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ABSTRACT

Quantile regression has been introduced into residential water demand. Differences

between quantile regression and conditional mean regression are found on extreme

quantiles. Monotonically increasing price elasticities are found by quantile regres-

sion. The hypothesis of a ”U-shaped” elasticity pattern can only be partially estab-

lished for high quantiles. Natural experiments are used to compare price elasticity

among comparable cross-sectional subsamples, which empirically indicates: 1) lower-

ing break-over thresholds for block rate makes affected consumers more price elastic;

2) high quantile households are less price elastic in the summer than the winter; and

3) low quantile households and those with smaller yards and pools are more price

elastic.
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CHAPTER 1

Introduction

Residential water demand analysis generally focuses on the marginal effects of key

variables like price, income and weather on household water consumption. Much of

the water demand literature also focuses on the price elasticity of demand. Policy

makers as well as public and private water companies are critically concerned with

the effects of water price on consumption. Tax and price related policies are based

on demand analysis to assess changes in household welfare. Business strategies

are based on price elasticity of demand to efficiently recover fixed costs incurred.

Hence, the quality of demand analysis is the key for formulating successful policies

and business strategies.

Water demand analysis has been popular for decades. Previous research primar-

ily concerns several key issues including specification, elasticity and simultaneity.

Studies on specification discuss the choice of price specification and other variables

such as income, weather, housing characteristics and household composition. Price

elasticity and income elasticity have been studied in terms of short-run vs. long-

run adjustments and seasonal fluctuation. Simultaneity is another issue involved

in water demand literature because quantities consumed determine marginal price

under a block rate structure. When simultaneity has been detected empirically [1],

instrumental variable techniques have been introduced to overcome the problematic

estimation. Estimation approaches such as maximum likelihood and generalized

method of moments have been applied using instrumental variables.

Although recent literature has shed considerable light on residential water de-

mand, still more can be done to enrich understanding. Most water demand research

has employed conditional mean regression, which is optimized by minimizing sum

of least squares (LS) in cross-sectional samples. LS provides a view of how rep-

resentative households behave regarding residential water consumption. However,
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LS has weaknesses in terms of inefficient estimation (heteroskedasticity), sensitiv-

ity to outliers, and incomplete characterization of conditional distributions of the

dependent variables. Improvements in making the estimation robust to household

heteoroskedasticity, in assigning less weight to extreme observations and in provid-

ing a comprehensive understanding of the dependent variable can bring new insights

to water demand research.

In order to make contributions in these regards, this paper introduces quantile

regression (QR) to residential water demand analysis. Technically, QR is robust

to most kinds of heteroskedasticity and relaxes the LS assumption of independent,

identical (i.i.d) and normally distributed errors [9]. The optimization strategy in

QR is to minimize the sum of weighted absolute values of residuals. This approach

assigns less weight to extreme observations so that it is more desirable for residential

water data with right skewedness [18]. Moreover, QR provides different coefficients

for the chosen quantiles of the dependent variable, because different equations are

estimated [23, 24]. These varied coefficients provide extra information which is not

captured by conditional mean regression.

Interestingly, QR has been applied to estimate household-level water consump-

tion data provided by EPCOR Utility Inc. located in Phoenix, AZ. The EPCOR

data were divided into several comparable subsamples according to year, month and

meter size. Estimating each subsample separately, the robust difference between QR

and conditional mean regression was verified. Moreover, natural experiments have

been used to detect the different influences of price change, seasonality, groupwise

usage level1 and economic status2 across varied consumption levels. The empiri-

cal results can be summarized as follows: 1) conditional mean regression does not

characterize the marginal effect of price for consumers with extreme water usage; 2)

QR provides a monotonically increasing price elasticity curve, and the ”U-shaped”

1In what follows, the groupwise usage level specifically refers to the general difference in usage

between households with different meter sizes. For more details see Table 3.2.
2In what follows, the groupwise economic status specifically refers to the difference in yard size,

pool size, pool ownership between households with different meter sizes. For more details see Table

3.2.
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price elasticities hypothesis can only be partially verified for the high quantiles; 3)

the increase in block prices that occurred in the EPCOR data in 2008 fails to make

households overall more price elastic, but lowering break-over threshold makes af-

fected households more price elastic; 4) only high water consumers are more price

elastic in summer than winter; and 5) households with lower usage and lower eco-

nomic status are more price elastic.

This paper proceeds as follows. Section 2 presents the literatures on residential

water demand, conditional QR and discusses the motivation for introducing QR.

Sections 3 discusses the data generating process. Section 4 describes the empirical

model, hypotheses, and results. Section 5 discusses policy implication.
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CHAPTER 2

Literature Review

The literature devoted to estimating residential water demand is vast. In those ar-

ticles, specification, elasticity and simultaneity have been discussed. The majority

of these studies apply conditional mean regression optimized by minimizing squared

errors using cross-sectional data. However, LS has weaknesses in terms of inefficient

estimation (heteroskedasticity), sensitivity to outliers, and incomplete characteriza-

tion of conditional distributions of the dependent variable. These weaknesses can

be overcome by QR to provide new insight into water demand studies. This chapter

reviews previous research in residential water demand, compares conditional mean

regression to conditional quantile regression, and presents motivation for introducing

QR.

2.1 Residential Water Demand

Previous water-demand research and similar electricity-demand research generally

adopts the following generalized form:

Quantity = f(OwnPrice, Income,Other V ariables).

The primary concerns are the nature of water demand, specification, elasticity, func-

tional form and simultaneity, which are discussed below.

2.1.1 The Nature of Water Demand

Most previous research assumes that water is normal good with no substitutes. The

demand for water can be divided into non-discretionary and discretionary demand.

