specific parametric 

distribution could be selected a priori and parameters of the distribution are estimated 

using observed yield data.  Conventional approaches to estimating conditional yield 

distribution and rating crop insurance contracts have typically used the normal 

distribution (Botts and Boles, 1957).  Gallagher (1987) used a gamma distribution 

function in attempts to capture the asymmetry and negative skewness of soybean yields.  

Nelson (1990) confirmed negative skewness in county mean yield distributions for corn 

and thus used a beta distribution.  These approaches have the limitation that they relied 

on a priori specification.  If the distributional priori specification is incorrect, it could lead 

to inaccurate predictions and misleading inferences.  Therefore, a variety of 

nonparametric approaches to estimating yield distributions have been developed to 

overcome some of the problems associated with the parametric approaches.  Goodwin 

and Ker (1998), Ker and Coble (1997,1998), and Turvey and Zhao (1993) used univariate 

kernel density estimators to estimate yield densities.  Ker and Goodwin (1998) developed 
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an empirical Bayesian nonparametric kernel density estimator that exploits the 

similarities among the county yield densities.  

Most of the methods in rating crop insurance contracts are also applied to rating 

catfish aquaculture insurance contracts due to the large similarities of crop insurance and 

aquaculture insurance.  The first section of this chapter discusses the general formula for 

calculating premium rates and introduces the rating methodologies.  The next section 

presents the parametric approaches and the resulting premium rates.  Following this, 

nonparametric approaches are delineated and their resulting premium rates are reported.  

 

3.1 Premium Rates 

Premium rates can be expressed as expected loss as a percentage of total liability 

(Ker, 1996).  For a contract that guarantees 100%λ ×  of the predicted yield, say ey , the 

actuarially fair premium rate is given as  

 Premium Rate = 
LiabilityTotal

LossExpected
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where 0 1λ≤ ≤  and Yye −λ represents a loss.  For example, if λ  is 0.8, ey  is 5000 

pounds/acre, then the guaranteed level, or total liability would be 

400050008.0 =× pounds/acre.  If a producer’s realized yield is less than 4000 

pound/acre, then loss happens and the producer will get an indemnity.  If the probability 
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of yield less than 4000 pound/acre is 0.3, and the expected yield given a loss has 

happened is 3000 pound/acre, then premium rate is %.5.74000/)30004000(3.0 =−×  

Accuracy in premium rates is dependent on accuracy in determining the probability that a 

loss will occur and the amount of loss that occurs.  Both are given by the area under the 

probability density function between 0 and eyλ .  Thus, precise measurement of the yield 

density is crucial.  Both parametric and nonparametric approaches attempt to recover 

ˆ ( )f y , the estimated yield density or curve.  In all our simulations, λ  is chosen to be 0.75, 

and ey  is chosen to be the average yield of the first experimental unit. 

Recall the main goal of this thesis is to undertake a performance comparison of a 

number of estimators based on simulated yield data.  Twelve rating methodologies are 

considered here.  They are: (1) the empirical rate only for the first experimental unit; (2) 

the empirical rate for all experimental units; (3) assuming normal distribution only for the 

first experimental unit; (4) assuming normal distribution for all experimental units; (5) 

kernel density estimation only for the first experimental unit; (6) kernel density 

estimation for all experimental units; (7) kernel density estimation for all experimental 

units with transformation of both location and scale parameters of the first experimental 

unit; (8) kernel density estimation for all experimental units with transformation of the 

location parameter of the first experimental unit; (9) Bayesian nonparametric kernel 

density estimation; (10) assuming beta distribution only for the first experimental unit; 

(11) assuming beta distribution for all experimental units; (12) nonparametric estimation 

of similar densities.  
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In addition to the parametric or nonparametric nature of these methodologies, 

another distinction is whether they utilize only individual data or pooled data.  Pooled 

data means combining the data from all experimental units.2  When estimating the 

densities for an experimental unit of interest, the standard approach is to use only the 

yield data of that unit.  However, lack of historical yield data is one of the most 

fundamental obstacles in rating catfish aquaculture insurance contracts.  Although yield 

data by county or farm tend to be extremely scarce, the number of counties or farms can 

be large.  In some circumstances, the individual densities are believed to have some 

structural similarities that can be utilized to produce improved estimates.  For example, in 

the same reporting area, weather patterns, water sources and technology use among other 

factors could be considered similar across units.  These similarities provide a reasonal 

basis for assuming that the densities of the different units are related even though the 

magnitude of such relationships is unknown.  Therefore, an alternative to the standard 

approach is to include the yield data from other experimental units in the estimation 

process for potential efficiency gains.  In this thesis, given the relatively short length of 

time series for each experimental unit in the simulation (only 2 to 50 time periods), in 

determining the premium rate for the first experimental unit, it seems reasonable to use 

yield information from other experimental units.  Eight out of the twelve methodologies 

use extraneous data in the estimation process.  Extraneous data refers to the data from 

other experimental units.  

                                                
2 In the following discussion, we will use the term “pooled data” quite often. It is defined as the data set 
that consists of yield data from all experimental units. 
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3.2 Parametric Approaches 

3.2.1 Assuming Normal Distribution for the First Experimental Unit 

Under this approach, catfish yields of the first experimental unit are assumed to 

follow the normal distribution.  The mean and variance of the distribution are estimated 

using the sample moments.  Specifically, if 111,..., Tyy , is a sample of yields for the first 

experimental unit, then the sample mean and variance are given by: 
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Thus, the yields follow a normal distribution with mean 1µ̂  and variance 2
1σ̂ .  The 

premium rate based on a normal distribution with mean 1µ̂  and variance 2
1σ̂  is given 

by:  
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where Φ  is the normal cumulative density function, and φ  is the normal probability 

density function.  This is derived from the first moment of the truncated normal 

distribution.  If z ~ Normal ),( 2σµ  and δ  is a constant, then 

)(/)(]|[ αασφµδ Φ−=<zzE  where σµδα /)( −= (Greene, 2000). 

 

3.2.2 Assuming Normal Distribution for All Experimental Units 

Under this approach, the yields of all experimental units are assumed to follow 

one single normal distribution.  The mean and variance of this normal distribution are 
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estimated as the averages of the sample moments of each experimental unit.  If there are 

N experimental units, and Tii yy ,...,1 (i=1 to N) is a sample of yields for the ith 

experimental unit, then its sample mean and variance would be: 
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The mean and variance for the pooled data are given by:  
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In this case, the pooled data are assumed to follow a normal distribution with mean µ̂  

and variance 2σ̂ .  The premium rate based on this distribution is given by:  
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3.2.3 Assuming Beta Distribution for the First Experimental Unit 

The general formula for the probability density function of the beta distribution is  
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where p and q are the shape parameters, a and b are the lower and upper bounds, 

respectively, of the distribution, and B(p,q) is the beta function.  The lower bound of the 

yields is assumed to be 0.  Maximum likelihood estimation is used to recover the other 

three parameters.  Once the parameters are known, the yield densities are known.  The 

premium rate based on the beta distribution is given by:  
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For beta distribution, there is no closed form for this integral and as such, a numerical 

approximation is used to recover the estimated premium rate. 

 

3.2.4 Assuming Beta Distribution for All Experimental Units 

 In this case, the yield data from all experimental units are combined and assumed 

to follow a single beta distribution.  Maximum likelihood estimation is used to recover 

the four parameters of this beta distribution based on the pooled data.  Premium rates are 

estimated in the same way as in the previous section. 

  

3.3 Nonparametric Approaches 

Parametric approaches assume that the distribution of the catfish yields follows a 

known functional form.  Nonparametric density estimation techniques do not assume a 

particular functional form for the yield distributions.  Instead, they allow the data to 
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“speak for themselves”.  Thus nonparametric approaches are fully flexible and essentially 

nest alternative parametric specifications.  

 

3.3.1 Empirical Rate for the First Experimental Unit 

The simplest approach to nonparametrically estimating a probability density 

function is the histogram.  The empirical premium rate is analogous to a histogram where 

no smoothing is undertaken.  An empirical rate is simply the average loss realization.  It 

represents the expected loss if the sample size is large enough.  If yield data were 

abundantly available, the empirical rate would recover a reasonably accurate estimate.  

The empirical rate for experimental unit 1 is given by: 
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3.3.2 Empirical Rate for All Experimental Units 

When we incorporate the yield data from other experimental units, the premium 

rate is given by: 
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3.3.3 Kernel Density Estimation for the First Experimental Unit 

One of the limitations of empirical rate is that the density estimate is 

discontinuous because no smoothing is undertaken.  An alternative is to smooth between 

observations to build a continuous density estimate.  Kernel density estimation techniques 
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offer a consistent approach to smoothing observations to build a continuous density 

estimate.  For greater details about kernel density estimation, please see Appendix B.1.  

For T independent and identically distributed observations of a univariate series of yields 

from experimental unit 1, ),...,( 1111 Tt YYY = , the kernel density estimate at support point y 

is defined as: 

∑
=

⎟
⎠

⎞
⎜
⎝

⎛ −=
T

t

t

h

Yy
K

Th
yf

1

11
)(ˆ  

where )(⋅K  is chosen to be a symmetric probability density function centered at zero, and 

h is the smoothing parameter or bandwidth.  The kernel density estimator places a bump 

or individual kernel at each observation.  Intuitively, the estimate of the density at any 

support point is simply the sum of the height of the bumps, or kernels at that particular 

point.  In regions where there are a lot of observations, the estimates will be large because 

the closeness of the data points raises their weights represented in the kernels, while in 

regions with few observations, the spread of the data points decreases the weights of the 

support point, resulting a small density estimate.  

)(⋅K  is also called the kernel function.  In most cases it is chosen to be the 

standard normal distribution although a variety of alternatives may be used, such as the 

Epanechnikov kernel.  The individual kernel being a probability density function 

guarantees that the kernel estimate itself is a density.  The standard normal kernel is used 

throughout this thesis because of ease of use.  Choosing the proper smoothing parameter 

is another important issue in nonparametric kernel density estimation.  This parameter 

determines the weight to assign to neighboring observations in constructing the density 
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and thus corresponds to the amount of smoothing to be done.  A larger bandwidth will 

assign more weight to neighboring observations and thus will result in a flatter, smoother 

density function, while a smaller bandwidth will yield a rough and irregular density.  A 

variety of methods are available to estimate the bandwidth, including cross-validation, 

Silverman’s “rule-of-thumb”, and other plug-in approaches.  For computational 

consideration, a rule-of thumb approach is used to determine the bandwidth parameter for 

all kernel methods discussed in this thesis.  The rule-of-thumb bandwidth is given by:  

)5/1(**79.0 −= Th σ  

where σ  is the standard deviation and T is the number of observation.  In the 

simulations, σ  can be estimated by the sample variance.  Recall the actuarially fair 

premium rate is given by: 
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Once the density estimates for a set of support points in the domain of (0, eyλ ) are 

recovered, numerical integration can be used to recover the estimated rate.  

 

3.3.4 Kernel Density Estimation for All Experimental Units 

When yield data from other experimental units are added in the estimation, the 

pooled data are: ),...,,...,,...,,,...,( 1212111 TNNTTti YYYYYYY = .  The kernel density estimate at 

support point y is defined as: 
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Once the density estimates for a set of support points in the domain of (0, eyλ ) are 

recovered, premium rates are constructed in the same way as in section 3.3.3. 

 

3.3.5 Kernel Density Estimation for All Experimental Units with Transformation of 

both Location and Scale Parameters of the First Experimental Unit.  

This is a slight variation from the method discussed in section 3.3.4.  We are 

trying to use the yield data from other experimental units in estimating the conditional 

yield density for experimental unit 1, based on assumption of some kind of similarity 

among the densities of all units.  The concept of similarity is loosely used here because 

the extent to which the set of yield densities is similar is unknown.  If the set of curves 

were indeed similar in shape, estimators that use extraneous data would improve greatly 

in terms of efficiency.  However, when the curves are not similar as assumed, then bias 

will result.  One of the reasons that the density curves are dissimilar is because they come 

from distributions with different location or scale parameters.  Although yields are 

assumed to be normal, the location and scale parameters of other experimental units’ 

yields may be different from those of the first experimental unit, which may introduce 

bias.  A transformation of the yield data from all experimental units may be invoked such 

that the set of different densities collapses to a single density.   

A very nice property of kernel estimators is that they are invariant to transforming 

the data.  Invariance allows us to estimate the density with the transformed data, and then 

take the inverse transformation on the estimated density to retrieve the original density.  

