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Abstract 
 
 

This research explores the influence of climatic conditions on the mean and variance 

of crop yield in Arizona. We develop a stochastic seemingly unrelated regression 

model for capturing the impact of climate change on crop yield, and the correlation of 

yield among crops. By design the model can differentiate both long term impact 

(year-to-year, on the mean of yield) and short term impact (within year, on the 

variance of yield) of climate change simultaneously. Estimating the model for the 

1965-2008 period across seven leading farming counties in Arizona, we find that the 

climatic conditions-crop yield relationship is crop-specific. Temperature is highly 

significant in explaining the mean change of both cotton and hay yield; yearly 

precipitation level is only slightly significant in explaining the mean change of cotton 

yield, while it is highly significant in explaining the mean change of hay yield. 

Results also indicate that as the within year variation of precipitation and temperature 

increase, the yield variation becomes smaller. Finally, the yield variation of cotton and 

hay tends to be positively correlated, although the strength of correlation varies 

among different counties. 
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Chapter 1: Introduction 

 

1.1 Research Motivation 

As the key development of human civilization, agriculture has been the basic 

tool for man’s coexistence with physical world. One explanation for this coexistent 

relationship can be the interrelated processes between climate change and agricultural 

production, especially for field crop farming. Solar radiation, temperature, and 

precipitation are the main drivers of crop growth; therefore agriculture has always 

been highly dependent on climate patterns and variations. Overall, climate change 

could result in a variety of impacts on agriculture. One of these effects is the change 

of production patterns due to higher temperature and precipitation variation. While 

both climate change and agricultural production take place on a global scale, the 

impact of climate change on agriculture tends to vary from region to region. Climate 

is generally a concept associated with large geographic area, and the agricultural 

production driven climate change can only be significant on an equivalent large scale 

(global scale, etc.). Therefore, for a certain geographic region the 

climate-to-agriculture impact is dominant among the interaction between climate and 

agriculture. On the other hand, over the past century, human innovation has led to 

technological advances in agriculture that have allowed substantial increase in crop 

yields, in part stimulated to meet population growth and industrialization. These 

technological advances constitute the essential part of human adaptation in agriculture 

to both natural and social conditions change. 

While agricultural production has experienced stable and substantial growth 

during the past century (Gardner, 2002), from year to year the production 

performance has also shown lots of fluctuation. The fluctuation in agricultural 
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production has largely stemmed from a fluctuation in yield of major crops which in 

turn is the result of the behavior of natural environment (namely climate); and other 

events like pest attacks on crops, which are indirectly related with climatic conditions. 

All of these natural fluctuations of agriculture can then be transmitted to market via 

demand and supply mechanism, but this transmission is mostly featured as short 

period cycle or seasonality. Often time, beyond the complexity of these relationships 

we are eager to understand them for different purpose. A most common way to show 

this aspiration is crop yield forecasting. A traditional way to do crop yield forecasting 

is meteorological methods, which generally combines simulation model and 

satellite-derived data or GIS/GPS-based information (Wit and Diepen, 2008; Thomas 

et al., 2002). Ferris (2006) notes that, agricultural forecasts, whether for the coming 

year or several years into the future, have been based on assumptions of normal 

weather and trend of crop yields. That weather is seldom normal and that yields 

seldom fit trends are well recognized. However, relatively little attention has been 

given to projecting crop yields stochastically even though computer capacity and 

software programs are available to do so. Ferris (2006) gives two reasons: one reason 

is that the task is more challenging than to assign standard deviations to various crop 

yields and simulate normal distributions using random number generators. For one, 

deviations of crop yields from trends may be correlated especially if the locations of 

the crops overlapping. Even to model crop yield individually, those correlations must 

be taken into account. Secondly, deviations of crop yields from trends may not 

necessarily be normal. Typically, crop yield deviations are skewed to the low side, 

with yields lower in poor crop years than higher in favorable crop years. These 

observations encourage revisiting crop yield forecasting in a more stochastic and 

more systematic way. 
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1.2 Research Question 

Long term (year-to-year) climate change can have important implications for the 

adaptation in agriculture production (especially crops); at the same time, influence 

from irregular change and random shock (short term (within year) variation) of 

climatic conditions such as temperature, precipitation and humidity are also important. 

The differences between these two kinds of impacts can be distinct. In Arizona, in 

2006, there are about 10,000 farms with an average size of 2,610 acres. At the same 

time, farm income from crops reached $1,558 million dollars compared to $1,321 

million dollars of farm income from livestock. The top agricultural crop commodities 

in Arizona are lettuce, cotton and hay. On the other hand, Arizona has an unique 

climate pattern. Due to its large area and variations in elevation the state has a wide 

variety of localized climate conditions. In the lower elevations, the climate is 

primarily desert, with mild winters and hot summers. However, the northern third of 

Arizona is a plateau at significantly higher altitudes than the lower desert, and has an 

appreciably cooler climate, with cold winters and mild summers. All of these 

characteristics together give rise to an interest research question on the relationship 

between Arizona crop yield variation and its unique climatic conditions.  

So the general research question comes as what is the impact of climatic 

conditions’ variation on agricultural production, and what is the difference between 

long term impact and short term impact? Finally, what are the ecological and 

economic results of these impacts? As an empirical research question, we wonder how 

to model the climate-crop relationship in a systematic way with appropriate stochastic 

features, and how would the modeling facilitate the forecasting and inference? 
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1.3 Literature Review 

Aside from the general discussion of crop yield behavior, a thorough 

understanding of crop yield pattern has to take the consideration of both implicit 

trends and deviation from these trends. In other words, deviation from crop yield 

trends is as important as trends themselves since the deviation from past trends 

indicates the path of the future trends. In literature, considerable attention has been 

devoted to agricultural effects of climate change (Mendelsohn et al., 1994, 1996; 

Adams et al., 1998; McCarthy et al., 2001; Seo and Mendelsohn, 2008), but studies 

focus only on the impact of long term climate change on expected crop yields. 

Deschênes and Greenstone (2007) measured the economic impact of climate change 

on US agricultural land by estimating the effect of random year-to-year variation in 

temperature and precipitation on agricultural profits, which only captures the long 

term trends into forecasting. In fact, while climatic cycles generate the natural 

seasonality, this seasonal pattern itself can have significant variation which comes 

from short term irregular or abrupt changes of climatic conditions such as temperature, 

precipitation, humidity, etc. An illustration of this irregular change is ENSO (El 

Niño-Southern Oscillation) events and their impact. Adams et al. (1999) found that 

much of the variation in climate can be traced to the ENSO phenomenon, which can 

be reflected in agricultural production, prices and profits. Because crop growth 

generally follows the natural seasonal pattern, so the short term variation of climatic 

conditions can have significant impact on the planting, growth and harvest of crops. 

However, little empirical evidence is available on crop yield variations in response to 

the short term alterations in climatic conditions, while this kind of information is 

important in simulation studies of climatic conditions-crop yield relationships 

(Mearns et al., 1997; Isik and Devadoss, 2006) and decision making in production. 
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Riha et al. (1996) for the first time consider the within-year variability of temperature 

and precipitation (without altering long-term mean values) into research on crop 

predictions. Their results indicate that average predicted yield decreases with 

increasing temperature variability where growing-season temperatures are below the 

optimum specified in the crop model for photosynthesis or biomass accumulation. 

However, increasing within-year variability of temperature has little impact on 

year-to-year variability of yield and the influence of changed precipitation variability 

on yield was mediated by the nature of the soil. Even though these findings stand on 

pure biological perspectives, it gives the hint that within-year variability of 

temperature and precipitation could be important in crop yield forecasting.  

From a more general statistical perspective, the most important agricultural 

impact of climate change should be its influence on the distribution of future crop 

yields rather than solely on average trends. Many studies have been done regarding 

the effect on the mean of such distributions but few have addressed the effect on 

variance. Chen et al. (2004) examined the potential effects of climate change on crop 

yield variance in the context of current observed yields and then extrapolates to the 

effects under projected climate change. In their study, maximum likelihood panel data 

estimates of the impacts of climate on year-to-year yield variability are constructed 

for the major U.S. agricultural crops. The estimation results indicate that changes in 

climate modify crop yield levels and variances in a crop-specific fashion. For 

sorghum, rainfall and temperature increases are found to increase yield level and 

variability. On the other hand, precipitation and temperature are individually found to 

have opposite effects on corn yield levels and variability. 

Isik and Devadoss (2006) consider change in climatic conditions from year to 

year as the major determinants of the crop yield fluctuations, which is a relatively 
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long time period measure of climatic variation. In this research, we construct an 

alternative within-year measure of climatic variation which can capture the change in 

climatic conditions more efficiently in a short time span (month-to-month). Since 

different crops could react differently to the alternations in climatic conditions 

(Adams et al., 1998), some crops may depend more on certain climatic condition 

while other crops may prefer different climatic conditions. On the other hand, across 

different regions, the combination of climatic conditions is also heterogeneous; some 

regions may be rich in their sunshine (related to temperature), while other regions are 

more abundant in precipitation. An example is the climatic difference between 

Arizona and its neighbor California. Mediterranean climate prevails in much of 

California, while Arizona is known for its dry desert climate, which presents 

exceptionally hot summers and mild winters. These differences and heterogeneity 

indicate that the relationship between climatic conditions and crop production is not 

only crop-specific, but also region-specific. So we would expect that the main crops 

in a certain region are generally more sensitive to its more significant climatic 

conditions, which is the consequence of adaptation in crop growth and agricultural 

production patterns in the long term (Mendlesohn et al., 1996).  