Non-discretionary demand refers to the basic portion of water consumption, which

is independent of price [16]. Discretionary demand refers to water consumption
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above non-discretionary usage. Discretionary demand is assumed to vary for long-

run demand analysis, but determined by a fixed stock of water-using technology in

the short-run. The majority of previous studies focus on short-run demand under

block rate structure. Most U.S residential water is priced with a block schedule

containing a fixed charge and marginal price varying by level of consumption [33].

This makes water consumption a function of varied price, which is different from

classic demand analysis where marginal price is exogenous.

2.1.2 Model Specification

The non-exogenous price has generated numerous debates on whether a combination

of marginal price with Nordin’s ”rate structure premium” variable or average price

should be the price variable. Taylor [41] proposes that marginal price captures

the substitution effect and income effect of a price change on the last block. The

income effect for the rest of the blocks can be measured by their average price or

total expenditure. Nordin [32] proposes the ”rate structure premium” to avoid the

situations that same average price and total expenditure are caused coincidentally

by different senarios. The ”rate structure premium” is defined to be the difference

between what consumers have paid and what they would have paid if their water

consumption were charged at last block’s marginal price. Nordin expects that the

coefficient of ”rate structure premium” has the opposite sign but same magnitude

as the coefficient of income. However, there has been little success in empirical

verification of this hypothesis [30].

The alternative price variable is average price proposed by Foster and Beattie[13].

They argue that the perfect-information assumption made by Taylor and Nordin

may not be realistic. Their argument accords with a survey made by Stratus Con-

sulting Inc.[40], which indicates only 7 percent of consumers were concerned and

aware of their water price. Foster and Beattie[13] have verified empirically that

there is no statistically significant difference between the two specifications and the

average price specification is superior according to a higher R-squares. Moreover,

Shin [38] speculates that benefit of finding out the marginal price may be lower than
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the cost of determining the marginal price. A slightly different price specification

considered is lagged average price, which has at least two advantages. First, lagged

average price can be calculated relatively easily from information given on the water

bill, which is more likely to affect consumption [5, 10, 31]. Secondly, lagged average

price can mitigate the simultaneity between quantity and average price calculated

on quantity, because it is predetermined [4, 10].

Water-demand research has gradually reached an agreement that the appropriate

price specification is an empirical question. Thus, empirical tests are introduced in

water and electricity demand analysis to examine how consumers respond to various

price specifications. Opaluch [34] introduces a linear form empirical test, which has

been improved by Griffin and Chang [19] as

Q = β0 + β1AP + β2(MP − AP ) + · · · .

Two hypotheses tests involving β1 and β2 determine price to which consumers re-

spond to (see Table 2.1). Although this test is innovative, it does not specify a

function of both marginal and average price for consumers to respond.

Table 2.1: Opaluch Test

Case β1 β2 β1 = β2 Response
(1) = 0 = 0 Yes No Response
(2) 6= 0 = 0 No AP
(3) 6= 0 6= 0 Yes MP
(4) Undetermined 6= 0 No Mixed Price or Weak Data

Shin [38] introduces the concept of perceived price to estimate electricity de-

mand under decreasing block rate, which permits a price perception parameter to

be estimated explicitly with a dynamic log-log model as

lnQt = β0 + β1lnQt−1 + β2lnMPt + β3 · k · ln(
APt
MPt

) + · · · .

Hypothesis tests about the perception parameter k indicates consumers’ behavior

(see Table 2.2). Nieswiadomy and Molina [31] have applied Shin’s test to their

household-level data in Denton, Texas. They found consumers with increasing block
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rates were more likely react to marginal price, while consumers with decreasing

block rates more likely to react to average price. Ray [36] has applied Shin’s test

to EPCOR data on Phoenix water consumption, finding the k value is statistically

different from 0 and 1, which implies consumers respond to a mixture of marginal

price and average price.

Table 2.2: Shin Test

Case k Response
(1) k = 0 MP
(2) k = 1 AP
(3) 0 < k < 1 Perceived Price between MP and AP
(4) k > 1 Perceived Price above AP

Income has been included as an explanatory variable in most previous research

because income is an element of classic demand analysis. Two common income

variables are annual per capita income [19] and assessed home value [11, 22, 31].

The lack of availability of income data is the main reason for using assessed home

value. Assessed housing value is a good proxy because banks typically do not allow

a mortgage payment above one third of monthly income [30]. Although mortgage

policy has changed dramatically in the last two decades, the fact that mortgage

eligibility is calculated based on income remains the same. Additionally, assessed

value correlates to household preferences for home lifestyle [4] and household size.

The effect of weather on water consumption has gained attention recently be-

cause of public concerns about global climate change. Various weather variables

have been studied in recent literature. Average temperature [39] and precipitation

[12, 13] are the variables first introduced. Then considering consumers’ limited

interest in collecting exact weather information, the number of days in which tem-

perature exceeds a certain level and the number of rainy day have been included

[26]. Another variable is evapotranspiration less rainfall [21, 30, 31]. Evapotran-

spiration is a comprehensive measure determined by four factors: solar radiation,

wind, humidity and temperature [7, 8], which may be more desirable than including

those four weather variable separately. Seasonality is another issue to be concerned



15

with because outdoor water usage displays seasonal patterns.

Other variables such as property characteristics and household composition have

been discussed as well. Nauges and Thomas [29] found housing features like garden

size and number of bathrooms are relevant to residential water consumption. In

subsequent research, interaction terms between property characteristics such as size

of yard or pool with weather variables were found to be statistically significant

[36]. Household composition such as age and cultural background also affect water

consumption. A higher proportion of younger people in a community may lead to

higher water consumption [29]. Communities with a higher proportion of elderly

inhabitants tend to consume more water for gardening [27]. Besides age factors,

percentage of Hispanic origin population has also been considered to measure the

effect of cultural background on water consumption [16, 19].