To ensure our density estimates have mean and variance of the first experimental unit, 
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yields from each experimental unit are first standardized according to its own parameters 

prior to entering the density estimators, thus having mean zero and variance one.  

Assuming tiy  is the yield of the ith unit at time t, the standardization process is given by: 
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where iµ̂  and iσ̂  are defined in section 3.2.2.  The standardized yield data of each unit 

are then combined together and kernel density estimation is undertaken.  The kernel 

density estimate at support point z is defined as: 
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Finally, the location and scale parameters of the first experimental unit, 1µ̂  and 

1σ̂ , are used to transform these estimated densities back.  The support point and the 

corresponding density estimate are given by: 

11 ˆˆ* µσ += zy        and          1ˆ/)(ˆ)(ˆ σzfyf =  

Once the supports and densities of yields are available, premium rates are constructed in 

the same way as in the previous sections.  

 

3.3.6 Kernel Density Estimation for All Experimental Units with Transformation of 

the Location Parameter of the First Experimental Unit.  

This method is slightly different from the previous one in that it just uses the 

location parameter of the first experimental unit in the transformation.  The steps still 

involve standardization of the pooled data and then kernel density estimation.  But in the 
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transformation step, we use the location parameter of experimental unit 1 ( 1µ̂ ) and the 

scale parameter of the pooled data (σ̂ , defined in section 3.2.2).  The support point and 

the corresponding density estimate after the transformation are given by: 

1ˆˆ* µσ += zy        and         σ̂/)(ˆ)(ˆ zfyf =  

Premium rates are constructed in the same way as in the previous sections.  

 

3.3.7 Bayesian Nonparametric Kernel Density Estimation 

 Ker (1998) derived an empirical Bayes nonparametric kernel density estimator 

that exploits possible similarities among the set of unknown densities that are to be 

estimated.  Rather than placing a prior on a parameter space, the estimator uses empirical 

Bayes techniques on the estimated densities from the standard kernel-type density 

estimators discussed in previous sections.  As Ker and Ergun (2003) point out, the main 

strengths of the empirical Bayesian nonparametric kernel density estimator result from 

using kernel density estimator as the basis.  First, since the Bayesian estimator depends 

on the kernel estimator, all the variations of the kernel estimator, such as higher order 

kernels, variable kernel methods and transformation-kernel density estimators, are also 

applied to the Bayesian estimator.  Second, when the set of densities is not identical, Ker 

(1998) shows that the empirical Bayesian estimator converges in probability at a rate of 

)( )5/4(−TOp  to the standard kernel density estimator, which is faster than the rate that the 

kernel density estimator converges to the unknown density of interest, )( )5/2(−TOp .  As 

such, the Bayesian estimator inherits the same asymptotic properties as the standard 
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kernel density estimator and converges to the unknown density at the optimal rate of 

)( )5/2(−TOp .  Finally, the Bayesian estimator does not require any specification as to the 

degree or form of similarities among the set of densities of the experimental units, which 

is usually unknown in practice.  

 Under this approach, not only a single conditional yield density, but the entire set 

of conditional yield densities, one for each experimental unit, will be considered.  In our 

analysis, we have N experimental units with densities { Nfff ,...,, 21 } and random samples 

Tiii YYY ,...,, 21  from if  for .,...,2,1 Ni =  Denote the kernel density estimate at support point 

jy  for experimental unit i as ijf̂ .  Based on the pointwise limiting distribution of kernel 

density estimators, Ker (1998) proposed the following hierarchical model: 

),(~|ˆ
ijijijij Normalf σµµ  

                   ),(~ 2
jjij Normal τµµ  

where ijijij f βµ += , ijf  is the unknown density value for experimental unit i at support 

point jy , ijβ  is the bias for experimental unit i at support point jy , 2
ijσ  is the variance of 

the kernel density estimate for experimental unit i  at support point jy , jµ  is the mean 

value of the densities across experimental units at support point jy , and 2
jτ  is the 

variance of the densities across experimental units at support point jy . 

 The empirical Bayesian nonparametric kernel density estimator at support point 

jy  for experimental unit i is: 



                                                                                                                                            64 

  

)(ˆ)(ˆ~
22

2

22

2

ijj

ij
j

ijj

j
ijij ff

στ
σ

µ
στ

τ
+

+
+

=  

where the unknown parameters ( jµ , 2
jτ , 2

ijσ ) must be estimated.  

 Bootstrapping methods are usually used to estimate the variance 2
ijσ , but require a 

lot of computation time.  Therefore, an alternative estimate of 2
ijσ  is obtained by the 

asymptotic variance formula.  It is easy to show that (see Appendix B.2): 

)2/(ˆˆ 2 Thfijij πσ =  

Estimates of jµ  and 2
jτ  are obtained using the following method of moment estimators: 

∑
=

=
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1
ˆ µ  (see 

Appendix B.2).  For 2ˆ jτ , we use the positive part estimator.  

Intuitively, as the estimated variance of the kernel estimates across experimental 

units increases ( 2ˆ jτ  becomes larger), ijf
~

 will shrink less toward the overall mean ( jµ̂ ).  

Conversely, the larger the estimated variance of the kernel estimate for a given 

experimental unit ( 2ˆ ijσ ), the more ijf
~

 will shrink toward the overall mean ( jµ̂ ).  The 

greater the estimated variance within the experimental units relative to the estimated 

variance across the experimental units, the greater ijf
~

 will shrink toward the overall 

mean, which implies greater potential efficiency gains.  Ker (1998) indicates that the 

empirical Bayes nonparametric kernel estimator may offer the largest efficiency gains in 
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small samples where the variance within experimental units tends to be relatively high as 

compared to the variance across experimental units. 

In our analysis, we are interested in estimating the premium rate for the first 

experimental unit.  The empirical Bayesian nonparametric kernel density estimator at 

support point jy  for the first experimental unit is: 

)
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ˆ
(ˆ)
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ˆ
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σ
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στ

τ
+

+
+

=  

where jf1̂  is the kernel density estimates only for the first experimental unit, which is 

derived in section 3.3.3.  Premium rates are constructed in the same way as in the 

previous sections.  Appendix B.2 contains a more detailed description of this method.  

 

3.3.8 Nonparametric Estimation of Similar Densities 

 Ker (2002) developed an estimator that offers greater efficiency if the set of 

densities are similar while not losing much if the set of densities are dissimilar.  This 

method has the same objective as the Bayesian estimator discussed in the previous 

section in that they are designed to exploit any similarities among the sets of densities.  

The difference is that this method does not require a hierarchical model and thus the need 

to know the relationship among the densities is circumvented.  

 If the densities were identical, one would pool the N samples and estimate a single 

density, as we did in section 3.3.4.  However, if the densities are not identical, this 

estimator is inconsistent.  In that case, a nonparametric estimator that combines a kernel 
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estimate based on the pooled data with a kernel estimate based on the individual data may 

be considered.  

 The idea is to pool the data and obtain the kernel density estimates, denoted )(ˆ yg  

(we derived this in section 3.3.4), and then multiply an individual correction function 

)(ˆ/)()( ygyfyr ii = in order to adjust for individual effects.  The correction factor 

function is itself estimated nonparametrically by: 

)(ˆ/
1

)(ˆ
1 ti

T

t

ti
i Yg

h

Yy
K

Th
yr ∑ = ⎟

⎠

⎞
⎜
⎝

⎛ −
= . 

Thus, the estimator of possibly similar densities for the ith experimental unit is given by: 
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where ( Tiii YYY ,...,, 21 ) is the sample observations and y is a support point.  Ker (2002) 

shows that if
~

 is biased and the leading term of the bias is: 

)()"(
2

1
)()(

~
2

2 y
g

f
hyfyfE µ=−  

Let )(ˆ yf be the standard kernel density estimates based on individual data.  Recall the 

leading term of its bias is: 

)("
2

1
)()(ˆ

2
2 yfhyfyfE µ=−  

Clearly, one can decrease the bias by reducing the curvature of ).( yf  It is easy to see that 

the bias of the estimator )(
~

yf  is not a function of the curvature of the unknown true 

density as it is for the estimator ).(ˆ yf   Rather, it is a function of the second derivative of 
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the correction function )(/)()( ygyfyr = .  If the start, ),(ˆ yg  is close to the true density, 

then the correction function )( yr  will have less global curvature than that of individual 

curves.  Hence, )(
~

yf  may have less bias.  

 Ker (2002) enumerates the advantages of this estimator.  First, it starts from a 

nonparametric kernel density estimator, which does not assume any functional form and 

hence avoids any wrong specification about the underlying density.  Second, when the 

sets of densities are similar, it has a lower bias due to the correction factor and more 

efficiency due to the pooling of data.  Also, estimating the correction function 

nonparmetrically can make it fluctuate around 1 and thus the curvature will be close to 

zero.  As a result, the total curvature that is estimated with the individual sample data 

may be significantly reduced.  

 In our analysis, we are interested in the premium rate for the first experimental 

unit.  The estimator at support point y is: 
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where )(ˆ yg  is the kernel density estimates based on pooled data, which is derived in 

section 3.3.4.  Premium rates are constructed in the same way as in the previous sections.  
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4. SIMULATION ANALYSIS AND RESULTS 

 The main objective of this thesis is to investigate the small sample performances 

of various methodologies for estimating premium rates.  In satisfying this objective, we 

undertake a performance comparison of different rating methodologies based on 

simulated yield data.  This chapter focuses on simulations and the accompanying results.  

In section 2.5, we have discussed how the risks are modeled based on assumptions about 

the frequency and magnitude of each risk factor as well as their temporal and spatial 

correlations.  In the simulations, we also need to make some assumptions, such as the 

number of experimental units, the quantification of the characteristics of the risk factors 

and the ranges of the means and variances of the yield distributions.  It is important to see 

how the methodologies will perform under different assumptions: we developed one base 

scenario and eleven alternative scenarios. 

The first section of this chapter presents the yield simulator and the base scenario.  

Section 2 discusses the relationship between sample size and similarities among 

experimental units.  The designs of the remaining scenarios will be addressed in section 3.  

The last section presents the accompanying results of the twelve scenarios and the 

performances of the methodologies are compared.  The designs, MSE results, 

performance comparisons of all twelve methodologies for each scenario can be found in 

Appendix C, D and E, respectively. 
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4.1 Yield Simulator and Base Scenario 

Under the base scenario, we simulate the yields of 30 experimental units (e.g. 

farms or ponds) over a 50-year period (or 50 production cycles).  Without loss of 

generality, we focus on estimating the actuarially fair premium rate for the first 

experimental unit.  The yield simulation process is as follows. 

(1) Unconditional yields are assumed normally distributed.  Unconditional means that 

none of the risk factors have been applied.  

(2) In order to randomize the average yields of different experimental units, the means of 

the yields of the 30 experimental units are drawn from U [50000, 100000].3  These 

numbers are chosen for the following reason.  The pond is our major experimental 

unit of interest, so the mean yield should be based on the average yield of a pond.  

Catfish production is about 5,000 pounds/acre.4  The average size of a pond is 10 to 

20 acres (Robinson and Avery, 2000).  As such, the average yield of a pond is 50,000 

(5,000 times 10) to 100,000 (5,000 times 20) pounds.  

(3) The standard deviations of the yields of the 30 experimental units are drawn from 

U[10000, 15000].  

(4) The information provided by the aquaculture specialists about the characteristics of 

the 20 risk factors is summarized in Table 2.1 and quantified in Table 2.2.  The levels 

of the frequency and severity are operationalized using uniform distributions.  We do 

not assign a fixed number to represent a certain level of frequency or severity of each 

                                                
3 U [50000, 100000] refers to the uniform distribution between 50,000 and 100,000. In all of the following 
discussions, U [a, b] means a uniform distribution between a and b.  
4 This figure comes from Mississippi State University Extension Services. 
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risk factor.  Instead, we use a range.  For example, medium frequency assumes that 

the probability of a particular risk occurring is between 0.2 and 0.3.  To 

operationalize this probability, we take a random draw from U [0.2, 0.3].  Likewise, 

medium severity assumes a 10-15% loss to the unconditional yields.  That means, if 

the risk occurs, the realized yields are only 85-90% of the unconditional yields.  

Hence the operationalized percentage loss in the simulation that represents medium 

severity will be a random draw from U [0.1, 0.15]. 