Mendlesohn et al. (1994) found that higher temperatures in all seasons except 

autumn reduce average farm values, while more precipitation outside of autumn 

increases farm values. Actually, in terms of impact on agricultural production, 

different climatic conditions have complicated interaction while crop growth and 

agricultural production patterns respond to them adaptively. In this research, we 

consider a quadratic function form to capture the mean change of crop yield, which 

will account for the interaction among all of the climatic conditions included. As 

another climatic condition varies, the yield response of a crop to certain climatic 
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condition will keep shifting. This is consistent with Mendlesohn et al. (1994)’s 

finding that the effects of higher temperature range from mildly harmful to 

unequivocally beneficial. And the range of this shift is always determined by the 

change of other climatic conditions. As another improvement, we intend to combine 

the impacts of climatic conditions on different crops into one system, and within this 

framework we can estimate the correlation of variations among different crops more 

efficiently. A traditional way to estimate this correlation is a two-step procedure, 

which estimates each climatic conditions-crop yield relationship being studied first, 

and then calculates the correlation coefficients of all residuals (Isik and Devadoss, 

2006). The unobserved components of error for different equations (climatic 

conditions-crop yield relationships) are likely to be correlated, and these structural 

errors may come from some other common factors (such as policy impact) which can 

not be efficiently estimated by an equation-by-equation estimation procedure.  

This research uses a seemingly unrelated regression (SUR) model to 

systematically explore how certain climatic conditions can affect both mean and 

variance of crop yields. A candidate benchmark model is based on a stochastic 

function specification which possesses sufficient flexibility so that the effects of 

inputs on the deterministic component of function are different than on the stochastic 

component (Just and Pope, 1978). By design our model specification makes it feasible 

to differentiate the impacts of long term climate change and short term climatic 

variation simultaneously. To fit the specification of model, several new measures of 

short term climatic variation are also developed, which are different from traditional 

measure of climatic factors (Stallings, 1961). A main technical feature of this research 

is that, the proposed stochastic SUR model can handle both correlated structural 

errors and heteroskedasticity simultaneously while resulting in more efficient 
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estimates. Note that, the estimated system can also be used for forecasting of crop 

yield in coming years. 

 

1.4 Structure of This Research 

The focus of this research is to examine the impact of climatic variation on crop 

yield in Arizona, an area with unique climate patterns. The main part of this research 

has a structure of five chapters. This first chapter gives a brief introduction to the 

motivation and basic question of this research. The following chapter will talk about 

the methodology and model specification employed by this research. The 

methodology section includes discussion of forecasting methods, the optimality of 

OLS and efficiency of seemingly unrelated regression (SUR) model, 

heteroscedasticity and correlation in SUR Model. Different extension of SUR model 

will also be discussed briefly in this chapter, which includes SUR model with 

identical regressors, SUR model with unequal numbers of observations, and 

nonparametric SUR models. The third chapter will discuss data and descriptive 

statistics, including data coverage, data collection and treatment of missing values, 

descriptive statistics of variables. The fourth chapter analyzes estimation results, 

marginal effect, forecasting and correlation among crop yields. This chapter will also 

discuss heterogeneity cross different counties in Arizona. The last chapter will give 

implications of this research, and a brief conclusion and hints for future research.  
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Chapter 2: Methodology and Model Specification 

 

2.1 All about Forecasting  

As mentioned in chapter 1, this research uses a seemingly unrelated regression 

(SUR) model to systematically explore how certain climatic conditions can affect both 

the mean and the variance of crop yields. In the other words, we try to use a 

parametric model to capture the interrelated process between crop yield and climatic 

conditions, and then implement forecasting based on the relationship. Econometric 

forecasting is based on the application of specific economic models that suggest the 

relationship(s) between various variables. Generally, econometric forecasting methods 

can be classified into two very broad categories (Kennedy, 1992). (1) Structured 

econometric models. Once estimates of the parameters of an economic model are 

available, the model can be employed to forecast the dependent variable if the 

associated values of the independent variables are given. The model used can range in 

sophistication from a single equation with one or two explanatory variables to a large 

simultaneous-equation model with scores of variables. The SUR model considered in 

this research can be categorized into this case. (2) Time series models. Time series can 

be characterized as consisting of a time trend, a seasonal factor, a cyclical element and 

an error term. A wide variety of techniques is available to break up a time series into 

these components and thereby to generate a means of forecasting future behavior of 

the series. These methods are based on the supposition that history provides some 

guide as to what to expect in the future. For the forecasting and prediction involved in 

this research, an applicable time series model is multivariate GARCH model 

(Bauwens et al., 2006). The most obvious application of multivariate GARCH models 

is the study of the relations between the volatilities and co-volatilities of several 
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markets. Is the volatility of a market leading the volatility of other markets? If we 

consider a crop as a market, then the similar questions rises: Is the fluctuation of a 

crop yield leading or intervening the yield fluctuation of other corps? 

In this research, we choose to focus on the first category: structured econometric 

models. The essential reason is that we are motivated to examine the interaction 

between crop yield and climatic conditions, and the crop yield forecasting is the 

derivative product of this process. In this way, more exogenous information can be 

used, which can explicitly relate climate variables to crop yield-an objective of the 

study.  

 

2.2 Basic Model Specification 

We assume first that the technological change and capital investment in 

agricultural production follow a stable increasing pattern which can be efficiently 

captured by a time trend variable. In fact, technological change and most of capital 

investment (such as infrastructure, irrigation system) can only affect crop yield in long 

term, which also suggests the introduction of a time trend variable in the deterministic 

part of equation. Another basic assumption is that, there is no abrupt land use change 

which the data seems to support except possibly for Yuma County during 1970s. The 

land use change in Yuma County in 1970s is discussed in next chapter. Hence, as the 

first step, the impacts of climatic conditions on crop yield can be isolated from the 

impacts of other anthropogenic input factors. To represent the relationship between 

climatic conditions and crop yield, we use the stochastic production function 

specification proposed by Just and Pope (1978): 

( ) ( ) ( ), ( ) 0, ( ) ( is constant)y F x f x h x E Vε ε ε σ σ= = + = =  

Where y is crop yield and x is a set of explanatory variables in our case, note that 
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the explanatory variables in ( )f x  and  are not necessarily identical. After 

customizing the function into the climatic conditions-crop yield relationship being 

examined, the basic model (for a specific crop) can be written as: 

( )h x

1/2 2( ; ( ; ) ~ (0, )it it it it ity f x h z N ωα ω β ω σ= ) +                     (2-1) 

Where: 2 2
0 1 2 3 4 5 6( ;it t it it it it it itf x Year P T P T Pα α α α α α α α) = + + + + + + T  

0 1 2 3 4

0 1 2 3 4

( ; )

=

it it it it

it it it it

P T VP VT
it

P T VP VT

h z e

e e e

β β β β β

β β β β β

β + + + +

+ +

=
 

, ,ity crop yield i county t year− − −  

var
var

t

it

it

it

it

Year time trend
P yearly cumulative precipitation
T yearly average temperature
VP within year precipitation iance
VT within year temperature iance

−⎧
⎪ −⎪⎪ −⎨
⎪ −⎪
⎪ −⎩

 

The specification in equation (2-1) has desirable properties. First, it can separate 

the deterministic and stochastic parts of the function, and then it gives the mean and 

variance of yield in a concise way: 

( ) ( ;it itE y f x α= )

2
ω =

                                             (2-2) 

2( ) ( ; ) ( ; ) ( 1)it it itV y h z h z ifωσ β β σ= =                         (2-3) 

In this framework, there is no need to use identical explanatory variables in both 

deterministic and stochastic parts. We create two new variables for stochastic part of 

the function (1): within year precipitation variance (VP) and within year temperature 

variance (VT). These two newly introduced variables are calculated based on monthly 

average observations of precipitation and temperature, which are simply the variances 

of 12 monthly average observations respectively. Because within year variation of 

climatic conditions is also important to crop growth and hence crop yield, we expect 

that these two variables would explain a large part of crop yield’s short-term variation. 
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On the other hand, for the purpose of comparison, we also include yearly cumulative 

precipitation and average temperature in the stochastic component of function (1). As 

measures of long-term climate change, we expect these two variables are significant 

in accounting for the mean crop yield change (deterministic component of function). 

However, to provide a robust explanation for the variance change of crop yield, we 

expect second moments of within-year variance of temperature and precipitation are 

equivalently significant and convincing in terms of both methodology and economic 

intuition. The reason is that more information will be used with both first and second 

moments, and within-year variance can also account for the change of seasonality. 

Another implication of this specification is that, we assume there is 

heteroskedasticity in individual equation (climatic conditions-crop yield relationship). 

The observed part of heteroskedasticity will be captured by ( ; )ith z β , and the 

remaining unobserved random part of heteroskedasticity will be captured by itω  

which follows normal distribution by assumption. In a correlated system, these 

unobserved random parts comprise structural errors which come from some common 

unobserved factors. In this case, using a SUR model which combines all of the 

equations will be more efficient than imposing a Least Squares Method or MLE 

(Maximum Likelihood Estimation) on each of single equations individually. The 

reason will be discussed in next section. 

 

2.3 The Optimality of OLS 

By choosing seemingly unrelated regression methods, we need to be convinced 

that a SUR model which combines all of the equations will be more efficient than 

imposing a Least Squares Method. The efficiency of SUR model over OLS model 

(ordinary least squares) has been discussed by different authors (Kmenta, 1986; 
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Srivastava and Giles, 1987; Baltagi, 1998). In estimating the coefficients of the 

seemingly unrelated regression equations, one possible approach is to apply the OLS 

method to each equation separately. And the OLS estimators of the regression 

coefficients are unbiased and consistent. Thus the major question is that of efficiency, 

by estimating each equation separately and independently, we are disregarding the 

information about the mutual correlation of the disturbances, and the efficiency of the 

estimators becomes questionable. In the context of the seemingly unrelated 

regressions, Kmenta (1986) proved that, when taking into account the correlation of 

the disturbances across equations, OLS estimation of the seemingly unrelated 

regressions is not efficient. However, there are situations the OLS and FGLS/MLE 

estimators are identical. One special case is that variance covariance matrix of the 

equation system is know to be diagonal, which means there is no correlation of the 

disturbances across equations (Srivastava and Giles, 1987).  