2.1.3 Elasticity

Elasticity is another important topic in residential water demand analysis. The

main focus is price elasticity rather than income elasticity for several reasons. First,

because water consumption is a small proportion of household expenditures, short-

run income elasticity has a very small magnitude [44]. Second, block rate structure

potentially encompasses the income effect because it changes the budget constraint.

Disentangling the income effect caused by block rate structure from the one caused

by income presents extra difficulties. Third, water price is the main instrument of

water economic policy, so price, not income, is of primary concern for policy-making.

Hence, most previous research focused on price elasticity, which is a key determinant

of the efficacy of price-related water policies [15].

Price elasticity is calculated differently depending on the functional form. For a

linear demand model price elasticity is calculated using a constant price coefficient

estimated by conditional mean regression. The average price elasticity is commonly

calculated on sample average quantity and price to obtain a single price elasticity.

The price elasticity for each customer can be calculated with actual quantity and

average price with the single price coefficient on conditional mean but matching an
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individual customer’s quantity and average price with a single slope coefficient may

not make sense. The reason is that the price coefficient estimated on sample average

may not represent the behaviors of households with extreme water consumption.

The Log-log functional form only provides a single constant price elasticity for all

customers.

The water demand literature has gradually reached a consensus on price elastic-

ity. First, price elasticity and income elasticity are inelastic because water expendi-

ture is a small component of household expenditure [4, 44]. Secondly, long-run price

elasticity is more elastic than short-run due to the fact that long-run demand al-

lows the discretionary demand to change once water-consuming technology changes

[6]. Last, some studies provide empirical evidence that elasticity differs because of

seasonality [16, 35] and income class [37].

2.1.4 Functional Form and Simultaneity

Other studies have shed light on functional form and simultaneity. In terms of the

functional forms, linear [30], semi-log [3] and log-log [29] demand function dominate

water demand analysis, while recently the Stone-Geary demand function has been

introduced [2, 16, 28]. The Stone-Geary demand function has been commonly used

to estimate demand of durable goods, which estimates subsistence-level demand and

the rest of demand separately. Studies in water demand estimate a utility function

of the form

lnU =
n∑
i=1

βiln(qi − γi)

where subsistence-level usage has been separated from total usage by ”marginal

budget share” (βi) and ”subsistence level usage” (γi). The price slope in the Stone-

Geary demand function can be interpreted as marginal effect of price beyond the

fixed proportion of necessary purchases.

Simultaneity is a main challenge in water demand analysis since both average

price and marginal price are functions of quantity consumed. Early research esti-

mated water demand functions using linear regression. However, LS requires there
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be no correlation between the errors and explanatory variables, which may be vi-

olated as in the case of block rate structure for residential water. Agthe et.al [1]

employed a Hausman [20] test to detect possible simultaneity. The Hausman test

results indicated the existence of simultaneity, which implies alternative estimation

approaches should be considered to mitigate this problem.

Subsequent efforts to overcome simultaneity start with applying instrumental

variable techniques. Wilder and Willenborg [43] suggests a two-stage least squares

technique. In the first stage, average price is regressed on other instrumental vari-

ables to get predicted values. These predicted values are used as a regressor in

the second stage. Another approach is a two-stage probit approach introduced by

Terza [42]. In his method, observed electricity demand was first regressed on actual

marginal prices that the household would face at different level. Then the actual

rate schedule and predicted quantity demand were used to obtain marginal price.

Maximum likelihood [21] and generalized method of moments [14] have been applied

with instrumental variables.

2.2 Mean Regression vs. Quantile Regression

Conditional mean regression has been applied to most cross-sectional data for res-

idential water demand analysis. Estimated coefficients indicate how representative

households behave in residential water consumption. Although conditional mean

regression is a good approach, it has weaknesses which may lead to inefficient esti-

mation, sensitivity to extreme observations, and incomplete characterization of the

conditional distribution of the dependent variable.

Conditional mean regression may lead to inefficient estimation because of the

LS assumption on errors. LS assumes i.i.d distributed errors to guarantee Gauss-

Markov theorem, which ensures the estimated coefficients are unbiased and efficient.

However, the i.i.d assumption contradicts the household varied water consump-

tion behavior and the normally distributed error assumption does not fit the right

skewedness in residential water consumption distribution [16]. The violation of these
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assumptions results in unbiased but inefficient estimation of coefficients, which may

hinder making correct inferences.

The second problem for conditional mean regression is LS optimization strategy.

LS assigns more weight to extreme observations than non-extreme observations. The

larger weight comes from the criterion being minimized, i.e. sum of squared resid-

uals. Extreme water consumption is likely to be caused by unusual factors such as

vacancy or family gathering. These factors add limited information in characterizing

representative household behaviors in daily water consumption. Hence, assigning

too much weight to extreme observations is not appropriate.

Another problem is that conditional mean regression estimated by LS does not

fully characterize the conditional distribution of the dependent variable. LS provides

constant coefficient for all sample households regardless of their varied consumption

levels. A constant coefficient may limit economic inferences. For instance, a constant

price coefficient may be restrictive in calculating an accurate price elasticity for an

individual household. The reason is that it may be inappropriate to match price

coefficient estimated on conditional mean with varied quantity and price. Hence,

designing policy and price structure only based on a LS constant coefficient may not

be appropriate for all groups of consumers.

To overcome the above problems, QR is applied to residential water demand

analysis. QR provides a convenient method for estimating conditional quantile

functions. Without strict assumptions on errors, QR is robust to most forms of

heteroskedasticity. Its optimization strategy is to minimize the sum of weighted

absolute residuals, which assigns less weight to the extreme observations than LS.