(5) Based on the information and quantification about the temporal and spatial 

correlations, a unique correlation matrix is constructed for each of the 20 risk factors.  

(6) For each of the 20 risk factors, a series of temporally and spatially correlated risk 

numbers (for each of the 30 experimental units at each of the 50 time periods) are 

generated using the Cholesky decomposition of the correlation matrix.  This involves 

multiplying the decomposition matrix with a series of multivariate standard normal 

random numbers.  To be more precise, we first draw a series of multivariate standard 

normal random numbers.  For example, let r ~ multivariate standard normal (0, In) 

where r is a 1×n  vector and In is an n-dimensional identity matrix.  Then we 

decompose the correlation matrix.  Let A be the correlation matrix such that A=LTL 

where L is an upper triangular matrix.  Finally, the decomposition matrix is 

multiplied by the vector of multivariate standard normal random numbers, i.e., LTr is 

a vector (with dimension n) of multivariate normal random numbers with mean zero 

and correlation matrix equal to A.  Therefore, LTr is made up of a series of 

temporally and spatially correlated risk numbers.  
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(7) To model the probability that an event occurs, a random number from U [0, 1] is 

drawn.  For example, if p is such a random number, then p<0.1 means the probability 

that an event occurs is 0.1.  In our simulations, given the fact that the cumulative 

distribution function (CDF) is distributed as U [0, 1], we can use the CDF at each of 

those multivariate normal random risk numbers as an indicator of risk occurring.  If 

the CDF is less than the operationalized probability defined in step (4), it means that 

particular risk factor occurs in an experimental unit at a given time period.  Consider 

an example.  If the risk number for the 10th experimental unit at the 25th time period 

is –0.67, then the CDF of a standard normal distribution at –0.67 will be 0.25.  If the 

frequency level for that risk factor is medium, then the operationalized probability 

that represents medium frequency will be a random draw from U [0.2, 0.3].  Suppose 

it is 0.26. Because 0.25 is less than 0.26, then this risk factor occurs at the 10th 

experimental unit in the 25th time period.  If the CDF is greater than the 

operationalized probability, it means the risk factor does not occur.  

(8) If the risk factor occurs, a scaling factor will be defined according to the severity 

level operationalized in step (4).  The scaling factor is actually one minus the 

percentage loss.  For example, if the severity level is medium, it assumes a 10-15% 

loss to the unconditional yields.  Then the scaling factor will be a number between 

0.85 and 0.9.  In this case, the operationalized scaling factor is a random draw from 

U [0.85, 0.9].  If the risk factor does not occur, the scaling factor will be equal to 1.  

The same procedure is done for the 20 major risk factors and 20 scaling factors come 

up.  
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(9) Unconditional yields are drawn from a normal distribution with mean and variance 

specified in the step (2) and (3).  

(10)  Scaling factors are applied to the unconditional yields.  Assuming the effects of the 

twenty risks on the yields are independent, the final realized yields will be the 

unconditional yields multiplied by all those twenty scaling factors.  

(11)  Premium rates are estimated for 14 specific time periods, based on yield data up to 

that time period.  That is, in constructing the premium rate for time t, yield data from 

1 to t are used.  

(12)  The simulation process is replicated 1000 times.  For greater detail about the 

simulation process, readers are directed to Appendix F where a pseudo code in SAS-

IML is given.  

(13)  The performances of the twelve methodologies are compared based on the mean 

squared error (MSE), which is given by: 

∑ =
−= 1000

1

2 1000/)(
i i ratetruerateestimatedMSE  

(14)  The true rate is recovered by replications using the empirical rate method, where 

25,000 yields are simulated and utilized. 

 

4.2 Relationship between Sample Size and Similarity among Experimental Units 

When estimating the yield density for the first experimental unit, the standard 

approach is to use only the yield data from that experimental unit.  However, yield data 

from a particular experimental unit may not be abundant for estimation of the density.  

Therefore, yield data from other experimental units are incorporated in the estimation 
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process in hopes of potential efficiency gains.  The incorporation of extraneous 

information is based upon the assumption that other experimental units are similar in 

structure to the first experimental unit.  If the experimental units are, in fact, structurally 

dissimilar, the use of extraneous data could lead to an efficiency loss.  Hence there is a 

trade-off in making use of extraneous data, depending on the availability of data and the 

similarity among the experimental units.  The relationship between the sample size and 

the similarity among the experimental units is summarized in Figure 4.1.  

In the second quadrant where the sample size is relatively small and the degree of 

similarity is relatively high, the extraneous data are very important.  In this case, the 

available individual data is sufficiently scarce that estimators based on those data will be 

relatively inefficient.  However, because the densities of the experimental units are 

similar, incorporating the data from other experimental units could significantly increase 

the efficiency.  If the set of densities are not exactly similar bias will result, but the 

decrease in variance may be sufficiently large so that gains in efficiency result.  

An opposite case is in quadrant IV, where the sample size is relatively large and 

the degree of similarity is relatively small.  In this case, the extraneous data are not 

important.  As mentioned before, the problem with scarce data is that the estimators are 

relatively inefficient.  However, as we have more individual data, our estimators will 

have less variance.  The advantage of adding extraneous information for potential 

efficiency gains may not be as prominent as in small sample.  In addition, because the set 

of densities are very dissimilar in this case, adding extraneous information will introduce  
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Figure 4.1: Relationship Between Sample Size and Similarity Among Experimental 

Units                 
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Quadrant I:  The importance of extraneous data depends on the trade-off between the 

increase in bias and decrease in variance. 

Quadrant II: Extraneous data are important. Estimators do better because variance 

decreases more than bias increases.  

Quadrant III: The importance of extraneous data depends on the trade-off between the 

increase in bias and decrease in variance. 

Quadrant IV: Extraneous data are unimportant. Estimators do worse because bias 

increases more than variance decreases. 
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large biases into the estimation process.  Therefore, it is less likely that any decreases in 

variance resulting from using extraneous data will be sufficient to offset the increase in 

bias.  Estimators using extraneous data will do worse in this case. 

In quadrant I, whether the estimators will do better or worse depends on the trade-

off between the additional biases relative to the decrease in variance resulting from the 

incorporation of extraneous information.  In this situation, because the set of densities are 

relatively similar, bias increase will be small.  But at the same time, the decrease in 

variance is also small because of the relatively large sample size.  Overall, if the bias 

increases more than the variance decreases, then the estimators will do worse and vice 

versa. 

In quadrant III, there is again the trade-off between increased bias and decreased 

variance.  But in this case, bias increase will be large due to the relatively large 

dissimilarity among the experimental units.  The decrease in variance is also large 

because of the small sample size.  Overall, if the variance decreases more than the bias 

increases, the estimators will do better and vice versa.   

 

4.3 Designs of Other Scenarios 

 
4.3.1 The Relationship among the Twelve Rating Methodologies 

In Chapter 3, we discussed twelve rating methodologies for estimating the 

actuarially fair premium rate of the first experimental unit.  The notations for these 

methodologies are contained in Table 4.1.  We will follow these notations in all of our 

discussions of results. 
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Table 4.1: Notations of Rating Methodologies 

Method 1 Empirical Rate for Experimental Unit 1 (See Section 3.3.1) 

Method 2 Empirical Rate for All Experimental Unit (See Section 3.3.2) 

Method 3 Assuming Normal Distribution for Experimental Unit 1 (See Section 3.2.1) 

Method 4 Assuming Normal Distribution for All Experimental Units (See Section 3.2.2) 

Method 5 Kernel Density Estimation for Experimental Unit 1 (See Section 3.3.3) 

Method 6 Kernel Density Estimation for All Experimental Units (See Section 3.3.4) 

Method 7 
Kernel Density Estimation of All Experimental Units with Transformation of Both 

Location and Scale Parameters of Experimental Unit 1 (See Section 3.3.5) 

Method 8 
Kernel Density Estimation of All Experimental Units with Transformation of 

Location Parameter of Experimental Unit 1 (See Section 3.3.6) 

Method 9 Bayesian Nonparametric Kernel Density Estimation (See Section 3.3.7) 

Method 10 Assuming Beta Distribution for Experimental Unit 1 (See Section 3.2.3) 

Method 11 Assuming Beta Distribution for All Experimental Units (See Section 3.2.4) 

Method 12 Estimation of Similar Densities (See Section 3.3.8) 

 

 The relationship among the twelve methodologies is summarized in Figure 4.2.  

In fact, they represent a continuation in the way that extraneous data are utilized in the 

estimation process.  Because we are trying to estimate the density for the first 

experimental unit, if the shape, location and scale parameters are based on individual 

data, we would consider they are unrestricted, in the sense that the characteristics of the 

individual data are preserved.  However, if they are based on the pooled data, which 

consists of the data from all experimental units, we consider them to be restricted.  

Restriction on the location parameter is the strongest because it has the largest effect on 

the estimation of premium rate, followed by restrictions on the scale parameter and then 

by the shape.  
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Figure 4.2: Relationship Among the Twelve Rating Methodologies 
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At one extreme located at the left side of the figure, only individual data are used 

(methods 1, 3, 5 and 10) and thus the characteristics of the individual data are completely 

preserved.  Located at the far right side, data from other experimental units are used in 

the estimation of the density for the first experimental unit without any adjustments for 

individual effect (methods 2, 4, 6 and 11).  That is, the shape, location and scale 

parameters of the density are derived entirely from the pooled data.  There are four 

methodologies that fall between these two extremes.  They use the pooled data with 

respect to either changing the shape, location or scale parameters of the density.  

Depending on how they preserve the characteristics of the density of the individual data, 

these four methodologies also come in order.  Both methods 9 and 12 use the individual 

data to correct the shape of the density while restricting the location and scale parameters 

to the pooled data.  Method 9 is closer to the left-hand side because it uses the densities 

derived in method 5 as the base, while method 12 starts with the densities derived in 

method 6 and then multiplies an individual correction function to adjust for individual 

effect.  Method 7 and 8 come before method 9 and 12.  Both of them preserve the shape 

of the density of the pooled data, but method 7 uses the location and scale parameters of 

the first experimental unit to transform the pooled data, while method 8 only uses the 

location parameter in the transformation.  In this sense, method 7 uses more individual 

information and thus is less restrictive than method 8.  

 We can see that these twelve methodologies use the pooled data in different 

degrees, from the lowest degree on the left-hand side to the highest degree on the right-

hand side.  Therefore, varying the relevancy or heterogeneity of the pooled data should 
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affect the performances of the different estimators in the reverse order.  That is, methods 

to the right are affected most and methods to the left are least affected. 

 

4.3.2 Variations from the Base Scenario 

The base scenario is the starting point of our simulation study.  Based on the 

discussion in the previous sections, we can consider three distinct variations from the 

base scenario to design other scenarios.  

 

4.3.2.1 Variation in the Quality of Extraneous Data 

The first variation is in the quality of extraneous data.  Essentially we have two 

types of estimators. The first type of estimator only utilizes individual data, i.e., only the 

data from the first experimental unit is used in estimating the premium rate for it.  The 

second type of estimator uses both individual data and extraneous data, i.e., information 

in other experimental units is “borrowed” to recover the premium rate for the first 

experimental unit.  When the sample size is small, the extraneous data may assist in 

improving the efficiency in estimating the premium rate for the first experimental unit, 

depending on how much and how relevant the information contained in other 

experimental units is.  Therefore, by varying the information contained in other 

experimental units and varying the similarities among the experimental units, we can 

design scenarios that should affect the performances of estimators that use the extraneous 

data.  This kind of variation includes changes in the number of experimental units, in the 

spatial correlation and in the heterogeneity among experimental units.  
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(1) Changing the number of experimental units.  The number of experimental units in the 

simulation is an important factor when we use extraneous data.  The more 

experimental units, the more potential information are added in the estimation and 

vice versa.  Therefore, we design scenarios 2, 3 and 4 to see the effects of increasing 

(twice) and decreasing (once) the number of experimental units. 

(2) Changing the spatial correlation.  By increasing the spatial correlation, the 

information contained in contiguous experimental units is decreased.  By decreasing 

the spatial correlation, the information contained in contiguous experimental units is 

increased.  Therefore, scenarios 5 and 6 are designed to check the effect of changing 

the spatial correlation. 