 

2.4 Heteroscedasticity, Correlation and SUR Model 

In this research, we expect there are disturbance correlations among different 

objects (crops and regions) being studied, and which is of importance in studying 

behavior of all crops involved in agricultural production as a whole. Since a least 

squares estimation on each separate equation does not necessarily ensure efficient 

estimators, more generalized estimation methods should be implemented. Based on 

the basic model specification (2-1), we construct a stochastic SUR model with 

identical/different regressors in each equation which represents the relationships being 

studied respectively (2-4). And the system is also featured by heteroskedasticity and 

spatial (cross section) correlation.  

jit j jity f u= + , ( )1/ 2
;jit jit j jit ju h zω β= th equationj j=               (2-4) 
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We can write the N-equations system as following: 

( )
( )

( )

1/2
1 1 1 1 1 1 1 1

1/2
2 2 2 2 2 2 2 2

1/2

( ; ) ;

( ; ) ;

( ; ) ;

it it it it

it it it it

nit n nit n nit n nit n

y f x h z

y f x h z

y f x h z

α ω β

α ω β

α ω β

⎧ = +
⎪
⎪ = +⎪
⎨
⎪
⎪

= +⎪⎩

                            (2-5) 

More specifically, there are different ways to define this system according to 

different cross section measurements.  

(1) By crops:           (2-5-1) th crop (cotton, hay, corn, wheat, etc.)j j=

In this case, we put all of the data together as a pool since every crop is planted 

over the area being studied. In other words, we have a SUR specification with 

identical regressors here. 

(2) By regions:   (2-5-2) th region (can be county, district or state level)j j=

In this case, by definition we treat different regions in the area being studied 

separately and the data is no longer used as a pool. Therefore, we have a SUR 

specification with different regressors. As mentioned above, in both cases, our model 

is featured by heteroskedasticity and spatial (cross section) correlation.  

As far as estimation procedure is concerned, most of theoretical derivation 

assumes that the elements of the variances and covariances matrix of the regression 

disturbances are known. However, if they are not known, as is the more general case, 

we need to find consistent estimators of the variances and covariances matrix. One 

possibility is to estimate these variances and covariances from OLS residuals as 

suggested by Zellner (1962), which involves application of Aitken's generalized 

least-squares to the whole system of equations (Aitken, 1935, 1942). It is found that 

the regression coefficient estimators so obtained are at least asymptotically more 

efficient than those obtained by an equation-equation application of least squares. The 
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two-stage Aitken estimator of coefficients is asymptotically equivalent to the 

generalized least squares estimator and, therefore, to the maximum likelihood 

estimator of coefficients (Kmenta, 1986). An alternative solution to the problem of 

estimating variances and covariances matrix of the regression disturbances is to use 

the maximum likelihood method. The maximum likelihood estimator can also be used 

for the purpose of testing the hypothesis that variances and covariances matrix is a 

diagonal matrix, which means that the regression equations are actually unrelated (no 

disturbances correlation). In this research, we use maximum likelihood estimators.  

In proceeding specification we have a white noise ω in stochastic part of the 

function. To move on, we explicitly assume that: 

(For the case of 3j = ) 

(
1

2

3

~ 0,
it

it

it

N
ω
ω
ω

⎡ ⎤
⎢ ⎥= Σ⎢ ⎥
⎢ ⎥⎣ ⎦

ω ) , where 
12 13

12 23

13 23

1
1

1

ρ ρ
ρ ρ
ρ ρ

⎡ ⎤
⎢ ⎥Σ = ⎢ ⎥
⎢ ⎥⎣ ⎦

              (2-6) 

Note that two additional conditions are also assumed: 

| | 1 , 1, 2,jk j k 3;ρ < ∀ =                                     (2-7) 

| | >0∑ ;

|

                                                  (2-8) 

For assumption (2-7), it is very straightforward. For assumption (2-8), it is a 

necessary condition in the procedures of maximum likelihood estimation. Actually, if 

| jkρ  is not very large, this condition will always hold. And in our case, we expect 

that the structural errors are correlated but not highly correlated, because identical 

explanatory variables have been using in variance function ( ; )ith z β . Hence, the 

variance-covariance matrix for yields is given by: 
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1 12 1 2 13 11 1

2 2 12 1 2 2 23
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Note that (2-9) can also be written into products among different elements as 

following: 
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It is well known that the classic way to estimate variance - covariance matrix is 

to follow the first step of several asymptotically equivalent two-step GLS (generalized 

least squares) procedures (Schmidt, 1977; Hwang, 1990) which can give consistent 

estimators of variance-covariance matrix. However, the variance-covariance matrix in 

(2-6) is not exactly the matrix estimated by classic ways. Note that variance - 

covariance matrix (Σ) is only part of variance-covariance matrix (Ω) for yields. This 

decomposition enables us to focus only on unexplained heteroskedasticity and 

corresponding correlation induced by these unexplained errors. On the other hand, 

with model specification as (2-5), however, more efficient estimator can be achieved 

by one-step maximum likelihood estimation which can estimate both Σ and 

coefficients in deterministic and stochastic parts simultaneously. Therefore, by 

combining (2-4), (2-5), (2-6), (2-7), (2-8) and (2-9) together, we can get the 

log-likelihood function of this three-equation system:  

, , 1 1
ln ln

T N

it
t i

Max L L
α β = =

=∑∑Σ
                                      (2-10) 

Where,  
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Finally, we have the log-likelihood function as: 
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(2-11) 

To implement the estimation on this log-likelihood function, nonlinear 

optimization procedure will be used and here we choose Double-Dogleg Method and 

Newton-Raphson method. For the data, as we discussed early in this section, in the 

case (2-5-2) of SUR by regions (for individual crop) we deal with the panel nature of 

data. Otherwise, in the case (2-5-1) of SUR by crops (both for single region and all 

regions) we pooled the entire dataset by regions and years together. The data 

characteristics and descriptive statistics will be presented in next chapter. 

 

2.5 SUR Model with Identical Regressors 

Before we proceed on data analysis and estimation, it is also necessary to clarify 

the case of SUR model with identical regressors. This is the most crucial framework 

in this research (case 2-5-1), and in some situations it tends out that The OLS and 

FGLS estimators are identical and, therefore, equivalent to the maximum likelihood 
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estimator of coefficients (α in (5-2)). Srivastava and Giles (1987) give a case that the 

same explanatory variables appear in each of the equations of SUR model. While 

there is no heteroskedasticity in each equation, they prove that SUR model collapses 

to the multivariate regression model, and hence OLS and FGLS estimators are 

identical:  

1 2

1 2

1 2

(M=number of equations)
K K K (K=number of parameters in each of M equations)
T T T (T=number of observations in each of M equations)

M

M
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= = = =
= = = =
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In our specification, however, we have heteroskedasticity in each equation. As it 

indicates in maximum likelihood function (2-11), we can divide each equation by the 

corresponding square root of heteroskedastic variance jith . Then as a result of this 

transformation, the SUR model with identical regressors becomes a SUR model with 

different regressors (2-15), in which case OLS estimators is not efficient (Kmenta, 

1986).  
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Therefore, in the situation of a system of equations with identical regressors, if 

the following two conditions exist then SUR methods are more efficient: (1) there is 

disturbance correlation among different equations; (2) heteroskedasticity is the 

appropriate specification for each equation. Our model meets both conditions. 
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Chapter 3: Data and Descriptive Statistics 
 

 
Applied research is designed to help solve particular existing problems and 

advance people’s knowledge and understanding of these issues. While methodology is 

the framework of research, data serves as the foundation of that research. The 

characteristics of the data, particularly their type, quantity, and sampling methods, 

constrain the choice of analytical techniques applied to the data. So in this chapter we 

will be discussing data collection and coverage, characteristics of data, missing values 

and descriptive statistics. 

 

3.1. Crop Data 

Agriculture is important to Arizona. According to the National Agricultural 

Statistical Service of USDA, in 2007, there were 10,000 farms operating in Arizona, 

the average farm size was about 2,600 acres. But not all farmers grow the same crops; 

farmers in Arizona grow almost 100 different crops. Among these crops, lettuce, hay, 

cotton, cantaloups, wheat, broccoli, watermelons are leading crops for the state’s farm 

cash receipts. These leading crops account for more than 80% of the state’s farm cash 

receipts (table 3.1).  

The top three agricultural crop commodities in Arizona are lettuce, cotton and 

hay. They represent 10.8%, 5.4% and 7.5% of the state’s total farm cash receipts 

(2008) respectively. Arizona grows enough cotton each year to make more than one 

pair of jeans for every person in the United States. Arizona hay alfalfa yield led the 

nation at 8.3 tons per acre compared to 3.4 tons nationally. So in this research we 

focus on two of the top three crops, hay and cotton. The raw data on annual 

county-level crop yields comes from the National Agricultural Statistics Service 

(USDA) online database. 
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Table 3.1 Arizona: Leading commodities for cash receipts, 2007-2008 
Items Value of receipts 

(1,000 dollars) 
Percent of Total 

Receipts 
Cumulative 

Percent 
Year 2007 2008 2007 2008 2007 2008 

All commodities 3,420,496 3,464,560 100.0 100.0 -- -- 
Livestock and products 1,577,007 1,505,488 46.1 43.5 -- -- 

Crops 1,843,487 1,959,072 53.9 56.5 -- -- 
Dairy products 801,627 763,136 23.4 22.0 23.4 22.0 

Cattle and calves 677,393 637,016 19.8 18.4 43.2 40.4 
Greenhouse/nursery 79,125 417,748 2.3 12.1 45.5 52.5 
Lettuce 560,160 373,290 16.4 10.8 61.9 63.2 
Hay 195,177 260,926 5.7 7.5 67.6 70.8 
Cotton 169,894 188,797 5.0 5.4 72.6 76.2 
Cantaloups 103,880 118,825 3.0 3.4 75.6 79.7 
Wheat 40,196 118,808 1.2 3.4 76.8 83.1 
Broccoli 67,444 57,988 2.0 1.7 78.8 84.8 
Watermelons 41,016 46,656 1.2 1.3 80.0 86.1 

Source: Economic Research Service/USDA 
 

Another issue associated with crop data is which county and how many counties 

should be included in this research. There are 15 counties in the state of Arizona. 