Moreover, QR allows estimated coefficients to vary by quantiles (τ) of dependent

variable. Thus, it is possible that the conditional distribution of water consumption

can be characterized.

QR has been successfully applied to other fields. Manning et al. [25] have inves-

tigated the impacts of price on alcohol consumption with QR, finding statistically

significant difference between moderate drinkers and heavy drinkers. A pronounced

”U-shaped” price elasticity was found. Light drinkers, those consuming small quan-
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tities very infrequently, do not respond much to changes in the price of alcohol.

Heavy drinkers are addicted so they change their alcohol consumption very little, if

any, when price changes. Both groups are less responsive to price changes than the

moderate consumers of alcohol who drink more frequently but who are not addicted.

Similarly, QR was introduced by Gilpin [17] to education research to observe

relationship between teachers’ aptitude and salary. The goal of his research was to

examine the effect of salary and other factors such as school and community envi-

ronment on teachers’ aptitude. An inverted ”U-shaped” salary elasticity to aptitude

curve was found. According to Gilpin’s interpretation, teachers with different apti-

tude respond differently to the salary change. Teachers with median level aptitude

are more sensitive to the salary change than their lower and higher aptitude coun-

terparts. Teachers with lower quantile aptitude are concerned more about education

support from local funds, while teachers with high quantile aptitude are concerned

more about community factors such as street crime and students’ eligibility for free

lunch.

2.3 Motivation for Introducing Quantile Regression

The knowledge of marginal effects of price change, seasonality, water usage level

and economic status is helpful in designing effective water policy and price sched-

ules. The efficacy of price-related policy is determined by the magnitude of price

elasticity. Academic efforts in this regard must address the peculiarities of block

rate structure, which causes simultaneity and affects consumers on different blocks

differently. Hence, it is necessary to study marginal effects and price elasticity more

specifically on different quantiles to obtain a more comprehensive understanding of

block prices.

The encouraging results from applying QR into other fields motivates this paper.

Most previous water demand studies on cross-sectional sample estimate a constant

price coefficient regardless of household heterogeneities. A constant coefficient is

to some extent limited in making economic inference for individual households,
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in particular for extreme observations. Designing policy and price schedule based

upon these results may not be efficient. Therefore, QR is introduced to compare

LS results on cross sectional sample. QR can provide results varied across different

consumption to give a more complete explanation than conditional mean regression.

QR can also provide more comprehensive knowledge to advance recent studies on

the effects of rate structure change, seasonality, groupwise usage level and economic

status on price coefficients and price elasticities. The intensity of these effects across

varied consumption level remains unknown.
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CHAPTER 3

Data

The cross-sectional data used are extracted from a monthly household-level panel

dataset from June 2005 to December 2010 (see Table 3.1). These data includes

household-level water usage provided by EPCOR Water in Anthem, Phoenix, prop-

erty characteristics data collected from Maricopa County Assessors’ Office and

weather data from the Arizona Meteorological Network (AZMET), and Maricopa

County Flood Control District (FCD). These data are matched according to billing

address of EPCOR water consumers. The daily weather data were also matched

with billing dates for each customer.

Table 3.1: Variable Definitions

Source Variable Definition
Billing Household ID Household EPCOR ID

Meter Size Diameter of water pipe (inches)
Billing Begin Date Date billing period begins
Billing End Date Date billing period ends
Total Usage Total usage in a billing period (kgal)
Normalized Usage (Total Usage/Billing Period)*30 days (kgal)
Marginal Price Price of last unit water consumed
Fixed Charge Monthly fixed fee
Total Bill 30 days normalized bill ($)
Average Price Total Bill/Normalized Usage ($)
Real Average Price Adjusted by Phoenix CPI (2001 $)

Property Real Assessed Home Value Adjusted by Phoenix CPI (2001 $)
Lot Size Size of lot (sq ft)
Pool Size Size of pool surface (sq ft)
Living Area Size Size of indoor space (sq ft)
Yard Size [Lot-(Pool+Living Area)]size (sq ft)

Weather Normalized AZMET ET Evapotranspiration (inches/30 days)
Rain Event FCD Number of rainy day (events/30 days)
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Anthem is a Del Webb planned community opened in 1998. Since then, home

construction has continued and the community population grew to 21, 700 at the

time of the 2010 Census. Anthem’s residential water price schedule was changed in

June 2008 for households with both 1” and 3/4” meter sizes, i.e. diameter of water

pipe (see Figures 3.1 and 3.2). The marginal price increased from $1.13 to $1.54 per

kgal, from $1.7 to $2.41 per kgal and from $2.04 to $3.08 per kgal for tier 1, tier

2, and tier 3, respectively. The break-over between tier 1 and tier 2 remained the

same at 4 kgal for all consumers. However, the break-over threshold between tier

2 and tier 3 was changed differently for households with different meter sizes. For

households with 1” meter, the break-over threshold was increased from 40 kgal to 46

kgal, while it has been decreased from 18 kgal to 10 kgal for 3/4” meter households.

Moreover, the fixed charge increased from $26.42 to $42.88 per month for 1” meter

household; for their 3/4” counterparts, it increased from $15 to $17.53 per month.

The different changes in the break-over threshold by meter size in June 2008

afford an interesting natural experiment. There is a natural break point in the

sample data: before the price change and after. And there are two distinct groups

of customers – 1” and 3/4” meter – from the same community, Anthem, whose

behavior can be measured with different price changes1. In order to judge whether

customers with different meter sizes differ statistically from one another, median

values for water use and household characteristics are compared (see Table 3.2).

