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ABSTRACT

In many situations it is needed to estimate a set of curves that are believed to be
similar in structure. In such case, Ker (2000) suggests the use of external information
from the other curves in order to reduce the bias of the standard nonparametric
estimator for an individual regression function. In the density case, Ker showed that
the inclusion of external data in the estimation of a given density generates sizeable
efficiency gains when the different underlying densities are similar. While Ker focuses
on bias reduction, Racine and Li (2000) and Altman and Casella (1995) devised
estimators that can be used to reduce the variance of the standard nonparametric
methods by smoothing across possibly similar curves. All of these techniques have
however the same objective: improve on the standard nonparametric estimators. This
thesis undertakes Monte Carlo simulations and two empirical applications to evaluate
potential gains obtained by using nonparametric techniques that integrate external
information. The simulations undertaken show that when the curves are similar in
shape, the gains can be enormous: some of these methods outperform the standard
nonparametric estimator significantly by reducing its mean integrated squared error
by as much as 55 %. The replications also show that if the curves are dissimilar,
some of the methods incorporating external data remain competitive to the standard

nonparametric estimator.



1. INTRODUCTION

Economic data are often presented as a set of curves measured on different experi-
mental units:

v = mg(z;) + €,i=1..n (1.1)

where y; is the response variable, z; is the matrix of explanatory variables, m;(.) is
the true unknown curve and ¢; an error term for experimental unit ¢ . These curves
belong to the same population in which a common phenomenon is observed. In some
circumstances, the individual curves are believed to have some structural similarities
that can be utilized to produce improved estimates. Examples of populations of
curves include crop-reporting districts (CRD) where the individual curves are the
county yields. When rating cop insurance policies for example, it is necessary to
detrend the yields for each county in a given CRD, which amounts to estimating a
regression function for each county. When estimating the curve for county j, the
standard approach is to use only the yield data of that county.! An alternative
to the standard approach is to include the yield data of the other counties in the

estimation process.? In a same CRD, weather patterns, soil type and technology use

among others factors could be considered similar across counties. These “similarities”
provide a solid basis for assuming that the curves of the different counties are related

even though the magnitude of such relationships is unknown. Hence when estimating

'Henceforth such estimation methods will be referred to as standard methods or techniques.

2Methods making use of external information will hereafter be referred to as advanced methods
or techniques.
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the curve of county j, it seems reasonable to use external information (data) from
the remaining counties in the same CRD for potential efliciency gains. In that case,

the individual curve estimate can be described mathematically by the equation:

ml<x7«) = f(xlaylaxQ)yQ---xn7yn)- (12)

The concept of similarity is loosely used in this thesis given the difficulty to de-
lineate it explicitly: the extent to which the different curves are similar is unknown.
One can only make an assumption of similarity based on certain elements such as
weather patterns, technology use or soil type in the case of a CRD.

In this thesis three advanced methods will be explored: the Altman and Casella
Nonparametric Empirical Bayes estimator (NEB); the Racine and Li estimator for
combined continuous and discrete data; and the Ker nonparametric estimator with a
pooled start. For each one of these methods, the goal is to estimate the true regression
function in a way that will not only significantly outperform the standard techniques
when the hypothesis of similarity is correct but also produce reliable estimates when
the curves are dissimilar. All three techniques employ nonparametric theory.

If indeed the different curves were similar in shape, the efficient estimator would
pool the data to estimate a single curve. To do so, a Nadaraya-Watson pooled esti-
mator can be used as the estimate for all the different individuals. However when the
curves are not similar as hypothesized, the pooled estimator is inconsistent.

A natural question is how do the advanced methods perform when the individual
curves are dissimilar; could they produce less efficient estimates or worse misleading
results? As already stated, the objective of the advanced estimators investigated in
this thesis is not to lose much efficiency to the standards methods when the curves

are dissimilar. One of the goals of this thesis is to carry simulations and an empirical
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application in order to answer that question.

1.1. Objective of the Study

The contribution of this thesis is to evaluate the performance of each of the advanced
methods compared to the standard nonparametric estimator, which is also called the
Nadaraya-Watson estimator. To do so, Monte Carlo simulations as well as two em-
pirical applications are used. Comparison of the different techniques is based on the
mean integrated squared error (MISE) for the simulations since the true regressions
functions are known. The MISE is an error metric that captures both the bias and the
variance of an estimator. The first empirical application consists of wage modeling us-
ing a cross-section dataset of men and women. Comparison of the estimators is based
on the mean integrated prediction error (MIPE), which is the average of the squared
deviations between the data points and their fitted values. The second empirical
application relates to the rating of crop insurance polices; performance comparison
in that case is judged by the magnitude of the loss ratio of the insurance companies.
Both the MISE and the MIPE have been extensively used in econometric applications

to assess the efficiency and the predictive ability of competing estimators.