During the time period 1965-2008, almost all of the counties have been 

geographically stable except that La Paz County was established in 1983 after voters 

approved separating the northern portion of Yuma County, making it the first and only 

new county created since Arizona statehood in 1912. As a result, Arizona laws were 

changed to make splitting other existing counties much more difficult. On the other 

hand, it happens that La Paz is one of the leading agricultural counties in Arizona. 

According to the Arizona Agricultural Statistics, La Paz is among the top five counties 

in agricultural sales in 2008 (table 3.2). And the observations from Yuma County are 

also affected by the discontinuity of La Paz County during the time period being 

studied. To remedy this, we combine Yuma County and La Paz County together as a 

joint county Yuma-La Paz. Since counties in northern Arizona and other small 

counties (Greenlee and Santa Cruz County) only count for a very small percent of 
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state receipts, and statistical data is not continuously available for these counties, we 

exclude them to reduce measurement error and the complexity of analysis. In the end, 

we include 7 counties in this research, and Yuma and La Paz are combined into one 

county for the reason discussed above. These counties are Yuma-La Paz, Pinal, Pima, 

Maricopa, Graham, and Cochise, which in total account for 94.91% of the state cash 

receipt. 

By considering crop choice and county choice jointly, the alternative way is 

looking at the production value of cotton and hay in those seven leading counties 

(table 3.3). For cotton upland, seven leading counties sum up to 96.89% and 96.44% 

of state total production in 2007 and 2008 respectively. For hay all, these percentage 

are 86.58 (data of Cochise and Pima county is missing in 2007) and 95.46%. 

Therefore, the data collection in this research covers most of the crop farming 

activities in Arizona, which ensures the applicability of this research. 

 

Table 3.2 Cash Receipts: All Farm Commodities by County (2008) 
 Percent of state total receipts Thousands $ 

1. Yuma County 28.88% 1,000,578 
2. Pinal County 25.52% 884,175 
3. Maricopa County 25.43% 881,115 
4. Graham County 5.37% 186,143 
5. La Paz County 4.05% 140,174 
6. Cochise County 3.60% 124,873 
7. Pima County 2.06% 71,209 
Sub Total 94.91% 3,288,267 
State total 100% 3,464,560 

Source: Arizona Agricultural Statistics (2008). 
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Table 3.3 Production of Cotton and Hay by Leading Counties (2007-2008) 
Cotton Upland (bales) Hay All (tons)  

County 2007 2008 2007 2008 

 Production Percent Production Percent Production Percent Production Percent

Cochise -- -- -- -- -- -- 153,500 6.44% 

Graham 60,000 11.67%  52,100 12.86% 16,500 0.75% 14,300 0.60% 

Maricopa 89,000 17.32%  56,500 13.95% 658,000 30.02% 777,000 32.61% 

Pima 22,000 4.28%  19,000 4.69% -- -- 23,000 0.97% 

Pinal 238,000 46.30%  202,700 50.05% 455,500 20.78% 512,000 21.49% 

Yuma 51,000 9.92%  29,000 7.16% 289,000 13.18% 293,500 12.32% 

La Paz 38,000 7.39%  31,300 7.73% 478,800 21.84% 501,500 21.04% 

Sub Total 498,000 96.89%  390,600 96.44% 1,897,800 86.58% 2,274,800 95.46% 

State Total 514,000 100% 405,000 100% 2,192,000 100% 2,383,000 100% 

Source: Economic Research Service/USDA 
 
3.2. Climatic Data 

Arizona is on the western end of the Rocky Mountain chain and the northern half 

of the state is mountainous. So the main agricultural area is the southern third of the 

state (except for Mohave County, which is near the Colorado River). The southern 

half of the state is mainly desert and is good for year round crop growth in irrigated 

areas. The irrigation rate in Arizona agricultural area is generally high, most of years 

the irrigation rate is higher than 70% (table 3.4). For some special crops, all of the 

planted and harvested area is irrigated. With Arizona’s diverse topography, the 

temperature for southern Arizona, including the Phoenix metropolitan area, is lows of 

30°F in the winter to over 100°F in the summer. In the northern portion of the state, 

the temperature fluctuates from 20°F to 95°F. The highest temperature recorded was 

127°F. The lowest temperature recorded was -40°F. A major climate feature of the U.S. 

Southwest is the North American monsoon (a distinct seasonal change in wind 

direction of at least 120°). Arizona receives a majority of it’s rainfall during this late 

summer period. There are, on average, 257 clear, sunny days with an average rainfall 

of 12.7 inch a year giving Arizona very low relative humidity (NOAA). 
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Table 3.4 Farm Characteristics of Arizona 
1997, 2002 and 2007 Census of Agriculture 

 1997 2002 2007 
Approximate total land area (acres) 72,731,030 72,726,122 72,696,492

    Total farmland (acres) 27,169,627 26,586,577 26,117,899
        Percent of total land area 37.4% 36.6% 35.9%

        Cropland (acres) 1,354,820 1,261,894 1,205,425
            Percent of total farmland 5.0% 4.7% 4.6%

            Percent irrigated 75.3% 70.4% 68.3%
            Harvested Cropland (acres) 1,026,359 887,966 832,406

Source: USDA, National Agricultural Statistics Service 
http://www.agcensus.usda.gov/Publications/
 

Climatic data comes from Western Regional Climate Center. The climatic dataset 

includes two measures: temperature and precipitation. Both are monthly average 

observations on the county level, by using these monthly measures we calculated four 

main explanatory variables (table 3.5): yearly average temperature (T), yearly 

cumulative precipitation (P), within year temperature variance (VT) and within year 

precipitation variance (VP). To sum up, the dataset contains data for cotton yield 

(cotton upland, 1935-2008) and hay yield (hay all, 1965-2008) as dependent variables; 

time trend and climatic variables as explanatory variables. The descriptive statistics 

and observation curves of these variables will be shown in section 3.4. To match the 

specification and estimation procedure of the SUR model, it is convenient to maintain 

a balanced dataset. A balanced dataset requires that, however, we have to deal with 

missing values in our case, which we are going to discuss in details in next section. 

Finally, we end up with a new balanced dataset which includes two main crops 

(cotton upland and hay all) from 7 leading agricultural counties (Cochise, Graham, 

Maricopa, Pima, Pinal, Yuma-Lapaz) in Arizona for the time period of 1965-2008 

(table 3.5). 
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3.3. Missing Values 

As mentioned in last section, to maintain a balanced dataset, we have to deal 

with the missing values in the raw data on crop yield. 17 out of 528 observations for 

two crops across six counties were missing, which is about 3% of the entire dataset. 

The reason for these missing values includes: estimates too small to warrant 

quantitative estimate or not published to avoid disclosure of individual operations. For 

these missing values, a strategy to fill them is simple imputation, which substitutes a 

value for each missing value. Standard statistical procedures for complete data 

analysis can then be used with the filled-in data set (Rubin, 1976, 1987). In our 

dataset, for simplicity, we employ two procedures to fill these missing values: mean 

filling and filling by percent increase. Another reason for choosing mean filling and 

percent increase filling rather than random imputation is that, we believe these values 

are missing not because of random factors but anthropogenic factors. So these missing 

values could have been consistent with observed values from other counties.  

In the case there is only one missing value, such as hay yield for Cochise County 

in 1996 and 2007, we simply use the average of the values from the previous and the 

next years. In the case there are missing values for continuous years, such as cotton 

yield for Cochise County from 2005-2008, we use filling by percent increase. The 

principle of this method is that, while we have continuous missing values for a certain 

county we have observations for other five counties during the same time period. This 

means we can use information from other counties in the same area (southern Arizona) 

to infer the pattern of continuous missing values in that particular county. One way to 

formulate and capture this pattern is to calculate the percent increase of yield by year 

from other counties, and then we implement these percent increases on the particular 

county with continuous missing values. By following this procedure, we assume that 
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the yield increase patterns for that particular time period with missing values in all 

counties are similar. This assumption makes sense when all of these counties are 

involved in the same agricultural area, which is the case in this research. 

 

3.4. Descriptive Statistics 

Before we proceed with estimation and analysis of results, it is necessary to get 

an overall impression of the data we are using by looking at the descriptive statistics 

of the data. The table 3.5 shows the descriptive statistics of crop yield and climatic 

measures which we are going to use as dependent and independent variables in 

estimation. 

Table 3.5 Descriptive Statistics of Crop Yield and Climatic Data (all counties) 
Variable (unit) N Mean Std Dev Minimum Maximum 

Cotton yield (lb/acre) 264 1079.82 255.66 435.00 1686.00 

Hay yield (ton/acre) 264 6.37 1.26 2.67 9.16 

Year 44 1986.50 12.72 1965.00 2008.00 

P (inch) 264 11.64 4.71 1.22 25.73 

VP (inch*inch) 264 1.12 0.83 0.04 4.34 

T (F) 264 66.36 4.85 57.19 74.16 

VT (F*F) 264 190.35 23.05 136.06 242.25 

P*T (F*inch) 264 756.80 281.29 89.43 1538.54 

P^2 (inch^2) 264 157.64 115.59 1.49 662.03 

T^2 (F^2) 264 4427.12 634.77 3270.89 5499.46 

Data Source: (1) National Agricultural Statistics Service, USDA. 
        (2) Western Regional Climate Center, United States. 
 

Another way to look at these variables is to draw the scatter-line chart of them. 