(3) Changing the heterogeneity of experimental units.  As mentioned before, the 

similarities among the experimental units play an important role on the performances 

of the estimators that use extraneous data.  Whether these estimators will perform 

better or worse depend on how identical the densities of the experimental units are.  If 

the experimental units are, in fact, very dissimilar, incorporating extraneous data 

could lead to efficiency losses.  Therefore, scenarios 7 and 8 are constructed to 

examine the effect of changing the degree of similarities among the experimental 

units.  By making the distributions of the yields among the experimental units more 

heterogeneous, the information contained in neighboring units is less relevant or less 

similar.  Conversely, by making the distributions of the yields less heterogeneous, the 

information contained in the neighboring units is more relevant.  We vary the 
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heterogeneity by increasing or decreasing the ranges of the uniform distribution for 

the mean and standard deviation of yields.  

 

4.3.2.2 Variation in the Temporal Correlation 

The second variation is the temporal correlation.  Because we assume the 

temporal correlation just occurs in individual experimental unit, there is no serial 

correlation among different experimental units.  Although all estimators will be affected 

by this kind of variation, estimators that use only the individual data can be checked to 

see the net effect of changing the quantification of the temporal correlation.  As such, 

scenarios 9 and 10 are designed. 

 

4.3.2.3 Variation in the Severity Levels 

The third variation is the quantification of the severity levels of the risks.  It will 

have influence on performances of all estimators because it changes the shape of the 

density of the yields.  If the quantification of the severity levels is higher, that means, 

when the risk occurs, it will cause more losses to the insured.  The probability that catfish 

producers will incur a loss is higher.  Therefore, the mass in the lower tail—below the 

guarantee—of the yield density will be greater.  But if the quantification is lower, then 

the lower tail will be thinner.  As such, scenarios 11 and 12 are designed to check these 

effects. 
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The variations of other scenarios from the base scenarios are summarized in Table 

4.2 and the detailed structures of designs for all scenarios are contained in Appendix C. 

Table 4.2: Design of Other Scenarios 

Scenario   How It Differs from the Base Scenario 
1   This is the base scenario 

2 
  Decrease the number of experimental units 
(from 30 to 10) 

3 
  Increase the number of experimental units 
(from 30 to 70) 

4 
  Increase the number of experimental units 
(from 30 to 100) 

5   Increase spatial correlation 
6   Decrease spatial correlation 
7   Increase heterogeneity 
8   Decrease heterogeneity 
9   Increase temporal correlation 
10   Decrease temporal correlation 
11   Increase severity levels 
12   Decrease severity levels 

 

Table 4.3: The True Premium Rate in Each Scenario 

Scenario True Rate 

1 13.15% 
2 13.15% 
3 13.15% 
4 13.15% 
5 13.15% 
6 13.15% 
7 14.99% 
8 11.72% 
9 13.15% 

10 13.15% 
11 19.96% 
12   6.92% 
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4.4 Simulation Results 

 This section discusses the MSE results for each scenario and the performances of 

the twelve methodologies are compared both horizontally (within scenarios) and 

vertically (across scenarios, the first scenario being the baseline).  For a complete list of 

results, readers are directed to Appendix D. 

The true rate in each scenario is reported in Table 4.3.  Note that the true rates in 

scenarios 2, 3, 4, 5, 6, 9 and 10 are the same as the true rate in scenario 1 because 

variations in these scenarios do not change the distribution of the yields of experimental 

unit 1.  Therefore, the true rate should remain unchanged.  But in scenarios 7, 8, 11 and 

12, the distribution of the yields of experimental unit 1 is changed.  The true rates under 

these scenarios are expected to change.  

 

4.4.1 Comparison of Simulation Results within Scenarios 

 Although the performances of the twelve methodologies may be different under 

different scenarios, they do show some consistent patterns.  Appendix E contains a 

graphic comparison of the performances of the twelve methodologies in each scenario.  

In most of the scenarios, methods that use only individual data—methods 1, 3, 5 and 

10—have larger MSEs than their counterparts—methods 2, 4, 6 and 11, which use 

extraneous data.  This is expected because the sample size in our simulation is from 2 to 

50.  In addition, the data generating process might make the densities of the experimental 

units quite similar.  Therefore, adding external information from other experimental units 

in estimating the premium rate for experimental unit 1 results in large efficiency gains.  
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In all of the scenarios, methods 2, 6, 11 seem to have relatively small MSEs at all levels 

of data.  Recall that these methods use extraneous data without any adjustments for 

individual effect.  The fact that these estimators perform better than other estimators 

overall, again, suggests the set of the densities of all experimental units are very similar 

so that grouping the data will assist in improving the accuracy of the estimators.  

 For most of the estimators, when the sample size increases, MSEs decrease.  But 

for method 8, this is not always the case.  In some of the scenarios, as the sample size 

increases from 40 to 50, the MSEs of method 8 increases.  An extreme case is in scenario 

12, where the MSEs decrease until the sample size reaches 10 and then increase steadily 

afterwards.  This fact suggests that method 8 may be very sensitive to the similarities 

among the experimental units.  Recall that method 8 is the kernel density estimation of all 

experimental units with transformation of location parameter of experimental unit 1.  

Hence the shape and the scale parameter are restricted by the pooled data.  The more 

restrictions, the higher the potential biases.  In addition, in larger samples, we have less 

variance of our estimators.  The decrease in variance resulting from pooling the data may 

be less than that in smaller samples.  Therefore, as the sample size gets larger, the bias 

introduced by incorporating extraneous data may outweigh the decrease in variance, 

resulting in larger MSEs.  In spite of this, method 8 overall performs competitively 

relative to other methods.  For sample size less than 5, methods 2, 6 and 11 have smaller 

MSEs than method 8.  But from sample size larger than 5, method 8 begins to dominate 

other methods significantly. 
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4.4.2 Comparison of Base Scenario and Scenarios 2, 3 and 4 

 In scenario 2, we decrease the number of experimental units from 30 to 10.  

Because this change will affect the information contained in other experimental units, we 

would expect estimators that use extraneous data to be affected, while the performances 

of the estimators that only use individual data will remain almost unchanged.  Simulation 

results show that, for most of the methods that use extraneous data, such as methods 2, 6, 

8, 9 and 12, MSEs are larger compared to the base scenario.  For methods 4 and 11, 

MSEs are first larger and then smaller.  For methods that only use individual data, such as 

methods 1, 3, 5 and 10, MSEs don’t change significantly. 

 Decreasing the number of experimental units has insignificant effect on methods 

1, 3, 5 and 10 because this variation only affects the extraneous data.  For methods 2, 4, 

6, 7, 8 and 11, we will expect that, as the sample size gets larger, MSEs are first larger 

and then smaller than those in the base scenario.  This is because these methods use 

extraneous data to improve efficiency.  When the sample size is small, extraneous data 

are very important.  If we decrease the number of experimental units, the information 

obtained from contiguous units is decreased and the efficiency gains will be decreased.  

Therefore, MSEs will be larger.  Although the external information is less, the bias 

introduced also decreases because we are using less extraneous data.  When the sample 

size is large and the decrease in variance resulting from using extraneous data is less, the 

bias introduced by incorporating external information will outweigh the decrease in 

variance.  Using less external information will introduce less bias, which then results in 

smaller MSEs.  Note that the turning point differs across each method.  In our simulation, 
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results show that MSEs for method 4 becomes smaller when the sample size reaches 10, 

while methods 2, 6, 8 have larger MSEs for all levels of data, which suggests that the 

turning points for these methods may occur at larger sample sizes.  For methods 9 and 12, 

decreasing the number of experimental units will result in larger MSEs for all levels of 

data.  This is true because when the sample size is large, these estimators will converge to 

the individual estimators.  Using extraneous data would not introduce large bias for these 

two methods at large samples.   

 In scenario 3 and 4, we increase the number of experimental units to 70 and 100, 

respectively.  Again, we expect the changes in the performances of the estimators will 

follow the trend described in the previous paragraph.  For methods 1, 3, 5 and 10 in these 

two scenarios, MSEs don’t change much because increasing the number of experimental 

units will only affect the methods that use extraneous data.  In scenario 3, MSEs of 

methods 4, 6 and 11 are smaller compared to the base scenario, while MSEs of methods 2 

and 8 are first smaller and then larger than those in the base scenario.  These results are 

consistent with the trend we mentioned in the previous paragraph, which shows that, for 

these methods, using more extraneous data will benefit more in small samples than large 

samples.  But for methods 9 and 12, we can see some inconsistent results.  MSEs of both 

estimators are larger than that in the base scenario, although they still converge in large 

samples.  This may suggest that if we have a large number of experimental units, 

incorporating all this information will result in large biases, which may offset any 

decreases in variance, even in smaller samples.  This trend is even more obvious in 

scenario 4, where the number of experimental units is ever greater.  In scenario 4, most of 
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the methods that use extraneous data have larger MSEs than they do in the base scenario.  

Only methods 2, 6 and 8 behave normally in this scenario.  

 

4.4.3 Comparison of Base Scenario and Scenarios 5 and 6 

 In scenario 5, we increase the spatial correlations among the experimental units, 

while we decrease the spatial correlations in scenario 6.  The effects on the estimators 

mimic the effects of changing the number of experimental units.  By increasing the 

spatial correlations, the information contained in contiguous experimental units is 

decreased, just as decreasing the number of experimental units.  Conversely, by 

decreasing the spatial correlations, the information contained in contiguous experimental 

units is increased, just like the effect of increasing the number of experimental units.  

Simulation results show that, again, for methods 1, 3, 5 and 10 in these two scenarios, 

MSEs do not change much because changing the spatial correlation only affect the data 

contained in other experimental units.  Thus methods that don’t use extraneous data will 

not be affected.  Results in scenario 5 show that methods 7, 8 and 9 have larger MSEs 

than they do in the base scenario, which is expected because of the following reason.  

When the sample size is small, we need extra information in the estimation for potential 

efficiency gains.  But if the information contained in other experimental units is less, 

which is the case in scenario 5, then MSEs will increase.  Results in scenario 6 show that 

methods 7, 9 and 12 have smaller MSEs than in the base scenario, which is another 

consistent example.  For other methods—those methods that using extraneous data—it 

seems that they all behave almost similarly in three scenarios.  This may suggest that 
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changing the spatial correlations among the experimental units does not really have much 

effect on the performances of most of the estimators.  This may be true because of the 

way we define the spatial correlations.  Remember the spatial correlations among the 

experimental units decrease exponentially if the experimental units are farther away.  

Therefore, only the most contiguous experimental units will really have influences on 

experimental unit 1.  Moreover, we use small number to quantify the levels of spatial 

correlations.  For example, we assign 0.5 as the highest level of spatial correlation.  This 

can also be reason for the insignificant effect of changing spatial correlations.  

 

4.4.4 Comparison of Base Scenario and Scenarios 7 and 8 

 In scenario 7, we decrease the similarity among the experimental units by making 

their yield distributions more heterogeneous, while in scenario 8, we increase the 

similarity by making the distribution less heterogeneous.  Again, this variation will have 

effects on the methods that use extraneous data.  Simulation results show that, the 

performances of the methods that only use individual data—methods 1, 3, 5 and 10—

don’t change much compared to the base scenario.  However, for methods that use 

extraneous data, things are different.  In scenario 7, methods 2, 6, 7 and 9 have larger 

MSEs than in the base scenario.  This is due to the lower similarity among the different 

experimental units.  If the experimental units are less identical, when we use the 

extraneous data in the estimation, a larger bias will be introduced, which then results in 

larger MSEs.  In addition, the increase of MSEs will go up at a faster rate in larger 

samples than in small samples.  Recall that in a small sample, the extraneous data are 
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very important, which will decrease the variance of the estimator significantly.  In that 

case, even though the experimental units are less similar, incorporating extraneous data 

will end up with only slightly higher MSEs.  However, when the sample size is large, the 

decreases in variance are not large enough to offset the bias increases, MSEs will 

increase even more, which explains the larger difference in MSEs in larger samples than 

in smaller samples.  Let’s take an example.  For methods 9 in scenario 7, the increase in 

MSE is 12% at sample size 3, 18% at sample size 7, 46% at sample size 30 and 49% at 

sample size 50, compared to the base scenario.  Other methods such as methods 2, 7 and 

9 also show the same pattern.  In scenario 8, methods 4, 7, 9 and 12 have smaller MSEs 

than in the base scenario, which is a counter example to scenario 7 as expected. 