Sample medians are compared because the median is preferred to the sample mean

with skewed data. First, the comparison is made within each meter to examine the

impact of the 2008 price change. The result shows for both meters sizes the usage

after price change were statistically lower than usage before change, except summer

usage for households with 1” meter. Because the break-over between tier 2 and tier

3 had been slightly increased for 1” meter households, the impact of increased price

in tier 3 is mitigated. Secondly, the comparison is made across two meter sizes to

1The difference in meter size is caused by the fact that Del Webb planned community categorizes

lots into big and small sizes. The large lot size is more likely to be equipped with 1” water pipe,

while small lot size is more likely to be equipped with 3/4” water pipe.
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examine the groupwise differences between households. Households with 1” meter

have higher median consumption in all seasons before and after price change than

their 3/4” meter counterparts. The results of time-invariant variables are evidence

that households with 1” meter size have better economics status, i.e. have higher

value homes, larger yards, and a more likely to have a swimming pool.

Table 3.2: Descriptive Statistics, Median Values

Time-invariant Variables
Variable/Median Meter=1” Meter=3/4” P-value*

Home Value (1,000 $) 205.9 127 <.0001
Yard Size (Sq ft) 10,232 6,495 <.0001

% with Pool 46% 30% <.0001
Pool Size (Sq ft)**** 458 450 <.0001

Time-varying Variables
Variable/Median Meter=1” Meter=3/4” P-value*

Time Before 2008 After 2008 P-value** Before 2008 After 2008 P-value** Before vs. Before*** After vs. After***
Usage (Kgal) 8.43 7.94 <.0001 8.27 7.24 <.0001 <.0001 <.0001

Usage Jan (Kgal) 7.50 6.77 <.0001 7.24 6.20 <.0001 <.0001 <.0001
Usage Jul (Kgal) 10.34 10.14 0.21 10.00 9.09 <.0001 <.0001 <.0001

* – % with Pool is tested by the proportion test; all other entries are tests for differences in medians using the Wilcoxon-Mann-Whitney test.
** – test for difference in median with same meter size.
*** – test for difference in median across two meter size with same time period.
**** – households without pool are excluded.

The above two differences make the natural experiments available so that com-

parisons can be made across customers with different meter sizes. Specifically, it is

possible to detect the impacts of different price changes and to examine the influ-

ences of varied groupwise water usage level and economic status. In order to achieve

these goals, the original panel data have been divided into several cross-sectional

subsamples based on three criteria: year, month and meter size (see Figure 3.3). For

the same meter size, all subsamples contains identical households, meaning compar-

ison across seasons and years are for the same customers.
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Figure 3.3: Data Generating Process

The original panel data have observations between June 2005 and December

2010. Given the price structure changed at June 2008, the original data are divided

into two groups, namely before change and after change. Before change refers to

years 2006 and 2007, while after the change refers to year 2009 and 2010. For

identical households within the same meter size, the impact of price changes can be

measured by comparing before change to after change. Data for 2005 were excluded

due to the low quality. Data for 2008 were also excluded because the price change

was probably not anticipated by most customers prior to receiving their first bill

following the rate schedule change.

Another criterion for dividing the sample is month so that the impact of sea-

sonality can be studied. Seasonality is studied because winter usage reflects more

non-discretionary indoor usage whereas summer reflects more discretionary outdoor

usage. Previous literature in residential water demand shows both demand and
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price elasticity will be affected by seasonality. January and July are chosen for

winter and summer respectively because of their extreme monthly water usage level

and monthly evaportranspiration level. The impact of seasonality on demand is

expected to be captured by comparing January price response to July in same year

and same meter size.

The different meter sizes provide two more perspectives of cross-meter compar-

isons. First, price structure change varies across households with different meter

size. Given the fact that all households in Anthem are comparable, their varied

responses are the measure of impact caused by the way that the price schedule

changed. Second, meter size is also an indicator for groupwise water usage level and

economic status. Thus, the influences of price structure change, groupwise water

usage level, and economic status on demand and price elasticity can be captured by

comparison across the two meter sizes controlling for year and month.

The comparisons mentioned above can be summarized in the following four types.

First, compare identical customers with the same meter size to show the impact of

price schedule change in 2008. Second, compare identical customers with the same

meter size to show the influence of seasonality. Third, compare across the two meter

sizes to show the difference between two different price changes. Fourth, compare

across the two meters sizes comparison in same time period to show how groupwise

water usage level and economic status matter.
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CHAPTER 4

Model, Hypotheses and Results

4.1 Model

QR model is introduced to estimate 16 cross-sectional samples identified in the

previous chapter as

Qi(τ) = β0(τ) + β1(τ)LagAPi + β2(τ)HomeV ali + β3(τ)Y ardETi + β4(τ)PoolETi

+β5(τ)Y ardRaini + εi(τ),

where τ denotes a particular quantile.

Table 4.1: Model Specification

Notation Definition Measured by
Q Household water consumption Normalized usage

LagAP Real lagged average price Last period real average price
HomeVal Real home value Assessed home value
YardET Yard Evapotranspiration Yard Size * Normalized ET
PoolET Pool Evapotranspiratoin Pool Size * Normalized ET

YardRain Yard Rain Event Yard Size * Rain Event

Real lagged average price is chosen because average price can be used without

assuming consumers have full information. A Shin’s test has been performed in all

16 subsamples by QR. Most calculated k values are not equal to 0, which implies

that the full price information assumption about marginal price is not appropriate

for consumers in EPCOR data. Lagged average price can mitigate the simultaneity

between current quantity and average price. Real assessed home value is introduced

as a proxy for income, which also controls for the size of household to some extent.

Yard evapotranspiration and pool evapotranspiration are introduced to account for
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variations caused by both weather and property characteristics. Rain event is in-

teracted with yard size to capture the effect of precipitation events rather than

precipitation amount.