Since basically the data we are using in this research has both the nature of being 

cross section and time series, so scatter-line chart can show the time trend and cross 

section heterogeneity more visually and directly (figure 3.1-3.6). From these charts, 

following basic patterns can be observation: 

(1) During sample period, average temperature has been rising at a slow rate 
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consistently. 

(2) During sample period, yearly cumulative precipitation has not changed very 

much, but since 1980s there has been a decline in precipitation. 

(3) The within-year variance of temperature and precipitation can come from two 

sources: seasonality and irregular climatic change and shocks, which are both 

important to crop yield. 

(4) The within year variance of temperature and precipitation have very 

significant fluctuation from year to year. For within year variance of precipitation, it is 

evident that most of time higher within year variance is associated with a higher 

observation on precipitation. 

(5) During 1965-2008, both cotton and hay have experienced a yield increase 

while there also exists significant yield fluctuation. 
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Cochise: Yield of Cotton Upland and Hay (all)
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Graham Temperature and Precipitation
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Graham Within Year Variance of Temperature and Precipitation
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Maricopa Temperature and Precipitation
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Pima Temperature and Precipitation
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Pinal Temperature and Precipitation
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Pinal Within Year Variance of Temperature and Precipitation
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Pinal: Yield of Cotton Upland and Hay (all)
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Yuma-La Paz Temperature and Precipitation
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3-6 (a) 

Yuma-La Paz Within Year Variance of Temperature and Precipitation
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Yuma-La Paz: Yield of Cotton Upland and Hay (all)
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3.5 Land Use Change in Yuma 

Aside from the missing values we discussed in section 3.3, another particular 

concern for this research is land use change. Land use change could be an important 

source of yield fluctuation. Unlike technology-induced yield change, land use 

change-induced yield change can be abrupt mutation since the productivity of land 

has experienced essential change. Therefore, if there is land use changed involved 

during the period being studied, and then it is difficult to tell the difference of impacts 

from climatic change and land use change. After a careful examination on the dataset, 

it is obvious that Yuma County has experienced a big land use change during the mid 

of 1970s (figure 3-7). As the graph indicates, after 1976, the harvested area of cotton 

upland had jumped up while the harvested area of wheat had been reduced. The 

harvested area of hay had not changed much during this period. This kind of observed 

pattern in the dataset requires us to take special treatment in estimation. 

Yuma Crops Harvested Area (1965-1980)
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3-7: Yuma Crops Harvested Area (1965-1980) 

 
As a result of land use change, and which affects the land productivity directly, 

there is a quick yield decline after 1976 (figure 2-6(c)). The high yield fluctuation 
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from 1965 to 1975 can also be a sign of land use change (the incubation for the 

change). There are two possible explanations for the yield decline after 1976. First, 

the new land used for cotton is of low productivity, which can level down the average 

productivity of all cotton cropland. Another explanation is that, the new land used for 

cotton had been used for some other crops which require less water before the land 

use change. So the irrigation system of the new included land has not been well 

developed, while cotton cropping is very demanding on irrigation resources. From 

figure 3-7, we can see that there is a land use change between wheat and cotton 

upland. And generally wheat cropping requires less irrigation resources than cotton 

cropping.  
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Chapter 4: Empirical Results 

 

4.1 Tests of Specification and Structure Change 

Before we proceed to model estimation, two questions are investigated. First, for SUR 

model by regions is it enough to implement a single overall estimation for all included 

counties or do we need to estimate separate sets of parameters for each county? On the other 

words, are the estimates for different counties significantly different, and different impact of 

climatic conditions on crop yields? Since we identified there is land use change in Yuma 

County, another question rises as, is this change significant enough to affect crop yield? In 

this regard, statistic tests are necessary to answer these two questions. 

Table 4.1 Likelihood Ratio Test on SUR Model with 6 counties 
Model Likelihood Value Number of Estimates 

Cochise -502.56 29 
Graham -490.29 29 

Maricopa -416.95 29 
Pima -475.32 29 
Pinal -448.40 29 

 
 

Unrestricted Model 

Yuma La Paz -479.03 29 
Restricted Model All Counties -3137.34 29 

Number of Restrictions 145 
Test Statistics (Z) 19.04 

Decision Reject Null Hypotheses 
 

Table 4.2 Likelihood Ratio Test on SUR Model with 5 counties 
Model Likelihood Value Number of Estimates 

Cochise -502.56 29 
Graham -490.29 29 

Maricopa -416.95 29 
Pima -475.32 29 

 
 

Unrestricted Model 

Pinal -448.40 29 
Restricted Model 5 Counties -2577.23 29 

Number of Restrictions 116 
Test Statistics (Z) 16.02 

Decision Reject Null Hypotheses 
 

For the first question, we run a likelihood ratio test. The restricted model is the overall 
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SUR model for all counties, and the unrestricted models include six SUR models for each 

county. We also implement the likelihood ratio test for other five counties without Yuma, 

since we have already realized that Yuma County has a unique data pattern because of land 

use change. In these two likelihood ratio tests, the numbers of restrictions are 145 and 116 

respectively. And in this case (degree of freedom is larger than 100) chi-square test can be 

transformed into a standardized normal distribution test: 

22 (2 1) (k is the number of restrictions)Z kχ= − −  

And the null hypotheses are: 

(1)  (For all counties model) 

all cochise graham maricopa pima pinal yumalapaz

all cochise graham maricopa pima pinal yumalapaz

α α α α α α α

β β β β β β β

= = = = = =⎧⎪
⎨ = = = = = =⎪⎩

(2)  (For 5 counties model) 

5

5

counties cochise graham maricopa pima pinal

counties cochise graham maricopa pima pinal

α α α α α α

β β β β β β

= = = = =⎧⎪
⎨ = = = = =⎪⎩

The test results are shown in table 4.1 and table 4.2. For both tests we reject the null 

hypotheses; which means it is necessary to examine the impacts from climatic conditions on 

crop yield from county to county.  

For the second question, we need to test the effect of land use change on cotton yield in 

Yuma County. For simplicity, we use dummy variable to test if there is significant yield 

change due to land use change in the mid of 1970s. Here we define the dummy variable as: 

1, if <1977;
(crop=cotton upland, county=Yumalapaz)

0, if 1977;
Null Hypothesis: 0;D_land,cotton

year
D_land,cotton

year
α

⎧
= ⎨ ≥⎩

=  

According to the hypothesis testing results in table 4.3, there does exist a yield structure 

change between years before 1976 and years after 1976. The cotton yield decline in Yuma 

County during the mid of 1970s is probably related with the land use change (Table 3-6(c)). 

As a summary of all the inferences we can reach from these testing results, first, while we can 
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estimate a combined SUR model to see the general relationship between cotton and hay yield 

in all counties it is also necessary to estimate the model for each county. And then, we can 

estimate the model for Yuma County separately because of the unique observed data pattern. 

Besides, it is more efficient to estimate the model for Yuma County from 1977 to 2008. For 

this time period, there is no evident intervention between impacts from change of climatic 

conditions and land use change. 

 

Table 4.3 Statistic Test: Effect of Land Use Change on Cotton Yield in Yuma County 
 Restricted model Unrestricted model 

(with dummy for land use change) 

Estimate of  D_land,cottonα  436.0883 ( t value = 5.35) 

Likelihood Value -482.7654 -470.7843 
Number of Estimates 29 30 

Number of Restrictions 1 
Statistic Test (Chi-square) 23.96 

Decision Reject Null Hypothesis 
 

4.2 Estimates and Predicted Yield Curves 

As discussed in section 2.4, the proposed SUR model can be estimated in different level. 

First and overall, it will be interesting to look at the correlation between cotton and hay and 

their response to climatic variation in all counties being studied generally. The table 4.4 shows 

all of the coefficients for both county level SUR model and overall SUR model. From the 

estimates of overall model we can tell that: (1) precipitation is highly significant in explaining 

the change of both cotton and hay yield, while the variation of precipitation is only significant 

in explaining hay yield change; (2) temperature level is only significant in explaining the 

mean change of hay yield, but variation of temperature is highly significant in explaining the 

mean change of cotton yield; (3) variation of temperature (VT) is highly significant in 

explaining the variation of cotton yield, and the cotton yield variation is also sensitive to 

variation of precipitation (VP); (4) for hay yield variation, it is sensitive to variation of 
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temperature (VT); but it is also sensitive to yearly precipitation level and variation of 

precipitation (VP) (at 10% confidence level). As a brief summary, the results indicate that 

cotton and hay yields are sensitive to different combination of climatic factors. Cotton is 

sensitive to precipitation and variation of temperature, while hay is sensitive to level of 

precipitation and temperature, and variation of precipitation. And overall it turns out that hay 

yield relies more on factors of precipitation. (5) The yield of cotton and hay are highly 

correlated, note that the correlation may come from some common factors (other than climatic 

factors) which affects both cotton and hay yield, such as policy and some other anthropic 

factors. 
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Table 4.4 (a) Coefficient Estimates for both County Level and Overall SUR Model (Cotton Upland) 
 

  Cochise Graham Maricopa Pima Pinal Yuma-La Paz* Overall** 

 Variable estimate t value estimate t value estimate t value estimate t value estimate t value estimate t value estimate t value 

constant -30529 -0.2827 -49256 -0.9715 -47310 -0.7429 -219356 -3.3740 -92728 -1.4436 -161926 -3.1106 -16469 -4.3283 

year 10.0227 3.0046 12.1278 7.6610 8.4706 4.1779 12.2648 9.1487 6.6405 5.1013 10.4735 5.4458 8.2008 13.9541 