 

4.4.5 Comparison of Base Scenario and Scenarios 9 and 10 

 In scenario 9, we make the temporal correlations among time periods stronger, 

while in scenario 10, we make the temporal correlations weaker.  Methods 1, 3, 5 and 10 

are checked to see the net effect of changing temporal correlation.  Results show that, in 

scenario 9 these methods have higher MSEs than they do in the base scenario, while in 

scenario 10 they have smaller MSEs.  This suggests that decreasing the temporal 

correlations might improve the performances of the estimators.  This situation is very 

similar to the case when we change the spatial correlations among the experimental units.  

When we use individual data to estimate the density, the more information contained in 

the data, the better our estimates will be.  If the temporal correlations are increased, the 

information contained in the data is decreased and the estimators will do worse.  
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Conversely, if the temporal correlations are decreased, the information contained in the 

data is increased and thus the estimators will do better.  

 

4.4.6 Comparison of Base Scenario and Scenarios 11 and 12 

In scenario 11, we make the severity levels stronger, i.e., the risks will cause more 

losses, while in scenario 12, the severity levels are made weaker.  This kind of variation 

will affect performances of all estimators because it changes the shape of the yield 

distributions.  The true rate under scenario 11 is significantly larger than in any other 

scenarios.  This is expected because when we increase the quantification of severity, the 

associated loss also increases.  Therefore, the probability that a loss occurs is greater, 

which results in a fatter lower tail—below the guarantee—of the yield density.  Premium 

rates depend on the mass in the lower tail. The larger mass in the lower tail, the higher 

premium rates.  In addition, MSEs of each estimator in this scenario are significantly 

higher than those in the base scenario.  This is true because when the mass under the 

yield density below the guarantee is greater, the variance of the density at each support 

point in that area will be larger.  Since premium rates also depend on the density 

estimates in that area, the estimators of premium rates will have larger errors.  Conversely, 

the true rate in scenario 12 is much smaller than those in any other scenarios.  All 

estimators perform significantly better than they do in the base scenario.  
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4.5 Summary 

 There exist some general results that may be ascertained from the simulation 

study. 

• Overall, estimators that use extraneous data perform better than those that only 

use individual data.  In most of the twelve scenarios, the performances of methods 

1, 3 and 5, which are the simplest methods that utilize individual data, are poorest.  

This suggests that, only using the individual data may result in large inefficiency 

in the estimated premium rates.  Therefore, when the sample size is small, it is 

appropriate to include external information.  

• Using extraneous data does not necessarily improve the performances of the 

estimators.  This is due to two reasons.  First, when the sample size is large, the 

decrease in variance resulting from incorporating external information may be 

small relative to the increase in bias.  Therefore, the estimators will perform 

worse.  Second, extraneous data should be used only if one is reasonably 

confident that there is some form of similarities among the experimental units.  If 

the similarities are too small, estimators will do worse.  

• In all of the scenarios, methods 2, 6, 11 have relatively small MSEs at all levels of 

data.  Method 8 also performs encouragingly, except in scenario 12.  At sample 

size less than 5, methods 2, 6 and 11 perform better than method 8, while in larger 

sample, method 8 dominates all other methods with significantly smaller MSEs. 
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5. SUMMARY AND CONCLUSION 

For the past two decades, aquaculture has been the fastest growing segment of 

agriculture in the United States.  Given the importance of aquaculture, the Risk 

Management Agency of the United States Department of Agriculture has begun to 

investigate the feasibility of providing insurance tools for four aquaculture species, 

catfish, trout, salmon and baitfish, because these species have the largest economic values.  

This thesis focuses on catfish insurance.  

Today, the catfish industry is the largest sector in the U. S. aquaculture industry in 

terms of production and sales values.  As with other agriculture practices, catfish 

producers also face a variety of production hazards.  The major perils include diseases, 

water related problems, off-flavor, bird predation etc., which significantly affect the 

profitability of the industry and hinder its further development.  Due to the nature of 

catfish aquaculture production practices, the implementation of aquaculture insurance to 

the catfish industry will present a number of difficulties.  Lack of historical yield data is 

one of the most fundamental obstacles in rating catfish insurance policies.  If historical 

yield data were available, one could employ time series models to predict future yields 

and use various parametric and nonparametric approaches to construct the premium rates.  

However, catfish insurance, or aquaculture insurance is just a pilot program.  While there 

might be data on country-level and state-level, there is no data on county-level or farm-

level.  Therefore, simulations are needed to generate possible yield data under relatively 

reasonable assumptions. 
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The contribution of this thesis is to conduct simulations to generate the yield data 

based on some possibly relevant data generating processes, and to evaluate the 

performances of various parametric and nonparametric approaches in determining 

premium rates.  These data generating processes involve the various major risk factors 

associated with the catfish production that affect the yields negatively.  This thesis 

considers twenty major risk factors.  Four aquaculture specialists provided their opinions 

on the frequency and severity of each risk factor as well as their temporal and spatial 

correlations, which helped to build a very general structure to our simulations.  Yield data 

are generated by modeling these four characteristics of each risk factor.  

Twelve rating methodologies are considered to determine the actuarially fair 

premium rates based on the simulated data.  These methodologies are distinct in two 

ways: parametric or nonparametric, and whether they use individual data or pooled data.  

The parametric methodologies include normal distribution and beta distribution.  The 

nonparametric methodologies include empirical rates, kernel density estimation, Bayesian 

nonparametric kernel density estimation, and estimation of possibly similar densities.  

These methodologies are common in the crop insurance literature.  The second 

distinction is motivated by the fact that data is scarce in reality.  Incorporating extraneous 

yield data may provide large potential efficiency gains in the estimation.  The twelve 

methodologies are considered in an attempt to minimize inefficiencies or inequities in the 

catfish insurance program.  Recovering accurate premium rates is essential to an 

actuarially sound catfish insurance program.  If the premium rates are overestimated or 

underestimated, program losses will increase due to adverse selection and moral hazard 
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problems.  Of course, these losses cannot be eliminated.  Even with abundant data, one 

still could not estimate the premium rates without any errors.  However, the losses may 

be minimized by appropriate choice of rating methodologies.  It is our hope that, through 

this simulation study, we can eliminate some inappropriate rating methodologies.  In the 

quest of finding some appropriate methodologies for rating catfish insurance policies, 

mean squared error is used as the criterion. 

In order to increase the applicability of this simulation study, we developed 

twelve scenarios to see how the methodologies will perform under different assumptions.  

The performances of the twelve methodologies are compared both horizontally (within 

each scenario) and vertically (across scenarios, the first scenario being the baseline).  The 

findings from the simulations are: First, estimators that use extraneous data perform 

better than those that only use individual data when the sample size is small.  Second, 

using extraneous data does not necessarily improve the performances of the estimators 

because it depends on the availability of individual data and the similarities among the 

experimental units.  When the sample size is large, the decrease in variance resulting 

from incorporating external information may be small relative to the increase in bias.  

Therefore, the estimators will perform worse.  Moreover, extraneous data should be used 

only if one is reasonably confident that there is some form of similarities among the 

experimental units.  If the similarities are too small, estimators will do worse.  Third, in 

most of the scenarios, methods 2, 6, 8 and 11 perform relatively better than other methods.  

Methods 1, 3 and 5 perform poorly in all scenarios, which may suggest that these 

methods are inappropriate in rating catfish insurance contract.  
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 Our simulation study also has an empirical application in that it provides a general 

structure for simulating yield data when actual data is not available.  Many agricultural 

products also face the problem of scarce data or no data.  In that situation, we can follow 

the simulation process discussed in this thesis to generate yield data for estimation 

purposes.  

 There are mainly two future studies on this thesis.  First, we might add more 

rating methodologies such as semiparametric approach in the estimation.  Second, a 

formal survey will be carried out in the industry soon.  Based on the results of the survey, 

we might need to refine the parameters or assumptions in our simulation in order to make 

it more realistic. 
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APPENDIX A: CHOLESKY DECOMPOSITION OF NON-POSITIVE-DEFINITE 

MATRIX 

 The Cholesky decomposition of the correlation matrix is needed for the sampling 

of correlated risk numbers.  A matrix must be symmetric and positive-definite to be 

decomposed.  Although our correlation matrix is symmetric by construction, sometimes it 

may not be positive-definite, depending on the values of the temporal and spatial 

correlation.  For example, when T=6, N=4, ρ =0.25 andα =0.5, the correlation matrix is 

not positive-definite.  An easy way to check the definiteness of a matrix is by looking at 

the eigen values of the matrix.  If all the eigen values are positive, then the matrix is 

positive-definite.  For the previous example, one of the eigen values is negative (-0.002), 

hence it is not positive-definite.  When the correlation matrix is not positive- definite, we 

cannot carry out the Cholesky decomposition. 

 There are a number of ways to deal with the decomposition of a non-positive-

definite matrix and we think the following approach is most appropriate and easy to 

implement in our situation.  The key is to adjust the negative eigen values of the 

correlation matrix.  Recall, for a symmetric positive definite matrix A, it can be written as: 

T
k

k

k
T vvvvPPA )(

0

0

)( 1

1

1 L

L

MOM

L

L

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=Λ=
λ

λ
 

where kλλ ,,1 L  are eigen values of A, and P is a matrix of independent eigen vectors of A.  

Our correlation matrix is constructed in the same way.  First, we need to find out the 

eigen values and eigen vectors of the correlation matrix and construct P and Λ .  In case 

any of the eigen values are negative, we will adjust them to a small positive value, 0.05.   

Other eigen values that are greater than 0.05 will remain unchanged. Hence the new set 

of eigen values are all positive numbers that are greater than or equal to 0.05.  Suppose 

the diagonal matrix with the new eigen values on the diagonal is Λ~ , then the correlation 

matrix can be reconstructed using Λ~  and the original P, i.e.,  

TPPA Λ= ~~
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The new correlation matrix is, by construction, symmetric and positive definite because 

Λ~  is a diagonal matrix made up of positive numbers.  We find that the difference 

between the new correlation matrix and the original one is very small after this 

adjustment.  For instance, in the previous example, the maximal difference in elements of 

the two matrices is only 0.006.  
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APPENDIX B: NONPARAMETRIC TECHNIQUES 

B.1 Kernel Density Estimation 

 For a set of independent observations ( nyyy ,...,, 21 ), the kernel density estimator 

at support point y  is defined as: 
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where h is the smoothing parameter or bandwidth and )(⋅K  is the kernel function.  The 

kernel estimator places bumps, or individual kernel at each observation and then sums 

over those bumps.  That is, the density estimate at any support point is the sum of the 

height of the bumps, or kernels at that particular point.  

 The following assumptions are made on the smoothing parameter h: 
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Assumption (ii) means that the smoothing parameter approaches zero at a slower rate 

than 1−n .  

 Mean Squared Error (MSE) is a commonly used error metric in density estimation 

because it captures both the variance and bias of the estimator.  It measures the distance 

between the estimated function and the true function for a given point.  
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That means the kernel density estimator is biased.  However, assumption (i) guarantees 

that the estimator is asymptotically unbiased.  The variance of the estimator can be shown 

in the same way 

11 )()()()()(ˆvar −− += nhoyfKRnhyf  

where dzzKKR ∫= 2)()( .  As with the bias, the variance of the estimator goes to zero as 

the sample size goes to infinity because of assumption (ii).  Therefore, the nonparametric 

kernel density estimator is consistent.  Once the bias and variance are known, the MSE is 

given by: 
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 The kernel function )(⋅K  determines the shape of the bumps and the smoothing 

parameter h determines their dispersion.  Therefore, the choices of )(⋅K  and h are very 

important.  MISE is a logical criterion, which is the integration of MSE over the entire 

support.  
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Thus, MISE is the sum of the integrated squared bias and the integrated variance of the 

estimator )(ˆ yf .  

 The first decision is how to choose a kernel function.  Epanechnikov (1969) 

derived the optimal non-negative kernel function with respect to minimizing MISE of the 

estimated density.  Subsequently, Rosenblatt (1971) showed that choice of a suboptimal 

kernel, such as the standard normal, results in only a moderate loss in the asymptotic 

MISE.  Therefore, the standard normal kernel function is often chosen in practice.  For 

our analysis, we use the standard normal kernel and evaluate the densities over a range of 
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minus 5 standard deviations from the mean and up to the guarantee of the insurance 

policy. 