In the above model, τ refers to the percentile chosen for QR. The 9 deciles

from 0.10 to 0.90 as well as the 5th percentile and 95th percentile are estimated to

generate the conditional distribution of dependent variable. The model is estimated

by minimizing the weighted sum of the absolute deviation of the errors as

min[
∑

yi≥xibτ

τ |yi − xibτ |+
∑

yi<xibτ

(1− τ)|yi − xibτ | ],

where β̂τ is the estimate of βτ [23, 24]. This model has been estimated using the

PROC QUANTREG procedure in SAS.

4.2 Hypotheses

The hypotheses can be categorized in terms of methodology and price elasticity com-

parison. For methodology, the QR results are compared with LS result to examine

any differences. The hypotheses are as follows:

• Hypothesis 1: ”U-shaped” quantile price coefficients: βLow(τ) 6= βLS and

βHigh(τ) 6= βLS.

• Hypothesis 2: ”U-shaped” quantile price elasticities: ElasBottom(τ) 6=
ElasLow(τ) and ElasBottom(τ) 6= ElasHigh(τ), where Elasbottom(τ) refers to the

most price elastic quantile.

The ”U-shaped” QR price coefficient is expected because low quantile house-

holds’ water demand is non-discretionary, which is less responsive to water price.

High quantile households consume water to maintain pools and landscaping, which

is less responsive to water price as well. Besides, considering high quantile house-

holds’ knowledge of water price from their previous water bill, relatively low average

price does not provide much incentive for reducing water usage. The ”U-shaped”



29

price coefficient causes ”U-shaped” price elasticity. Because of the high usage and

low average price for high quantile households, their price elasticity is expected to

become quite inelastic.

For price elasticity comparison, the QR price elasticity is compared according

to natural experiments as discussed in Chapter 3. The hypotheses concerning the

effect of price changes, the effect of seasonality, and the effect of groupwise water

usage level and economic status are as follows.

• Hypothesis 3: The price increase in 2008 makes consumers more price elastic:

|ElasBefore| < |ElasAfter|.

• Hypothesis 4: For households with 3/4” meter, lowering break-over between

tier 2 and tier 3 makes affected households j more price elastic: |Elasj,Before| <
|Elasj,After|. However, there is less pressure to make 1” meter households

affected by price change more price elastic because of the increased break-

over.

Controlling for meter size and season, the 2008 price increase is expected to make

consumers in Anthem overall more price elastic. The different price changes by real-

locating break-over differently is expected to have opposing effects. For households

with 3/4” meter, lowering the break-over creates extra burden for affected consumers

which makes them more price elastic after the price change. For households with

1” meter, increasing break-over means a lower price for affected consumers, so they

have less pressure to be more price elastic.

• Hypothesis 5: Households are more price elastic in winter than summer:

|Elaswinter| > |Elassummer|.

Controlling for meter size and year, consumers are expected to be less price

elastic in summer than winter. Previous studies have found consumers are less price

elastic in winter, because the winter usage are indoor non-discretionary usage. In

summer, households tend to be more price elastic because their outdoor usage is
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discretionary. However, discretionary usage is not necessarily more price elastic,

especially for the short-run. For example, the water consumption for gardening is

derived by the landscape, but this consumption may not be price elastic, because

consumers have to use water to keep plants alive; otherwise, the dead plants will

make the landscape looked bad. Also, swimming pools require constant water use

in summer. If pools are not properly filled and maintained, they fill with algae and

look ugly.

• Hypothesis 6: Households with 3/4” meter are more price elastic because

of their lower usage level and lower economic status: |ElasMeter=3/4”| >
|ElasMeter=1”|.

Controlling for year and season, households with 3/4” meter is expected to be

more price elastic than their 1” meter counterparts. The difference can be explained

by groupwise water usage level and economic status. First, households with 3/4”

meter in general have lower usage, which perhaps implies that they are more water

conservative, so they may pay more attention to price change. Second, consumers

with 1” meter are generally more comfortable economically, so they may already

possess or have the means to maintain fancy landscaping and pools that consume

water intensively. Hence, discretionary usage for maintaining landscape and pools

is expected to make consumers with 1” meter less price elastic.

4.3 Empirical Results

The 16 cross-sectional subsamples of the same households are used to estimate QR

and LS. Confidence intervals for each estimated QR coefficient are obtained by boot-

strapping. In what follows, all the non-price variables will be referred to as control

variables. Most QR coefficients for control variables are statistically significant ex-

cept for some real assessed home value and the interaction term between rain event

and yard size (see Table 4.2). These insignificant coefficients may be caused by the

fact that the real estate price and rain events recorded are to some extent homo-
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geneous within Anthem. The signs of all statistically significant variables are as

expected.
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Table 4.2: Statistical Significance of Control Variables

Control Variable - % of 11 Quantile Estimates Statistically Different from 0*
Year 2006 2007
Month January July January July
Meter 1” 3/4” 1” 3/4” 1” 3/4” 1” 3/4”
HomeVal 46 82 46 10 19 100 55 19
YardET 81 73 100 100 100 55 64 91
PoolET 81 64 82 82 100 73 100 82
YardRain N/A** N/A 55 100 100 0 19 28
Year 2009 2010
Month January July January July
Meter 1” 3/4” 1” 3/4” 1” 3/4” 1” 3/4”
HomeVal 37 100 73 37 19 100 55 100
YardET 82 74 100 100 82 55 100 91
PoolET 73 91 100 100 100 100 100 100
YardRain 19 64 19 28 28 19 19 0
* - 0%: lowest significance level; 100%: highest significant level.
** - No Rainfall at this time period.
Note: All significant coefficient estimates have expected signs.