P 707.07 1.1856 -156.28 -0.3994 691.5438 2.1251 -544.38 -1.1118 1792.16 5.3558 479.28 1.3112 68.08 1.2981 

T 192.34 0.0551 910.99 0.5400 847.2580 0.4790 5911.35 3.1342 2036.46 1.0951 3909.15 2.7552 -14.08 -0.1386 

P*T -9.0451 -0.9886 2.9234 0.4669 -9.6484 -2.0919 6.9161 0.9957 -25.2199 -5.1989 -5.8061 -1.1623 -0.6993 -1.0510 

P^2 -5.7244 -1.8326 -0.9876 -1.0302 -0.9159 -0.7028 1.9939 1.7879 -2.7649 -3.8426 -5.5987 -2.1964 -0.9559 -2.0354 

T^2 -0.4389 -0.0154 -7.9623 -0.5592 -5.5766 -0.4422 -44.4102 -3.2209 -12.5527 -0.9327 -26.83 -2.7473 0.3727 0.4930 

VT 1.4404 0.8153 0.0097 0.0083 -1.4223 -1.8680 -0.4103 -0.5504 -0.8988 -1.0964 -0.9227 -1.0750 2.1818 5.6845 

VP 42.1889 1.3401 63.8320 2.3757 -45.4207 -0.4645 78.9258 3.4256 -35.2197 -1.9393 10.1817 0.2523 10.3806 0.8070 

constant 10.5993 0.6056 9.9371 0.7981 10.0735 0.6205 -7.5981 -0.4911 9.7076 0.7880 9.7822 0.5812 12.4909 8.7050 

VT -0.0230 -1.4549 -0.0162 -1.1168 -0.0052 -0.4420 0.0127 1.1281 -0.0104 -1.0927 0.0196 1.8500 -0.0134 -3.5744 

VP -0.0622 -0.2376 0.2950 0.7552 -0.0773 -0.0543 -0.2078 -0.5135 -0.6783 -2.0440 0.1346 0.2231 -0.2139 -1.9365 

P 0.0082 0.0828 -0.1001 -1.3250 -0.0507 -0.2907 0.0429 0.3872 -0.0007 -0.0069 -0.0994 -0.6852 0.0302 1.0781 

Cotton 

T 0.0455 0.1594 0.0507 0.2631 0.0033 0.0151 0.1997 0.9356 0.0253 0.1463 -0.0670 -0.2959 -0.0114 -0.5332 

* The model is estimated only for time period 1977-2008 to avoid the intervention from land use change. 
**The overall model is estimated for 5 counties (except Yuma-La Paz) during time period 1965-2008. 
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Table 4.4 (b) Coefficient Estimates for both County Level and Overall SUR Model (Hay all, correlation) 

 

  Cochise Graham Maricopa Pima Pinal Yuma-La Paz Overall 

 Variable estimate t value estimate t value estimate t value estimate t value estimate t value estimate t value estimate t value 

constant -481.49 -1.3949 -162.42 -0.3877 -215.82 -1.4023 -1338.63 -2.7563 -871.70 -3.2621 964.93 2.6726 -23.69 -1.3741 

year 0.0601 8.3835 0.0357 3.4752 0.0729 12.7519 0.1039 9.9513 0.1120 16.5226 0.0167 2.3351 0.0645 25.2364 

P -2.4009 -2.0353 0.0651 0.0314 1.8042 1.6516 -3.9193 -1.3034 1.7726 1.0839 -13.86 -4.1706 -0.7152 -2.7276 

T 12.6276 1.1007 3.3372 0.2372 2.0762 0.4788 34.4486 2.4676 19.0849 2.4821 -26.30 -2.6841 -2.9890 -6.5867 

P*T 0.0326 1.7470 -0.0072 -0.2184 -0.0235 -1.5502 0.0551 1.2524 -0.0245 -1.0423 0.1886 4.1958 0.0100 3.0015 

P^2 0.0138 1.5475 0.0096 1.7424 -0.0064 -1.8812 0.0065 1.0457 -0.0040 -1.1836 0.0161 1.3723 0.0026 1.1410 

T^2 -0.1067 -1.1320 -0.0272 -0.2276 -0.0134 -0.4347 -0.2596 -2.5331 -0.1385 -2.4810 0.1747 2.6173 0.0229 6.8258 

VT -0.0112 -2.5448 -0.0084 -1.3435 -0.0104 -4.2002 -0.0143 -2.8732 -0.0096 -2.7609 -0.0108 -2.8912 -0.0017 -1.0742 

VP -0.2887 -4.2742 -0.1222 -0.9343 -0.3060 -3.8640 -0.0963 -0.5292 -0.2145 -2.0101 -0.5255 -1.1276 -0.2158 -3.6043 

constant -0.2637 -0.0182 -18.2179 -1.1474 -2.0280 -0.1339 -55.1356 -2.4462 -1.5105 -0.0863 -1.2634 -0.0388 -0.4570 -0.5735 

VT -0.0411 -2.7092 0.0101 0.6806 0.0009 0.0688 -0.0119 -0.7990 -0.0204 -1.6449 -0.0503 -1.9747 -0.0105 -3.1511 

VP -1.2700 -4.1664 0.1208 0.3734 -0.5735 -0.9639 -0.0353 -0.0667 -0.0238 -0.0519 -1.2451 -0.2778 -0.2217 -1.6288 

P 0.2111 2.3930 -0.1478 -1.8752 0.0844 0.7164 0.1130 0.7277 -0.0561 -0.4568 0.3420 0.5616 0.0970 3.4545 

Hay 

T 0.0686 0.3076 0.2869 1.1634 -0.0219 -0.1077 0.8025 2.5471 0.0612 0.2474 0.1041 0.2192 0.0000 0.0093 

correlation 0.3112 3.6565 0.1018 1.0938 0.1504 1.5441 -0.0463 -0.5087 0.0368 0.3999 0.3175 3.7797 0.1622 4.2288 

* The model is estimated only for time period 1977-2008 to avoid the intervention from land use change. 
**The overall model is estimated for 5 counties (except Yuma-La Paz) during time period 1965-2008. 
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For county level SUR model, the estimates show a lot of heterogeneity. To understand 

these estimates, we should look at the general differences among six counties first. As table 

3.2 indicates, the top 3 counties (Maricopa, Pinal, and Yuma-La Paz) account for more than 

80% of the state agricultural production value, while other three counties only account for 

about 11%. For individual crops, as table 3.3 shows, Pinal, Maricopa and Yuma-La Paz 

account for more than 80% of cotton production and more than 87% of hay production in 

2008. For other three counties (Cochise, Graham and Pima), it is highly possible that the 

production is operated mainly based on several big farms. This kind of big farm-based 

production pattern makes the crop’s response to climatic variation much more heterogeneous. 

On the other hand, for three leading counties (Maricopa, Pinal, and Yuma-La Paz), there are 

far more farms in operation. So on average, the crop’s response to climatic variation is more 

consistent and easy to capture in these big counties.  

Accompanying with the characteristics of six counties being studied, it is easier to 

understand the estimates for county level SUR model in table 4.4. First, for cotton: (1) time 

trend is a highly significant explanatory variable in each of county level SUR model. (2) In 

Cochise and Graham County, the mean change of yield is mainly explained by time trend. 

And both temperature and precipitation are unable to explain the mean change of yield 

significantly. The only exception is the variation of precipitation, which is significant in 

explaining cotton yield change in Graham. Similarly, both temperature and precipitation 

factors are unable to explain the variation of yield. As discussed above, the reason may be that 

in these small counties the crop production is big farm-based. And individual farm can easily 

adapt to climatic variation and mitigate the impact of climatic impact. (3) In Pima County, the 

mean change of cotton yield is sensitive to temperature and variation of precipitation. 

However, it is worthy to note that, Pima County is also growing lots of pima cotton which is 

not included in this research. In this research, the cotton is referred as upland cotton. (4) In 
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Maricopa and Pinal County, precipitation is significant in explaining the mean change of yield. 

This kind of response could be related to the irrigation resources in these areas. Another 

observation for Pinal County is that, variation of precipitation is significant in explaining both 

mean and variation change of yield. (5) For the combined county Yuma-La Paz (model is 

estimated for time period 1977-2008), which is not included in the overall model for the 

reason to maintain a balanced SUR model with equal number of observations. The explaining 

power of temperature and precipitation here is highly significant, but the yield variation is 

only slightly sensitive to variation of temperature. A related fact might be that, Yuma-Lapaz 

County has a relatively lower precipitation level and higher temperature level than other 

counties (the historical maximum precipitation is less than 9 inch since 1965).  

For Hay, the similar patterns are observed. (1) Time trend is a highly significant 

explanatory variable in each of county level SUR model. (2) In Cochise, precipitation level, 

variation of precipitation and temperature are all highly significant in explaining both mean 

and variance of yield. (3) In Graham, both temperature and precipitation are unable to explain 

the mean change of yield significantly, but precipitation level is slightly significant in 

explaining yield variation. (4) In Pima County, the mean change of hay yield is sensitive to 

temperature and variation of temperature. This is different from the observed response in 

cotton yield of Pima. And the yield variation is also sensitive to temperature level. (5) In 

Maricopa and Pinal County, variation of temperature and precipitation is highly significant in 

explaining the mean change of yield. Temperature level is also significant in explaining the 

yield change in Pinal. For variance of yield, only variation of temperature has slightly 

significant explaining power. (6) For the combined county Yuma-La Paz, the explaining 

power of both precipitation and temperature are highly significant. Besides, the variation of 

temperature is also significant in explaining both the change of yield mean and variation.  

Aside from estimates of variable coefficients in mean and variance function, another part 
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of observation is that, in all yield variance function, most of the estimates for constant term 

are not significant. This result supports our heteroskedastic specification. For estimates of 

variation correlation coefficients (correlation between yield variation of cotton and hay), as 

we have already mentioned, overall it is highly correlated. For each of Individual counties, it 

is highly correlated in Cochise and Yuma-La Paz while it is only slightly significant in 

Maricopa. And in other three counties, the correlation is not evident. The explanation for this 

could be that, as it indicates by table 3.3, in Cochise, Maricopa and Yuma-La Paz County 

cotton and hay production are equally important. For other three counties, at least by looking 

at the production percentage, cotton is more important than hay production, especially for 

Graham.  