 A variety of methods are available for choosing the bandwidth h such as cross-

validation and Silverman’s “rule-of-thumb”.  Cross validation usually involves repeatedly 

estimating the density with a single observation omitted and selecting the bandwidth that 

minimizes the MISE.  Parzen (1962) showed that the optimal choice of h that minimizes 

the MISE is given by: 

)5/1()5/1(25/12)5/2(
2 ])(''[])([ −−−

∫∫= ndyyfdttKkhopt  

where fdttKtk ,)(2
2 ∫= is the true density and ''f represents 22 / yf ∂∂ .  However, one 

can see that the optimal h depends on the unknown density )( yf being estimated.  

Silverman (1986) suggests a rule of thumb for choosing h in empirical applications given 

a normal kernel:  
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Silverman found this decision rule to be robust against the level of skewness and the 

degree of bi-modalness that would be present in the yield data.  

 There is another decision about the smoothing parameter as to whether it is global 

or local.  A global smoothing parameter gives equal weight to each data realization.  But 

sometimes, this global parameter may undersmooth the detail in the tails of the 

distribution.  This is problematic particularly for long-tailed densities such as the 

conditional yield densities.  Because premium rates depend highly on the lower tail of the 

conditional yield density, a local smoothing parameter may be considered, and hence the 

adaptive kernel methods.  The adaptive kernel estimator allows the smoothing parameter 

to vary with each realization.  Therefore, a vector of smoothing parameters with 

dimension equal to the data is used instead of just a single smoothing parameter.  The 

smoothing parameter would be inversely related to the denseness of the data so that the 

tail realizations will not be undersmoothed.  For more elaboration of the adaptive kernel 

method, the readers are directed to Ker and Coble (1998), Ker and Goodwin (2000). 
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B.2 Bayesian Nonparametric Kernel Density Estimation  

Recall the following hierarchical model:  

),(~|ˆ
ijijijij Normalf σµµ  

                  ),(~ 2
jjij Normal τµµ  

where ijijij f βµ += , ijf  is the unknown density value for unit i at support point jy , ijβ  

is the bias for unit i at support point jy , 2
ijσ  is the variance of the kernel density estimate 

for unit i  at support point jy , jµ  is the mean value of the densities across units at 

support point jy , and 2
jτ  is the variance of the densities across units at support point jy .  

The posterior estimate for the hierarchical is: 
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where the unknowns ( jµ , 2
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asymptotic variance:  
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where )( ijyf  is the true density at support point jy  for experimental unit i. An estimate 

of 2
ijσ  would be: 

)2/(ˆˆ 2 nhfijij πσ =  

An estimate of the mean and variance across units is obtained using the method of 

moment estimators: ∑
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nonparametric kernel density estimator at support point jy  for experimental unit i is: 
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APPENDIX C: THE STRUCTURE OF SIMULATION DESIGN 

Table C.1: Base scenario 

Number of experimental units N=30 

Mean Standard Deviation 
Heterogeneity of yields 

U [50000, 100000] U [10000, 25000] 

Characteristics of risk High Medium Low Negligible 

Frequency 0.4-0.5 0.2-0.3 <0.1 <0.01 

Severity 0.2-0.3 0.1-0.15 <0.05 <0.01 

Temporal Correlation 0.25 0.1 0.01 0 

Spatial Correlation 0.25 0.1 0.01 0 

Table C.2: Scenario 2 (decrease the number of experimental units) 

Number of experimental units N=10 

Mean Standard Deviation 
Heterogeneity of yields  

U [50000, 100000] U [10000, 25000] 

Characteristics of risk High Medium Low Negligible 

Frequency  0.4-0.5 0.2-0.3 <0.1 <0.01 

Severity  0.2-0.3 0.1-0.15 <0.05 <0.01 

Temporal Correlation 0.25 0.1 0.01 0 

Spatial Correlation 0.25 0.1 0.01 0 

Table C.3: Scenario 3 (increase the number of experimental units) 

Number of experimental units N=70 

Mean Standard Deviation 
Heterogeneity of yields  

U [50000, 100000] U [10000, 25000] 

Characteristics of risk High Medium Low Negligible 

Frequency  0.4-0.5 0.2-0.3 <0.1 <0.01 

Severity  0.2-0.3 0.1-0.15 <0.05 <0.01 

Temporal Correlation 0.25 0.1 0.01 0 

Spatial Correlation 0.25 0.1 0.01 0 
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Table C.4: Scenario 4 (increase the number of experimental units) 

Number of experimental units N=100 

Mean Standard Deviation 
Heterogeneity of yields  

U [50000, 100000] U [10000, 25000] 

Characteristics of risk High Medium Low 
Negligibl

e 
Frequency  0.4-0.5 0.2-0.3 <0.1 <0.01 

Severity  0.2-0.3 0.1-0.15 <0.05 <0.01 

Temporal Correlation 0.25 0.1 0.01 0 

Spatial Correlation 0.25 0.1 0.01 0 

Table C.5: Scenario 5 (increase spatial correlation) 

Number of experimental units N=30 

Mean Standard Deviation 
Heterogeneity of yields  

U [50000, 100000] U [10000, 25000] 

Characteristics of risk High Medium Low Negligible 

Frequency 0.4-0.5 0.2-0.3 <0.1 <0.01 

Severity 0.2-0.3 0.1-0.15 <0.05 <0.01 

Temporal Correlation 0.25 0.1 0.01 0 

Spatial Correlation 0. 5 0.25 0.1 0 

Table C.6: Scenario 6 (decrease spatial correlation) 

Number of experimental units N=30 

Mean Standard Deviation 
Heterogeneity of yields  

U [50000, 100000] U [10000, 25000] 

Characteristics of risk High Medium Low Negligible 

Frequency 0.4-0.5 0.2-0.3 <0.1 <0.01 

Severity 0.2-0.3 0.1-0.15 <0.05 <0.01 

Temporal Correlation 0.25 0.1 0.01 0 

Spatial Correlation 0. 1 0.05 0.005 0 
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Table C.7: Scenario 7 (increase heterogeneity) 

Number of experimental units N=30 

Mean Standard Deviation 
Heterogeneity of yields  

U [30000, 120000] U [10000, 40000] 

Characteristics of risk High Medium Low Negligible 

Frequency 0.4-0.5 0.2-0.3 <0.1 <0.01 

Severity 0.2-0.3 0.1-0.15 <0.05 <0.01 

Temporal Correlation 0.25 0.1 0.01 0 

Spatial Correlation 0.25 0.1 0.01 0 

Table C.8: Scenario 8 (decrease heterogeneity) 

Number of experimental units N=30 

Mean Standard Deviation 
Heterogeneity of yields  

U [70000, 80000] U [10000, 15000] 

Characteristics of risk High Medium Low Negligible 

Frequency 0.4-0.5 0.2-0.3 <0.1 <0.01 

Severity 0.2-0.3 0.1-0.15 <0.05 <0.01 

Temporal Correlation 0.25 0.1 0.01 0 

Spatial Correlation 0.25 0.1 0.01 0 

Table C.9: Scenario 9 (increase temporal correlation) 

Number of experimental units N=30 

Mean Standard Deviation 
Heterogeneity of yields  

U [50000, 100000] U [10000, 25000] 

Characteristics of risk High Medium Low Negligible 

Frequency 0.4-0.5 0.2-0.3 <0.1 <0.01 

Severity 0.2-0.3 0.1-0.15 <0.05 <0.01 

Temporal Correlation 0.5 0.25 0.1 0 

Spatial Correlation 0.25 0.1 0.01 0 
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Table C.10: Scenario 10 (increase temporal correlation) 

Number of experimental units N=30 

Mean Standard Deviation 
Heterogeneity of yields  

U [50000, 100000] U [10000, 25000] 

Characteristics of risk High Medium Low Negligible 

Frequency 0.4-0.5 0.2-0.3 <0.1 <0.01 

Severity 0.2-0.3 0.1-0.15 <0.05 <0.01 

Temporal Correlation 0.1 0.05 0.005 0 

Spatial Correlation 0.25 0.1 0.01 0 

Table C.11: Scenario 11 (increase severity) 

Number of experimental units N=30 

Mean Standard Deviation 
Heterogeneity of yields 

U [50000, 100000] U [10000, 25000] 

Characteristics of risk High Medium Low Negligible 

Frequency 0.4-0.5 0.2-0.3 <0.1 <0.01 

Severity 0.3-0.4 0.2-0.25 <0.1 <0.05 

Temporal Correlation 0.25 0.1 0.01 0 

Spatial Correlation 0.25 0.1 0.01 0 

Table C.12: Scenario 12 (decrease severity) 

Number of experimental units N=30 

Mean Standard Deviation 
Heterogeneity of yields 

U [50000, 100000] U [10000, 25000] 

Characteristics of risk High Medium Low Negligible 

Frequency 0.4-0.5 0.2-0.3 <0.1 <0.01 

Severity 0.1-0.2 0.05-0.1 <0.01 0 

Temporal Correlation 0.25 0.1 0.01 0 

Spatial Correlation 0.25 0.1 0.01 0 
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APPENDIX D: SIMULATION RESULTS FOR EACH SCENARIO  
 
Notation: 
 
Method 1: Empirical Rate for Experimental Unit 1 

Method 2: Empirical Rate for All Experimental Units  

Method 3: Assume Normal for Experimental Unit 1 

Method 4: Assume Normal for All Experimental Units 

Method 5: Kernel Density Estimation for Experimental Unit 1 

Method 6: Kernel Density Estimation for All Experimental Units 

Method 7: Kernel Density Estimation for All Experimental Units with Transformation of Experimental Unit 1's Mean and 

Variance 

Method 8: Kernel Density Estimation for All Experimental Units with Transformation of Experimental Unit 1's Mean 

Method 9: Empirical Bayesian Nonparametric Density Estimation 

Method 10: Assume Beta for Experimental Unit 1 

Method 11: Assume Beta for All Experimental Units 

Method 12: Estimation of Similar Densities 
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Table D.1: MSE ×  1,000 For Scenario 1  
 

Time Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7 Method 8 Method 9 Method 10 Method 11 Method 12 

2 17.06 3.44 22.02 5.96 8.61 2.93 10.42 6.56 9.32 8.09 3.99 9.31 

3 11.50 2.22 13.48 3.80 5.71 1.95 7.05 2.45 6.17 4.39 2.56 6.22 

4 9.24 1.74 9.85 2.90 4.73 1.55 5.64 1.22 4.88 2.91 2.06 5.11 

5 7.45 1.39 7.63 2.39 3.81 1.25 4.55 0.71 3.75 2.32 1.69 4.12 

6 6.12 1.14 5.96 2.06 3.09 1.04 3.72 0.47 2.92 1.88 1.43 3.36 

7 5.31 1.01 5.22 1.85 2.83 0.91 3.45 0.41 2.45 1.76 1.27 3.08 

8 4.70 0.90 4.57 1.71 2.61 0.82 3.16 0.36 2.13 1.63 1.16 2.83 

9 4.19 0.80 4.10 1.59 2.35 0.73 2.87 0.31 1.75 1.48 1.03 2.55 

10 3.84 0.74 3.81 1.51 2.18 0.68 2.65 0.27 1.56 1.42 0.97 2.38 

15 2.63 0.47 2.65 1.26 1.54 0.44 1.83 0.15 0.92 1.10 0.67 1.70 

20 1.99 0.35 2.08 1.16 1.17 0.34 1.37 0.09 0.65 0.97 0.53 1.31 

30 1.25 0.22 1.59 1.01 0.80 0.21 0.95 0.07 0.44 0.78 0.36 0.93 

40 0.95 0.17 1.37 0.97 0.63 0.16 0.75 0.07 0.35 0.69 0.31 0.75 
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50 0.76 0.14 1.24 0.95 0.52 0.14 0.63 0.08 0.29 0.63 0.29 0.63 



                                                                                                                                          111 

  

Table D.2: MSE ×  1,000 For Scenario 2  
 

Time Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7 Method 8 Method 9 Method 10 Method 11 Method 12 