Besides these control variables, the QR results on real lagged average price are as

expected. The 95 percent confidence interval for QR price coefficient are calculated

by bootstrapping. Using the estimated price coefficients, price elasticities for QR

are calculated by the following procedures: 1) for each household, choose the best-fit

quantile (τ ∗) by

τ ∗ = min{|yi − ŷi(τ)| | ŷi(τ) = X ′iβ̂(τ), τ ∈ {.05, .1, . . . , .95}};

2) calculate ith households’ price elasticity on the best-fit quantile by

Elasticityi =
RLAPi
Qi

· β̂τ∗ ,where β̂τ∗ is the estimated value of βτ∗ ;

3) for each level of best-fit quantile, take median price elasticity of all households on

this level as price elasticity to represent this quantile. The reason for using median

instead of mean is that it gives a more robust result in the presence of extreme

monthly usage. The confidence intervals for the elasticities are calculated in the

same manner by replacing β̂τ∗ by its bootstrap confidence interval.
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4.3.1 Methodological Results

The difference between quantile and conditional mean regression can be summarized

as follows. First, price coefficients estimated by QR are statistically different from

the one estimated by LS in some quantiles as expected in Hypothesis 1. These

robust differences occur primarily on low quantiles such as 5th and 10th percentiles

and high quantiles such as 80th and 90th percentile (see Figure 4.1 and 4.2; shaded

areas indicate statistical difference between QR and LS coefficients). This result im-

plies that LS constant price coefficient does not capture the conditional distribution

of water usage for extreme consumers. LS overestimates of the magnitude of price

marginal effect for households with low and high water usage.

The difference in price coefficients between QR and LS (Q-LS coefficient differ-

ence) is affected by price change, seasonality, groupwise usage level and economic

status. The price increase in June 2008 enlarges the Q-LS coefficient difference,

because the price change enlarges the difference in water consumption behaviors

between medium quantiles and extreme quantiles. Seasonality affects Q-LS coeffi-

cient difference differently on varied quantiles. For low quantile households, Q-LS

coefficient difference shrinks in summer, perhaps because hot weather in summer

mitigates the gap of non-discretionary usage between low and medium quantiles.

However, for high quantile households, the Q-LS coefficient difference expands in

summer because outdoor discretionary usage increases more for high quantile house-

holds than their medium quantile counterparts. From the perspective of groupwise

usage level and economic status, the Q-LS coefficient difference is smaller for house-

holds with 3/4” meter than their 1” counterparts. This can be attributed to the

fact that households with 3/4” have a smaller range of water usage than their 1”

counterparts, so the behavioral difference is smaller for households with 3/4”.
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Second, QR results provide new insights into the understanding of price elastic-

ity. Monotonically increasing price elasticities curve with different magnitudes are

found across different quantiles in majority subsamples. The monotonically increas-

ing price elasticity curves converges to 0 because Qi keeps increasing while RLAPi

and β̂τ are bounded values. The statistical significance of Hypothesis 2, i.e. a ”U-

shape” price elasticity, can only be partially validated by comparing price elasticity

on each quantile with the 20th quantile, which is the most price elastic percentile

(See Figure 4.3 and 4.4; shaded areas indicate statistical difference in price elastic-

ity between highlighted quantile and 20th percentile). Consumers at the median

or higher quantiles are statistically less price elastic than the consumers at 20th

percentile. However, there are no statistical differences between low quantiles and

20th percentile in any subsamples.

The statistically different price elasticities between highlighted quantiles and

20th quantile imply that households with high water usage are statistically less

price elastic than the most elastic households. Households with extremely high water

usage are expected to have landscaping and pools requiring high water demand. In

order to maintain the utility gained from landscaping and pools, customers have

to bear the extra water cost, which is relatively cheap given their knowledge of a

low average water price. Hence, high quantile households are less sensitive to price

change.

The difference in price elasticity between highlighted quantile consumers and the

20th percentile households (τ -20th elasticity difference) is affected by price change,

seasonality, groupwise usage level and economic status. The price increase in June

2008 enlarges τ -20th elasticity difference. The high quantile households are less price

elastic than the 20th percentile, so the increased price has less effect on high quantile

households, which enlarges the gap in elasticities for the 20th and high quantiles.

The τ -20th elasticity difference is larger in summer than in winter because the

difference of outdoor discretionary usage peaks in summer. Moreover, households

with 3/4” meter have larger τ -20th elasticity difference than their counterparts with

1” meter.
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4.3.2 Price Elasticity Comparisons

Besides methodology, comparisons of price elasticity are made based upon the nat-

ural experiment discussed in Chapter 3 to capture the specific impact of different

price changes, seasonality, groupwise water usage level and economic status as fol-

lows. The year 2007 and 2010 are chosen for comparison to control the abnormal

precipitation in January 2006 and July 2009.

Before vs. After Price Change

First, most price elasticities after the price increase in June 2008 are not statistically

lower than before (see Figure 4.5 to 4.8). This result rejects Hypothesis 3, which

stated price change in 2008 should make consumers statistically more price elastic.

Hypothesis 4 is at least partially corroborated. Households at higher quantiles,

which would have been affected by lowering the break-over between tiers 2 and 3,

display statistically more price response in 2010. By contrast, customers with 1”

meter size at high quantiles do not show statistically different price response, a

pattern consistent with the break-over being increased.
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Summer vs. Winter

Second, summer price elasticities are significantly lower than winter price elasticities

only for high quantiles (see Figure 4.9 to 4.12). Hypothesis 5 is partially corrobo-

rated. More interestingly, the results imply that the effect of seasonality occurs only

for high quantiles consumers. For high water users, a large proportion of their water

usage is outdoor discretionary usage, which can vary dramatically across seasons.

However, for low quantile water consumers, indoor discretionary usage is their main

water consumption, which varies less seasonally. Hence, the difference of price elas-

ticities caused by seasonality will affect high quantile water consumers more than

the low quantile consumers.