Another way to understand and interpret these estimates is by drawing the predicted 

curves, which is also convenient in understanding the marginal effect of explanatory variables 

with interaction and squared terms. In this research, since we use quadratic functional form it 

is difficult to tell the effect of individual variables only by looking at the coefficient estimates. 

Figures 4.1 to 4.4 show all of the yield prediction curves for both cotton and hay in county 

level. The vertical axis shows the predicted yield of certain crop, and the horizontal axis is the 

corresponding climatic measurement used for prediction. In each figure the predicted curves 

are given in different level which is measured by another climatic measurement (temperature 

or precipitation). It is also worth to note that, the range of climatic measurements is chosen 

based on the range of historical observation of these measurements in time period 1965-2008 

for each county. The lower bound of range is a little lower than the minimum of historical 

observations, and the upper bound of range is a little higher than the maximum of historical 

observations. 
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4-1(a): Cochise Predicted Cotton Yield on Temperature (Year 2010) 
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4-1(b): Graham Predicted Cotton Yield on Temperature (Year 2010) 
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4-1(c): Maricopa Predicted Cotton Yield on Temperature (Year 2010) 
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4-1(d): Pima Predicted Cotton Yield on Temperature (Year 2010) 
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4-1(e): Pinal Predicted Cotton Yield on Temperature (Year 2010) 
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4-1 (f): Yuma-La Paz Predicted Cotton Yield on Temperature (Year 2010) 
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4-2 (a): Cochise Predicted Cotton Yield on Precipitation (Year 2010) 
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4-2 (b): Graham Predicted Cotton Yield on Precipitation (Year 2010) 
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4-2 (c): Maricopa Predicted Cotton Yield on Precipitation (Year 2010) 
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4-2 (d): Pima Predicted Cotton Yield on Precipitation (Year 2010) 
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4-2 (e): Pinal Predicted Cotton Yield on Precipitation (Year 2010) 
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4-2 (f): Yuma-La Paz Predicted Cotton Yield on Precipitation (Year 2010) 
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4-3 (a): Cochise Predicted Hay Yield on Temperature (Year 2010) 
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4-3 (b): Graham Predicted Hay Yield on Temperature (Year 2010) 
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4-3 (c): Maricopa Predicted Hay Yield on Temperature (Year 2010) 
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4-3 (d): Pima Predicted Hay Yield on Temperature (Year 2010) 
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4-3 (e): Pinal Predicted Hay Yield on Temperature (Year 2010) 
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4-3 (f): Yuma-La Paz Predicted Hay Yield on Temperature (Year 2010) 
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4-4 (a): Cochise Predicted Hay Yield on Precipitation (Year 2010) 
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4-4 (b): Graham Predicted Hay Yield on Precipitation (Year 2010) 
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4-4 (c): Maricopa Predicted Hay Yield on Precipitation (Year 2010) 
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4-4(d): Pima Predicted Hay Yield on Precipitation (Year 2010) 
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4-4 (e): Pinal Predicted Hay Yield on Precipitation (Year 2010) 
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4-4 (f): Yuma-La Paz Predicted Hay Yield on Precipitation (Year 2010) 
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4.3 Marginal Effects 

As mentioned in discussing the estimate of coefficients, because of the quadratic 

functional form it is convenient to look at the predicted curves and marginal effect instead of 

individual estimates of coefficients. Predicted curves are more visual in showing marginal 

effect and change of yield, but it is not precise (in a numerical sense) and it is hard to tell the 

significance of marginal effect. So within next two subsections the numerical marginal effect 

and its significance will be discussed. The standard error and hence t statistics values are 

approximated by delta methods. 

 

4.3.1 Marginal Effect on Yield 

From basic model equation 2.1 to 2.3, we know that the crop yield is separated into two 

parts: mean function (deterministic part) and variance function (stochastic part). And different 

function has different explanatory variables, which means we have to discuss the marginal 

effect for each function respectively. In this section, we discuss the marginal effects of 

temperature and precipitation on mean yield. Table 4.5 reports the marginal effects at different 

quartiles of explanatory variables and t statistic value as a measure of statistical significance. 

The quartiles are calculated based on the historical observation on temperature and 

precipitation in time period 1965-2008. For example, when the marginal effect of temperature 

on cotton yield is calculated at 25% quartile (T=60.38 F) the value of precipitation is holding 

at its median level (P = 12.44 inch), and then marginal effect comes as 22.2304 lb/(acre*F) 

with high significance (t=3.3502). Similarly, when the marginal effect of precipitation on 

cotton yield is calculated at different quartiles the value of temperature is holding at the 

median level (T=67.1 F). Other than making the reference solely based on the marginal effect 

at median or mean level, we look at the marginal effect at different quartile levels. By this 

way we are able to tell the change of marginal effect with respect to the change of explanatory 
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variables. 

For cotton yield, the marginal effect of precipitation varies from positive to negative as 

precipitation level increases. At higher precipitation level (>15 inch) it has significant 

negative marginal effect, which means higher level of precipitation is harmful to the cotton 

productivity even though it is necessarily beneficial at lower level. On the contrary, the 

marginal effect of temperature is ambiguously positive with high significance as temperature 

increases. For hay yield, the marginal effect of precipitation is significantly negative at low 

level of precipitation. When the precipitation level is higher, the marginal effect becomes 

positive and significant. On the other hand, the marginal effect of temperature varies from 

negative at low temperature level to positive at mid and higher temperature level. And the 

marginal effect of temperature on hay yield is consistently of high significance. To give a 

summary from another way, the marginal effects indicate: (1) both cotton and hay adapts to 

temperature factors better than to precipitation factors; (2) generally temperature has positive 

marginal effect on cotton and hay yield, but this positive marginal effect varies as temperature 

and precipitation level change; (3) in some cases, temperature also has negative marginal 

effect on crop yield. For example, temperature has a significant negative marginal effect on 

hay yield at relative low temperature level (table 4.5).  
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Table 4.5 Marginal Effect of Variables on Mean of Crop Yield 
 Quartiles of Variables Marginal Effects of Variables on Mean of Yield 

Crops Quartiles P T P (t values) T (t values) 

Minimum 4.14 57.19 13.2366 1.3861 19.8512 1.7621 

25% 10.34 60.38 1.3927 0.3134 22.2304 3.3502 

Median 12.44 67.10 -2.6318 -0.7977 27.2405 5.8315 

75% 15.71 68.95 -8.8835 -2.4997 28.6165 3.9732 

 
Cotton 
Upland 

(pound/acre)

Maximum 25.73 71.99 -28.0404 -2.4092 30.8840 2.6543 

Minimum 4.14 57.19 -0.0211 -0.4948 -0.2460 -4.9043 

25% 10.34 60.38 0.0115 0.6218 -0.0999 -3.3830 

Median 12.44 67.10 0.0226 1.5332 0.2078 10.3172 

75% 15.71 68.95 0.0398 2.0053 0.2923 9.2945 

 
Hay All 

(ton/acre) 
 

Maximum 25.73 71.99 0.0926 1.5076 0.4316 8.4325 

 
Table 4.6 Marginal Effect of Variables on Variance of Crop Yield 

Quartiles of Variables Marginal Effects of Variables on Yield Variance Crops 

Quartiles VP VT P T VP (t values) VT (t values) P (t values) T (t values) 

Minimum 0.16 136.06 4.14 57.19 -3043.41 -1.5732 -304.25 -2.0046 270.41 1.4196 -147.21 -0.4875 

25% 0.67 171.56 10.34 60.38 -2731.02 -1.7236 -189.07 -2.7188 325.96 1.1404 -141.94 -0.5043 

Median 1.15 186.72 12.44 67.1 -2463.32 -1.8959 -154.31 -3.2013 347.33 1.0689 -131.46 -0.5437 

75% 1.63 205.12 15.71 68.95 -2223.72 -2.1042 -120.58 -4.0662 383.33 0.9740 -128.72 -0.5556 

 
Cotton 
Upland 
(lb/acre) 

Maximum 4.34 242.25 25.73 71.99 -1245.63 -5.3576 -73.32 -8.2674 518.59 0.7654 -124.33 -0.5765 

Minimum 0.16 136.06 4.14 57.19 -0.0634 -1.3164 -0.0041 -1.9991 0.0100 11.4901 0.0000 0.0093 

25% 0.67 171.56 10.34 60.38 -0.0566 -1.4471 -0.0028 -2.6115 0.0182 4.2149 0.0000 0.0093 

Median 1.15 186.72 12.44 67.1 -0.0509 -1.5981 -0.0024 -3.0017 0.0223 3.3978 0.0000 0.0093 

75% 1.63 205.12 15.71 68.95 -0.0458 -1.7823 -0.0020 -3.6606 0.0306 2.6030 0.0000 0.0093 

 
Hay All 

(ton/acre) 

Maximum 4.34 242.25 25.73 71.99 -0.0251 -4.9963 -0.0013 -6.4069 0.0808 1.5086 0.0000 0.0093 
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4.3.2 Marginal Effect on Yield Variance 

As we mentioned in last section, the yield function can be separated into two parts. In 

this subsection we look at the marginal effect on the second part: yield variance. The 

calculation method for marginal effect on yield variance is same as the method for calculation 

of marginal effect on mean of yield. However, for the variance function we have four (linearly) 

independent variables: temperature (T), precipitation (P), within year variance of temperature 

and precipitation (VP, VT). The marginal effect and t statistic value are reported in table 4.6. 

For the variables VP and VT, all of the marginal effects are negative without regard to 

significance. As a matter of fact, this observation is consistent with the basic rule of plant 

growth. A higher within year variance of temperature and precipitation means that, given the 

aggregate level the related resources (sunshine, water) are distributed less evenly over 12 

months in the year. Therefore, the negative marginal effect means that as the variation of 

temperature and precipitation becomes larger, the crop yield variation become smaller.  