2 16.89 4.82 21.51 6.57 8.61 3.62 9.73 7.00 9.41 7.99 4.81 9.61 

3 12.81 3.30 15.52 4.36 6.02 2.43 6.90 3.54 6.51 4.61 3.33 6.78 

4 9.77 2.53 10.38 3.37 4.73 1.84 5.39 2.12 4.90 3.01 2.60 5.36 

5 8.19 2.05 8.54 2.83 4.07 1.50 4.56 1.49 3.97 2.49 2.18 4.57 

6 6.92 1.72 6.93 2.45 3.46 1.29 3.88 1.13 3.13 2.21 1.87 3.91 

7 6.06 1.58 6.03 2.17 3.16 1.18 3.53 0.96 2.68 2.00 1.71 3.54 

8 5.23 1.40 5.16 1.94 2.72 1.04 3.07 0.82 2.17 1.72 1.52 3.08 

9 4.59 1.26 4.57 1.74 2.51 0.92 2.82 0.72 1.86 1.59 1.34 2.84 

10 4.26 1.13 4.18 1.58 2.30 0.82 2.57 0.63 1.66 1.52 1.21 2.60 

15 2.85 0.79 2.80 1.20 1.55 0.55 1.73 0.42 0.91 1.12 0.83 1.77 

20 2.19 0.60 2.22 1.01 1.20 0.41 1.31 0.29 0.64 0.98 0.61 1.38 

30 1.44 0.44 1.66 0.83 0.88 0.28 0.93 0.18 0.47 0.86 0.42 1.04 

40 1.14 0.36 1.45 0.74 0.71 0.22 0.73 0.13 0.37 0.77 0.32 0.85 

50 0.87 0.30 1.26 0.70 0.56 0.18 0.58 0.10 0.30 0.65 0.26 0.70 
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Table D.3: MSE ×  1,000 For Scenario 3  
 

Time Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7 Method 8 Method 9 Method 10 Method 11 Method 12 

2 17.68 3.07 22.51 5.57 8.95 2.73 11.49 6.70 9.61 8.36 3.77 9.46 

3 12.05 1.97 13.87 3.40 6.39 1.74 8.00 2.32 6.82 4.71 2.38 6.73 

4 9.33 1.45 9.98 2.56 4.93 1.29 5.90 1.04 5.13 2.97 1.79 5.21 

5 7.76 1.11 7.92 2.08 3.98 1.02 4.66 0.53 4.00 2.56 1.44 4.22 

6 6.76 0.97 6.58 1.84 3.43 0.89 4.02 0.35 3.28 2.20 1.29 3.64 

7 5.69 0.85 5.41 1.65 2.91 0.78 3.47 0.27 2.64 1.89 1.13 3.10 

8 5.05 0.73 4.84 1.52 2.57 0.67 3.12 0.22 2.18 1.67 0.98 2.75 

9 4.46 0.66 4.26 1.44 2.24 0.60 2.77 0.19 1.79 1.44 0.90 2.42 

10 4.09 0.60 3.88 1.35 2.06 0.54 2.55 0.16 1.57 1.30 0.82 2.22 

15 2.79 0.41 2.67 1.12 1.45 0.36 1.79 0.08 0.90 1.02 0.58 1.58 

20 2.11 0.32 2.10 1.01 1.14 0.28 1.35 0.06 0.64 0.94 0.46 1.25 

30 1.47 0.22 1.59 0.88 0.85 0.19 0.97 0.06 0.45 0.84 0.32 0.96 

40 1.10 0.17 1.34 0.82 0.66 0.14 0.75 0.07 0.35 0.71 0.25 0.78 

50 0.94 0.15 1.24 0.79 0.58 0.12 0.64 0.08 0.30 0.67 0.22 0.70 
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Table D.4: MSE ×  1,000 For Scenario 4  
 

Time Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7 Method 8 Method 9 Method 10 Method 11 Method 12 

2 16.65 2.59 20.60 6.43 9.17 2.51 12.02 7.55 9.85 8.16 3.42 9.84 

3 11.67 1.80 13.40 4.36 6.39 1.79 8.09 2.76 7.01 4.57 2.46 6.87 

4 9.23 1.35 9.68 3.36 5.20 1.37 6.32 1.27 5.56 3.11 1.95 5.58 

5 7.41 1.06 7.51 2.89 4.19 1.11 5.03 0.68 4.37 2.47 1.63 4.51 

6 6.23 0.86 6.09 2.57 3.49 0.91 4.21 0.42 3.48 2.16 1.38 3.79 

7 5.35 0.76 5.20 2.41 3.06 0.82 3.74 0.32 2.92 1.92 1.29 3.34 

8 4.86 0.68 4.66 2.26 2.83 0.74 3.49 0.28 2.61 1.79 1.19 3.11 

9 4.31 0.62 4.19 2.17 2.54 0.68 3.19 0.23 2.28 1.60 1.13 2.80 

10 3.97 0.58 3.87 2.12 2.31 0.65 2.90 0.20 2.03 1.44 1.09 2.55 

15 2.69 0.41 2.80 1.84 1.65 0.47 2.09 0.09 1.30 1.14 0.87 1.88 

20 2.06 0.33 2.35 1.73 1.32 0.39 1.68 0.05 0.95 0.98 0.78 1.55 

30 1.41 0.25 1.85 1.62 0.96 0.30 1.20 0.03 0.67 0.86 0.67 1.16 

40 1.11 0.20 1.65 1.54 0.80 0.24 1.01 0.02 0.56 0.80 0.60 0.99 

50 0.94 0.17 1.57 1.49 0.72 0.21 0.92 0.02 0.52 0.75 0.55 0.91 
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Table D.5: MSE ×  1,000 For Scenario 5  
 

Time Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7 Method 8 Method 9 Method 10 Method 11 Method 12 

2 16.07 3.42 20.02 6.04 8.57 2.93 10.49 6.70 9.24 7.77 3.83 9.31 

3 10.99 2.29 12.27 3.74 6.13 1.97 7.44 2.69 6.55 4.50 2.57 6.69 

4 8.79 1.72 9.08 2.87 4.92 1.52 5.81 1.35 5.10 2.96 2.00 5.33 

5 7.38 1.39 7.58 2.43 4.13 1.26 4.88 0.80 4.06 2.54 1.70 4.46 

6 6.31 1.16 6.07 2.14 3.55 1.05 4.21 0.52 3.34 2.26 1.45 3.85 

7 5.42 0.98 5.24 1.93 3.07 0.90 3.67 0.40 2.75 1.95 1.25 3.37 

8 4.86 0.87 4.74 1.80 2.76 0.81 3.33 0.34 2.33 1.81 1.14 3.03 

9 4.42 0.78 4.36 1.68 2.49 0.73 3.04 0.30 1.99 1.67 1.03 2.74 

10 4.03 0.71 3.98 1.56 2.33 0.67 2.85 0.27 1.78 1.52 0.94 2.57 

15 2.80 0.46 2.98 1.30 1.75 0.44 2.17 0.15 1.12 1.22 0.65 1.94 

20 2.10 0.35 2.43 1.14 1.40 0.33 1.72 0.10 0.82 1.06 0.51 1.58 

30 1.37 0.24 1.80 1.02 0.93 0.23 1.16 0.06 0.54 0.89 0.38 1.09 

40 0.98 0.17 1.49 0.99 0.69 0.17 0.85 0.06 0.40 0.72 0.32 0.83 

50 0.78 0.13 1.33 0.95 0.57 0.13 0.71 0.06 0.34 0.64 0.27 0.70 
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Table D.6: MSE ×  1,000 For Scenario 6  
 

Time Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7 Method 8 Method 9 Method 10 Method 11 Method 12 

2 17.06 3.45 22.37 6.13 8.19 3.02 10.13 6.30 8.95 7.79 3.90 8.93 

3 11.42 2.40 13.58 3.93 5.70 2.11 6.99 2.60 6.24 4.28 2.70 6.21 

4 8.69 1.73 9.50 2.95 4.41 1.55 5.29 1.24 4.62 2.82 2.02 4.80 

5 6.94 1.34 7.43 2.38 3.61 1.21 4.30 0.75 3.59 2.31 1.63 3.93 

6 6.01 1.14 6.21 2.08 3.11 1.04 3.72 0.52 2.92 2.03 1.42 3.40 

7 5.21 0.97 5.31 1.84 2.69 0.89 3.24 0.40 2.37 1.67 1.22 2.94 

8 4.46 0.86 4.57 1.69 2.34 0.79 2.84 0.34 1.92 1.36 1.10 2.57 

9 4.02 0.77 4.04 1.54 2.12 0.70 2.62 0.30 1.59 1.21 0.98 2.34 

10 3.56 0.68 3.53 1.49 1.90 0.63 2.36 0.25 1.36 1.07 0.89 2.10 

15 2.52 0.46 2.66 1.24 1.45 0.43 1.79 0.13 0.85 0.95 0.64 1.61 

20 1.96 0.35 2.20 1.14 1.15 0.33 1.40 0.09 0.62 0.89 0.52 1.29 

30 1.30 0.23 1.64 1.02 0.81 0.22 0.99 0.07 0.44 0.77 0.38 0.94 

40 1.01 0.17 1.42 0.96 0.65 0.16 0.79 0.08 0.36 0.69 0.31 0.77 

50 0.80 0.13 1.26 0.93 0.53 0.12 0.64 0.09 0.30 0.61 0.26 0.64 
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Table D.7: MSE ×  1,000 For Scenario 7  
 

Time Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7 Method 8 Method 9 Method 10 Method 11 Method 12 

2 19.17 5.90 23.18 5.58 10.05 3.40 11.83 3.95 10.98 9.65 4.09 10.55 

3 12.39 4.24 14.47 2.77 6.01 2.47 7.41 1.05 6.99 5.47 2.58 6.38 

4 9.70 3.71 10.48 1.83 4.68 2.03 5.83 0.55 5.47 3.49 2.06 4.99 

5 7.66 3.23 8.02 1.35 3.64 1.70 4.64 0.44 4.26 2.60 1.68 3.91 

6 6.17 2.95 6.22 1.05 2.97 1.48 3.87 0.42 3.46 2.04 1.42 3.22 

7 5.36 2.84 5.36 0.90 2.71 1.31 3.62 0.37 2.99 1.77 1.26 2.94 

8 4.80 2.71 4.68 0.79 2.50 1.21 3.33 0.35 2.69 1.60 1.13 2.71 

9 4.26 2.59 4.07 0.69 2.21 1.10 2.99 0.32 2.30 1.47 1.00 2.41 

10 3.90 2.52 3.75 0.63 2.07 1.04 2.81 0.32 2.12 1.33 0.95 2.26 

15 2.58 2.13 2.45 0.41 1.46 0.77 2.01 0.27 1.47 1.03 0.64 1.60 

20 1.91 1.97 1.85 0.30 1.13 0.63 1.58 0.23 1.13 0.89 0.48 1.25 

30 1.21 1.85 1.32 0.19 0.82 0.46 1.23 0.19 0.82 0.76 0.31 0.94 

40 0.93 1.77 1.07 0.14 0.66 0.39 1.04 0.17 0.67 0.67 0.25 0.78 

50 0.76 1.71 0.93 0.12 0.57 0.36 0.94 0.16 0.57 0.62 0.23 0.67 



                                                                                                                                          117 

  

Table D.8: MSE ×  1,000 For Scenario 8  
 

Time Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7 Method 8 Method 9 Method 10 Method 11 Method 12 

2 15.66 2.94 21.77 4.97 7.20 2.60 9.03 7.80 7.67 7.00 4.07 7.69 

3 10.85 1.93 13.26 3.37 5.05 1.70 6.24 3.87 5.19 3.67 2.67 5.30 

4 8.73 1.55 9.60 2.63 4.26 1.35 4.86 2.22 4.13 2.47 2.16 4.34 

5 7.20 1.28 7.38 2.18 3.47 1.12 3.81 1.43 3.14 2.02 1.78 3.51 

6 6.00 1.06 5.76 1.87 2.82 0.92 3.01 0.98 2.37 1.76 1.50 2.83 

7 5.19 0.95 4.98 1.65 2.56 0.82 2.70 0.80 1.94 1.65 1.33 2.55 

8 4.58 0.86 4.33 1.50 2.35 0.74 2.43 0.67 1.65 1.50 1.20 2.33 

9 4.08 0.76 3.89 1.36 2.13 0.66 2.18 0.58 1.33 1.38 1.06 2.10 

10 3.77 0.72 3.59 1.28 1.97 0.62 1.99 0.52 1.16 1.35 1.00 1.93 

15 2.68 0.49 2.47 1.01 1.41 0.42 1.28 0.30 0.64 1.08 0.67 1.33 

20 2.10 0.39 1.91 0.89 1.08 0.34 0.88 0.18 0.43 0.92 0.52 0.99 

30 1.39 0.29 1.39 0.73 0.74 0.26 0.54 0.10 0.30 0.81 0.34 0.65 

40 1.10 0.24 1.17 0.68 0.59 0.22 0.40 0.09 0.26 0.71 0.27 0.51 

50 0.92 0.22 1.03 0.66 0.50 0.20 0.31 0.09 0.23 0.61 0.25 0.41 
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Table D.9: MSE ×  10,000 For Scenario 9 
 