The difference in price elasticity caused by seasonality is affected by price change,

groupwise usage level and economic status. The increased price in June 2008 ex-

pands the difference of price elasticity for 1” meter households, while mitigating

the difference for 3/4” meter households. The different impact may relate to how

the price schedule changed, since the break-over for 1” meter and 3/4” meter are

reallocated differently. For 1” meter households, the increased break-over partially

lowers the cost for affected households, so these households have less pressure to be

more price elastic, which expands the statistical difference in price elasticity. For

3/4” meter households, lowering the break-over costs affected households more in

water consumption, so they become more price elastic, which lessens the statisti-

cal difference in price elasticities caused by seasonality. From the perspective of

groupwise usage level and economic status, the difference in price elasticity caused

by seasonality is larger for households with 3/4” than their 1” counterparts. A po-

tential reason is households with 1” meter have more outdoor discretionary usage

derived from their landscapes and pools, which leads to more significant difference

in price elasticity caused by seasonality.
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Meter Size = 1” vs. 3/4”

Last, households with 3/4” meter are more price elastic than their 1” counter-

parts due to groupwise usage level and economic status (see Figure 4.13 to 4.16).

Hypothesis 6 is verified in the majority of quantiles, except several low quan-

tiles. Households with 3/4” meter have lower usage level, so perhaps they are more

water-conservative than their 1” meter counterparts, which suggests 3/4” meter

households may pay more attention to price changes. Also, more economically com-

fortable consumers tend to be less sensitive to price change, because they are more

likely to invest in landscaping, pools and fountains that consume water intensively.

These equipments create discretionary water cost that consumers have no choice

but to bear, which makes them less sensitive to price. Interestingly, no statistical

difference of price elasticity in low quantiles between 3/4” and 1” customers has

been found. The likely reason is that extreme low water consumers with different

meters have similar usage level and economic status.

The difference in price elasticity caused by groupwise water usage level and

economic status are affected by price change and seasonality. The specific impact

of price change in June 2008 is undetermined. From the perspective of seasonality,

the difference in price elasticity is larger in summer than winter. Summer outdoor

usage expands the difference in price elasticity caused by groupwise usage level and

economic status because households with 1” meter have to bear water cost to keep

their outdoor equipment functional, making them less price sensitive in summer.
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4.3.3 Summary

QR has been introduced to estimate residential water demand. Both QR and LS

are estimated in 16 cross-sectional samples. QR results on price coefficients are

found statistically different from LS coefficients for extreme quantiles, indicating LS

may have overestimated the marginal effect of price for low and high consumption

households. QR price coefficients have been used to calculated price elasticity. ”U-

shaped” price elasticities are expected to be founded, but its statistical significance

is only verified partially.

The marginal effects of price change and seasonality have been studied in the

residential water demand literature. The price elasticity estimated by QR are com-

pared to examine the specific impact of price change and seasonality by this paper.

The EPCOR data provides a natural experiment to compare the influence of re-

allocating break-over. The differences in descriptive statistics within each meter

size and across meter sizes suggest studying the effect of the natural experiment by

meter size is legitimate.

The empirical results of price elasticity comparison can be summarized as fol-

lows. First, price increases in June 2008 have not made households more price

elastic overall. Second, lowering the break-over makes affected households more

price elastic. Third, households are found to be more price elastic in winter than in

summer. More interestingly, seasonality only matters for high quantile households.

Last, households with lower usage level and lower economic status tend to be more

price elastic.
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CHAPTER 5

Policy Implications

The empirical results suggest several ideas for further study, for public policy makers,

and for water supply companies. First, from the perspective of estimation approach,

QR is more desirable for situations where there is heteroskedasticity, outliers, and

a skewed distribution of water use, because QR characterizes the conditional dis-

tribution of the dependent variable. Figure 5.1 is an example about different price

elasticity caused by different approaches from the 16 subsamples estimated. For the

situation in Figure 5.1, LS price elasticity is less desirable because it either under-

estimates or overestimates the price elasticity in 8 of 11 of all estimated quantiles.

Secondly, instead of minimizing sum of squared errors, QR minimizes sum of ab-

solute errors. This method assigns less weight to the extreme observations, which

allows policy maker to understand problems from a different angle. Last, LS only

estimates the average elasticity across all water customers. However, price elastic-

ities can potentially vary by quantity of water usage, so QR results provide more

comprehensive information. For industries such as electricity and wireless service

with block rate structure, similar results are expected in applying QR.

From the perspective of price schedule designing, the empirical results imply

high quantile households are less price elastic. For a water company like EPCOR,

interested in earning more profit, charging higher price for high quantile households

while maintaining current price for low and medium quantile households would

be attractive. Organizations like Arizona Corporation Commission may wish to

maintain or even lower slightly the price for low and medium quantile households

to protect low-usage consumers. Another implication of the empirical results is

that seasonality only affects high quantile consumers. For both EPCOR and the

Arizona Corporation Commission, a price schedule adjusted seasonally may serve

both of their interests. Based on current price schedule, the summer price for low
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Figure 5.1: Example: QR vs. LS Price Elasticity

users can be lowered slightly, while for high quantile users it can be increased so

that EPCOR could charge more while the Arizona Corporation Commission could

protect welfares of low quantile consumers.

From the perspective of water conservation in desert cities like Phoenix, the

empirical results imply that economic policy should put less weight on high quantile

consumers. The price elasticity for high water consumers is lower than for the

medium quantiles, which implies that the effectiveness of price-related policies on

high water consumers is limited. Although the difference in price elasticity between

low quantile and medium quantile has not yet been statistically established, similar

result seems likely. More efficient policy aimed at low and high quantile consumers

might involve non-price factors on monthly maximum usage.
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