As it indicates by table 4.6, for both cotton and hay yield variance, the marginal effect of 

within year variance of precipitation is generally not significant. The only exception is that, 

the marginal effect becomes significant at extremely high levels of variance of precipitation. 

And then, for the marginal effect of within year variance of temperature, it is highly 

significant for both cotton and hay at all quartiles. And the absolute value of marginal effects 

keeps decreasing, and here the law of diminishing marginal utility is applicable. All of these 

observations are consistently related with the observations in previous section that both cotton 

and hay adapt to temperature factors more than precipitation factors.  

For the mean temperature and precipitation which we have been using in both mean and 

variance functions, temperature level is not significant at all for both cotton and hay yield 

variance and its marginal effect is relatively small (not significantly different from 0). On the 

other hand, the precipitation level is more powerful in accounting for the yield variation of 
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cotton and hay. For cotton yield variance, the marginal effect is only slightly significant at low 

precipitation level. However, for hay yield variance, the precipitation level has a highly 

significant positive marginal effect on yield variance. This last observation could be an 

interesting story to tell. As yearly precipitation level increases, the hay yield could be more 

unstable and of more variation. Since agricultural areas in Arizona generally have a higher 

irrigation rate (table 3.4), so this response of hay yield on precipitation change might has 

interaction with the irrigation resources associated with hay production.  

4.4 Correlation of Crop Yields 

When we discuss the estimates in table 4.4, we have already mentioned part of the 

correlation between cotton and hay yield. In this research, we factorize the error term into two 

parts. The first part is the error that can be interpreted by climatic variables 

(heteroscedasticity); another part is the random white noise which follows a normal 

distribution. The correlation coefficients being estimated in all SUR model are the correlation 

among these random errors, which in other words are the heteroscedasticity-corrected 

correlation among crop yields.  

In table 4.4, we report that, overall, the correlation between yield of cotton and hay is 

positive and highly significant. For each of Individual counties, it is highly correlated in 

Cochise, Maricopa (slightly) and Yuma-La Paz. And in other three counties, the correlation is 

not evident. The explanation for this could be that, as it indicates by table 3.3, in Cochise, 

Maricopa and Yuma-La Paz County cotton and hay production are equally important. For 

other three counties, at least by looking at the production percentage, cotton is more important 

than hay production, especially for Graham.  
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Table 4.7 Correlation of Cotton Yield among Different Counties 
Yield Correlation Cochise Graham Maricopa Pima Pinal Yuma-La Paz 

Cochise  0.4734 (5.6961) 0.0711 (0.7586) 0.2482 (2.9711) 0.3009 (3.3224) 0.2203 (2.5487) 

Graham   0.3054 (3.2657) 0.0387 (0.4287) 0.2914 (3.2828) 0.3616 (3.7741) 

Maricopa    0.1929 (2.2337) 0.5998 (8.3875) 0.4635 (5.8206) 

Pima     0.4890 (6.6655) 0.3806 (4.5817) 

Pinal      0.4106 (4.8786) 

Yuma-La Paz       

* t statistic value is reported in parentheses. 
 

Table 4.8 Correlation of Hay Yield among Different Counties 
YieldCorrelation Cochise Graham Maricopa Pima Pinal Yuma-La Paz 

Cochise  0.2376 (1.8094) 0.0980 (0.8589) -0.2789 (-2.9564) -0.0161(-0.1423) -0.1423 (-1.2004) 

Graham   -0.0608(-0.6105) 0.0393 (0.4069) 0.0069 (0.0732) -0.1315 (-1.3321) 

Maricopa    0.3254 (3.8745) -0.0624 (-0.6779) 0.4142 (4.9891) 

Pima     0.0351 (0.3831) 0.1544 (1.6451) 

Pinal      0.2814 (2.9813) 

Yuma-La Paz       

t statistic value is reported in parentheses. 
 

 
Figure 4.5: County Map of Southern Arizona 

 
Equation (2-5-1) shows that the SUR model can also be constructed for each individual 

crop, in this kind of SUR model each equation represents a region where the crop is growing. 
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Via this type of SUR model, we are able to examine the correlation of yield for certain crop in 

different regions. In our case, we have two corps (cotton and hay) and six counties, which can 

be modeled into two SUR model. In table 4.7, we report the correlation of yield for cotton. In 

general, the crop yields among all six counties are highly correlated. The only exceptions are 

correlation between Cochise and Maricopa, and correlation between Pima and Graham. In 

table 4.8 the correlation of yield for hay is reported, we can observe that: (1) Graham is 

positively correlated with its neighbor county Cochise; (2) Pima is highly correlated with its 

neighbor counties Cochise and Maricopa; (3) Yuma-La Paz, as a leading county in hay 

production, is highly correlated with other two leading counties (Maricopa and Pinal) in hay 

production.  

To summarize, we can come out three brief conclusions for the correlation of crop yields. 

First, the yield of cotton and hay tends to be highly correlated, which can be at least explained 

by similar response of two crops to climatic conditions and impacts from similar agricultural 

policy. Second, all of significant correlations are positive correlation except for the hay yield 

correlation between Pima and Cochise. The negative correlations are generally not 

significantly different from zero. Again, this may indicate that yield of cotton and hay is 

influenced by similar shocks and factors. The last conclusion is that, as it is shown in both 

table 4.7 and 4.8, the correlation of cotton yield among different counties is more evident than 

the same correlation for hay. A possible explanation for this observation could be that, upland 

cotton is a more specific crop and of consist yield behavior. However, for hay, we include 

different kinds of hay in this research, which covers alfalfa hay (main), and all other kinds of 

hay. So the diversity in hay category could be a reason for the heterogeneity in the correlation 

of hay yield.  
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Chapter 5: Conclusion 

 

This research uses a stochastic SUR model to capture and differentiate the 

impacts of both long term climate change and short term climatic variation on crop 

yields. The model is estimated across seven main farming counties in Arizona for time 

period 1965-2008. We observe that, overall, temperature is highly significant in 

explaining the mean change of both cotton and hay yield; yearly precipitation level is 

only slightly significant in explaining the mean change of cotton yield, while it is 

highly significant in explaining the mean change of hay yield. For county level SUR 

model, the estimates show a lot of heterogeneity. From the marginal effect of 

temperature and precipitation we find that, for cotton yield, the marginal effect of 

precipitation varies from positive to negative as precipitation level increases. On the 

contrary, the marginal effect of temperature is ambiguously positive with high 

significance as temperature increases. For hay yield, the marginal effect of 

precipitation is significantly negative at low and mid level of precipitation. When the 

precipitation level is higher and close to maximum, the marginal effect becomes 

positive but it is not significantly different from none impact. On the other hand, the 

marginal effect of temperature varies from negative at low temperature level to 

positive at mid and higher temperature level with consistent high significance. 

Although the impact of short term climatic variation on crop yields has not 

generally been considered by literature, short term climatic variation is a very 

important factor in driving crop yield fluctuation. A contribution of this research is 

that we account for the variance change of crop yield by introducing within year 

variance of temperature and precipitation into stochastic part of model. The results 

display that within year variance of temperature and precipitation is generally more 
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significant than average temperature and precipitation themselves. And these new 

measures show a smoothing effect on crop yield, which means as within year variance 

of climatic conditions goes up the variation of crop yield will be smaller. This makes 

sense for the fact that, higher within year variance means temperature or precipitation 

are more averagely distributed across 12 months within the year, which is beneficial 

for crop growth. Another finding is that, as within year variance of climatic conditions 

increases their impact on the variance of crop yield tends to decrease. For mean 

temperature and precipitation which we have been using in both mean and variance 

functions, temperature level is not significant at all for both cotton and hay yield 

variance and its marginal effect is relatively small (not significantly different from 0). 

On the other hand, the precipitation level is more powerful in accounting for the yield 

variation of cotton and hay. 

Instead of estimating the yield correlation of crops directly by calculating the 

covariance matrix among residuals, we propose an alternative way to estimate the 

correlation matrix. The estimated correlation matrix displays the relationship among 

the unobserved structural errors in the system beyond the observed errors associated 

with the heteroskedasticity of each equation. In general, first we find that, the yield 

variation of cotton and hay tends to be highly correlated, which can be at least 

explained by similar response of two crops to climatic conditions and impacts from 

similar agricultural policy. Second, all of significant correlations are positive 

correlation. There are some negative correlations, but which is not significantly 

different from none correlation. Again, this may indicate that yield variation of cotton 

and hay comes from similar shocks and factors. The last observation is that the 

correlation of cotton yield variation among different counties is more evident than the 

same correlation for hay. A possible explanation for this observation could be that, 
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upland cotton is more specific crop and of consist yield behavior. However, for hay, 

we include different kinds of hay in this research, which covers alfalfa hay (main), 

and all other kinds of hay. So the diversity in hay category could be a reason for the 

heterogeneity in the regional correlation of hay yield variation. 

Unfortunately, under the framework of a SUR model with identical number of 

observations, it is not possible to expand both the cross section and time series 

dimension of the data. For example, for cotton the production data has been collected 

since 1935 in most of counties, but the production data of hay has only been available 

after 1965. So expanding our method to a SUR model with unequal observations and 

heteroskedasticity becomes an alternative and feasible way to improve this research in 

future work. As we have already mentioned in chapter 2 that, another way to 

implement the yield forecasting is to employ a multivariate GARCH model. Which 

could be an interesting framework to follow in future research, and it could be used as 

a comparison for the results from SUR model. However, the implication of this 

research may still be valuable and practical in: (1) resource allocation in agriculture 

production, especially the water resource; (2) optimization of planting structure (crop 

choosing) in different regions conditional on the available resources; (3) management 

of risk in both agricultural production and agribusiness based on yield forecasting. 
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