Time Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7 Method 8 Method 9 Method 10 Method 11 Method 12 

2 16.20 3.55 19.50 6.56 9.02 3.12 10.92 7.29 9.56 8.07 4.11 9.71 

3 11.27 2.44 12.37 4.27 6.40 2.17 7.79 3.18 6.82 4.56 2.77 6.95 

4 9.25 1.81 10.06 3.35 5.14 1.64 6.19 1.74 5.29 3.16 2.16 5.56 

5 7.82 1.46 8.18 2.81 4.31 1.35 5.17 1.10 4.24 2.70 1.81 4.67 

6 6.73 1.19 6.87 2.48 3.63 1.11 4.39 0.74 3.39 2.26 1.52 3.93 

7 5.95 1.06 5.94 2.25 3.27 0.99 3.96 0.60 2.90 2.09 1.37 3.54 

8 5.29 0.95 5.29 2.07 2.99 0.89 3.62 0.50 2.54 1.96 1.26 3.24 

9 4.69 0.86 4.73 1.96 2.65 0.81 3.19 0.42 2.15 1.75 1.16 2.86 

10 4.32 0.76 4.27 1.87 2.39 0.73 2.91 0.36 1.86 1.54 1.06 2.59 

15 2.82 0.48 2.88 1.53 1.65 0.48 2.03 0.19 1.13 1.18 0.73 1.84 

20 2.19 0.36 2.36 1.34 1.34 0.37 1.65 0.12 0.82 1.06 0.58 1.51 

30 1.51 0.24 1.85 1.19 0.96 0.25 1.17 0.07 0.56 0.90 0.44 1.12 

40 1.12 0.18 1.57 1.11 0.75 0.19 0.93 0.06 0.44 0.79 0.36 0.91 

50 0.90 0.14 1.42 1.06 0.63 0.16 0.79 0.05 0.38 0.70 0.32 0.79 
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Table D.10: MSE ×  1,000 For Scenario 10  
 

Time Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7 Method 8 Method 9 Method 10 Method 11 Method 12 

2 16.36 3.44 20.28 5.77 8.32 2.95 10.30 6.39 9.00 7.69 3.77 9.00 

3 11.57 2.25 13.43 3.59 5.94 1.95 7.31 2.40 6.32 4.42 2.51 6.44 

4 8.99 1.61 9.42 2.67 4.59 1.43 5.46 1.19 4.74 2.81 1.91 4.96 

5 7.19 1.28 7.43 2.22 3.68 1.16 4.43 0.70 3.62 2.33 1.56 4.01 

6 5.78 1.03 5.74 1.92 3.05 0.95 3.66 0.48 2.82 1.97 1.30 3.33 

7 4.99 0.86 4.80 1.75 2.56 0.80 3.13 0.37 2.21 1.60 1.12 2.81 

8 4.41 0.77 4.31 1.63 2.33 0.72 2.85 0.32 1.90 1.45 1.02 2.54 

9 4.00 0.70 3.93 1.50 2.15 0.64 2.65 0.27 1.66 1.36 0.92 2.35 

10 3.59 0.62 3.51 1.40 1.97 0.57 2.43 0.24 1.43 1.30 0.82 2.16 

15 2.43 0.43 2.53 1.18 1.41 0.40 1.76 0.13 0.90 0.99 0.59 1.58 

20 1.88 0.31 2.05 1.06 1.10 0.29 1.35 0.09 0.61 0.86 0.46 1.25 

30 1.28 0.20 1.55 0.95 0.77 0.19 0.91 0.08 0.40 0.77 0.33 0.89 

40 1.00 0.16 1.35 0.90 0.62 0.14 0.71 0.09 0.33 0.68 0.27 0.73 

50 0.78 0.12 1.22 0.88 0.50 0.11 0.60 0.10 0.28 0.61 0.23 0.61 
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Table D.11: MSE ×  1,000 For Scenario 11 
 

Time Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7 Method 8 Method 9 Method 10 Method 11 Method 12 

2 33.56 4.79 42.66 12.17 22.10 6.27 21.32 15.68 24.38 19.28 7.41 22.60 

3 23.81 2.93 29.41 7.62 15.96 5.23 15.55 7.50 18.51 13.64 4.61 16.31 

4 19.30 2.21 22.92 5.80 13.74 4.55 13.80 5.97 15.85 10.77 3.63 13.99 

5 15.87 1.78 17.48 4.80 11.86 4.07 12.04 5.53 13.43 8.58 2.95 12.11 

6 12.94 1.47 13.64 4.17 10.41 3.74 10.60 5.41 11.58 6.83 2.49 10.60 

7 11.55 1.27 11.91 3.77 9.75 3.39 10.00 5.35 10.37 5.90 2.19 9.93 

8 10.37 1.11 10.48 3.52 9.32 3.18 9.47 5.24 9.66 5.22 1.97 9.48 

9 9.40 0.97 9.40 3.30 8.73 2.98 8.85 5.10 8.80 4.43 1.74 8.87 

10 8.68 0.89 8.73 3.13 8.34 2.85 8.36 5.01 8.33 3.97 1.62 8.44 

15 5.98 0.57 6.09 2.72 6.74 2.39 6.37 4.56 6.68 2.30 1.07 6.77 

20 4.48 0.42 4.80 2.55 5.85 2.12 5.16 4.27 5.83 1.54 0.80 5.85 

30 2.86 0.26 3.70 2.31 4.87 1.73 3.84 3.97 4.88 1.00 0.50 4.83 

40 2.19 0.19 3.23 2.24 4.28 1.54 3.14 3.80 4.34 0.76 0.38 4.24 

50 1.76 0.16 2.92 2.22 3.86 1.42 2.72 3.75 3.95 0.63 0.33 3.80 

 
 



                                                                                                                                          121 

  

Table D.12: MSE ×  1,000 For Scenario 12 
 

Time Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7 Method 8 Method 9 Method 10 Method 11 Method 12 

2 5.67 2.06 7.98 1.89 3.30 2.02 4.51 2.40 2.40 1.92 1.96 2.74 

3 4.08 1.31 4.51 1.19 2.75 1.30 3.29 1.35 1.57 0.76 1.22 1.96 

4 3.28 1.05 3.20 0.89 2.37 1.07 2.54 1.16 1.25 0.75 1.00 1.64 

5 2.60 0.83 2.44 0.71 2.05 0.86 2.05 1.07 0.99 1.03 0.79 1.36 

6 2.19 0.70 1.93 0.59 1.79 0.73 1.68 1.03 0.82 1.21 0.66 1.13 

7 1.88 0.64 1.64 0.53 1.61 0.67 1.50 1.01 0.74 1.32 0.60 1.03 

8 1.65 0.58 1.41 0.48 1.46 0.61 1.32 1.00 0.67 1.42 0.54 0.93 

9 1.44 0.52 1.24 0.43 1.30 0.55 1.17 0.99 0.56 1.46 0.48 0.82 

10 1.31 0.49 1.15 0.40 1.20 0.52 1.08 1.02 0.51 1.47 0.45 0.76 

15 0.88 0.33 0.76 0.30 0.86 0.35 0.74 1.09 0.36 1.37 0.28 0.53 

20 0.66 0.26 0.59 0.25 0.69 0.28 0.56 1.15 0.29 1.20 0.21 0.40 

30 0.42 0.19 0.43 0.19 0.47 0.20 0.39 1.21 0.22 0.84 0.14 0.28 

40 0.32 0.15 0.36 0.17 0.37 0.16 0.31 1.27 0.18 0.60 0.10 0.22 

50 0.26 0.14 0.31 0.17 0.30 0.15 0.26 1.31 0.16 0.43 0.09 0.18 
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APPENDIX E: COMPARISON OF DIFFERENT METHODS FOR EACH 

SCENARIO 
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Scenario 3
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Scenario 5
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Scenario 7
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Scenario 9
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Scenario 11
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APPENDIX F: ADDITIONAL SAS-IML CODE FOR YIELD SIMULATOR IN 

THE BASE SCENARIO 

 
/* scenario 1: method 1*/ 
proc iml symsize=95000000; 
time=50;  /* number of time periods */ 
space=30;  /* number of experimental units */ 
sim=1000;  /* number of simulations */ 
yield=j(time,space,0); 
truerate=j(sim,1,0); 
 
lambda=0.75;  /* coverage level */ 
 
truerate=0.1315; 
 
rate1=j(49,sim,0); 
 
/* parameter values of severity */ 
sevhigub=0.3; sevhiglb=0.2; sevmedub=0.15; sevmedlb=0.1; sevlow=0.05; 
sevneg=0.01; 
 
/* parameter values of temporal correlation */ 
temhig=0.25; temmed=0.1; temlow=0.01; temneg=0.000001; 
 
/* parameter values of spatial correlation */ 
spahig=0.25; spamed=0.1; spalow=0.01; spaneg=0.000001;  
 
total=time*space; 
iden=i(time); 
 
eee=i(total); 
 
/* randomize the mean and variance of yield distributions*/ 
mean=j(space,1,0);  
var=j(space,1,0); 
do j=1 to space; 
   mean[j]=50000+50000*ranuni(1234); /* mean is between 50000 and 
                                        100000 */ 
   var[j]=100000000+525000000*ranuni(1234); /* variance is between 
                                              100000000 and 625000000*/ 
end; 
 
/* risk 1: enteric septicemia of catfish */ 
p1=0.2+0.1*ranuni(1234);  /* frequency */ 
temrho=temmed*(2/3)+temlow*(1/3);    /* temporal correlation */ 
sparho=spalow*(2/3)+spaneg*(1/3);    /* spatial correlation */ 
omega=j(space,space,0); 
do i=1 to space; 
   do j=1 to space; 
   omega[i,j]=sparho**abs(i-j);  
   end; 
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end; 
varcov=iden@omega; 
upper1=root(varcov); 
 
/*...modeling the remaining risk factors */ 
 
/* do simulations */ 
do s=1 to sim; 
 
temp=j(total,1,0); 
do i=1 to total; 
   temp[i]=rannor(1234); 
end; 
 
/* generate mutivariate normal risk numbers for risk factor 1 */ 
sample=upper1`*temp; 
mvn=shape(sample,time,space);  /* reshape the vector sample into a 
                                  timeXspace matrice */ 
d1=cdf('normal',mvn,0,1);   /* take cdf to get U[0,1] number */ 
 
/*...do the same step for the remaining risk factors */ 
 
do i=1 to time;  
   do j=1 to space;  
 
      if d1[i,j]<p1 
      then k1=ranuni(4321)*(sevmedub-sevmedlb)+(1-sevmedub);  
      else k1=1; 
 
/*   do the same step for the remaining risk factors */ 
 
yield[i,j]=(rannor(1234)*sqrt(var[j])+mean[j])*k1*k2*k3*k4*k5*k6*k7*k8*
k9*k10*k11*k12*k13*k14*k15*k16*k17*k18*k19*k20; 
 
   end; 
end; 
 
do t=1 to 49;     /* # of time periods we are going to consider */ 
   c=0;   /* time indicator */ 
   if t<10 then c=1; 
   if t=14 then c=1; 
   if t=19 then c=1; 
   if t=29 then c=1; 
   if t=39 then c=1; 
   if t=49 then c=1; 
 
if c=1 then do;  
 
y=yield[1:(1+t),]; 
ones=j(t+1,1,1); 
avg=y[+,]/(t+1); 
std=sqrt(((y-ones*avg)##2)[+,]/(t+1-1)); 
guarantee=lambda*avg[1]; 
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/* method 1. empirical rate for farm 1 */ 
rate1[t,s]=sum((guarantee-y[,1])<>0)/(t+1)/guarantee; 
 
end;   /* end of time indicator */ 
 
end;   /* end of loop over different time periods */ 
 
end;   /* end of simulations */ 
 
mse1=((rate1-truerate)##2)[,+]/sim;   /* mse for method 1 */ 
 
print mse1; 
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APPENDIX G: KERNEL DENSITY ESTIMATES OF YIELDS 

Note: The yield distributions in scenarios 2, 3, 4, 5, 6, 9 and 10 are the same as in 
scenario 1.  
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Scenario 7: Kernel Density Estimates of Yields
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Scenario 8: Kernel Density Estimates of Yields
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Scenario 11: Kernel Density Estimates of Yields
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Scenario 12: Kernel Density Estimates of Yields
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