1.2. Plan of the Study

The remainder of the thesis is organized as follows. The second chapter introduces
nonparametric methods for regression and density estimation in order to familiarize
the reader with the basics of nonparametric econometrics. The third chapter elabo-

rates on three regression techniques earlier mentioned: (1) the Altman and Casella
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estimator, (2) the Racine and Li estimator and (3) the Ker estimator. The fourth
chapter presents the results of the simulations about the finite sample performances
of each of these three techniques. Data is generated from four different curves and
the estimates for different sample sizes are computed. The empirical applications
are presenting in the fifth chapter. Finally, the sixth chapter provides concluding

remarks.
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2. NONPARAMETRIC METHODS IN ECONOMETRICS

Before elaborating on nonparametric regression techniques, it is important to intro-
duce some aspects of nonparametric methods to familiarize the reader with the basics
on these methods. There are different classes of nonparametric estimators but all the
estimators considered in this thesis are kernel based. Kernel methods are the most
investigated nonparametric methods from a statistical standpoint. The main reason
for the use of nonparametric methods is their ability to display a “better” structure
of the true function as a result of less rigid assumptions. Parametric-type estimators
generally assume that either the data or the error term follows a certain distribution
(Maximum likelihood estimator in regression case or density estimation methods)
constraining the estimated function in shape. Nonparametric methods in contrast
do not assign any functional form to neither the data nor the disturbance term over
the whole data set, which leads to more flexibility in the analysis and exploration of
the data. The idea is to let the data “speak for themselves”; that is why nonpara-
metric methods are referred to as “density-free” techniques. However, this can be a
little misleading in the sense that nonparametric methods do assume some parametric
form in the neighborhood of an observation. It should be mentioned that nonpara-
metric and parametric methods are not incompatible to each other. In fact several

authors have combined the two methods to produce improved estimators (see Hjort

and Glad(1995), Fan and Ullah (1997)).
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2.1. Nonparametric Density Estimation

Regression analysis is driven by density estimation; it can be reduced to estimating

a ratio of two densities:

ElY|z] = m(z) = %% (2.1)

A probability density function can be estimated parametrically by assuming that

the data generating process is known. If one believes for example that the data is

normally distributed, then the estimator will be:

f(z) = e 355 (2.2)

2mo
where 7= %31 2, and s> = £ 31 (z, — %) are respectively maximum likelihood
estimates of and u and ¢?. Again imposing such restriction on the data can be too
strong and costly. In fact if the data is not normally distributed but has a bimodal
distribution for example, such restriction of normality would smooth away one of the

peaks resulting in a loss of possibly valuable information.



15

Density estimation

——Thie function —a— MLE astimate —— Karmel estimate

.35
03
0.2
02
0.15
0.1
0

()

support

Figure 2.1. Graphic illustration of a misspecified model

The nonparametric estimate displays the economically-important bimodal struc-

ture of the true density while the parametric estimate does not.
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2.1.1. The Univariate Kernel Estimator

There are numerous nonparametric density estimators such as the histogram, the
naive estimator or series estimators. The simplicity of the Kernel estimator makes it
one of the most appealing nonparametric density estimators for both practical and

theoretical purposes. The formula of the univariate kernel estimator is:

o) = g LK) (23)

or f(z) = %Z;‘le Ky(z — X;) where K(.) is chosen to be a symmetric probability
density function centered at zero.® The scalar h is called the smoothing parameter;
it controls the spread of the estimator. The following assumptions are made on the
smoothing parameter:
() limp oo h =0 (#3) imp_ oo Th = 00

Assumption (i7) says that the smoothing parameter approaches zero at a slower rate
than 77'. K(.) is also called the “individual” kernel. In most cases it is chosen to
be the normal distribution although other distributions such as the uniform or the
Epanechnikov may be used. The individual kernel being a probability density function
guarantees that the Kernel estimate itself is a density. Notice that f (Aa:) is simply the
average of the T individual kernels centered at z. A great benefit of such an estimator
is that it tends to show a better structure of the true density. Intuitively, one can see
that in regions where there are a lot of observations, the value of the estimator will
be large because the closeness between the data points raises their weight. Similarly

in regions with relatively distant observations the estimator is expected to have a low

value because the spread of the data points decreases their weight.

3If K(.) is not symmetric around zero it would not be possible to have an individual kernel
function be centered at an observation.
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The mean square error (MSE) is a commonly used error metric in density esti-
mation because it measures closeness between the estimated function and the true
function for a given observation by encapsulating both the variance and the bias of
the estimate. Capturing the bias in the loss function is fundamental when dealing

with nonparametric estimators since they are typically biased.
MSE = E(f — £)? = var(f) + bias(f)?. (2.4)
It can be shown by using the Taylor series expansion that

Bf(z) = f(z) + %hQ (z) / 2K (2)dz + o(h?) (2.5)

~

Bf(z) = [(2) + 5Hm(K)f" () + o(h?) (2.6)

having z = =¥. The bias is therefore E(f) = f = 1h2ua(K) f"(2) + o(h?) This is
characteristic of nonparametric estimators: they are biased. However, assumption (%)
guarantees that Kernel estimator is asymptotically unbiased. In the same way, the

variance of the estimator can be shown to be:
var f(z) = (Th) *R(K) f(x) + o(Th)™* (2.7)

where R(K) = [ K(z)?dz. As with the bias, the variance of the kernel estimator goes
to zero as the sample size goes up because of assumption (44). The bias and the

variance known, one can evaluate the mean squared error:

MSE = (Th)~ R(K) f(z) + ih%(m P2+ oh 4+ (TR (2.8)

Since the MSE is a point wise error metric, it is necessary to integrate it over the

entire support in order assess the performance of the estimator. Integrating the MSE
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gives the mean integrated squared error (MISE):

MISE = {(Th)" R(K)f(z) + hus (K’ / PPV )+ o(ht + (Th)™ (2.9)

MISE = AMISE(f) + o(h* + (Th)™) (2.10)

where AMISE stands for asymptotic mean integrated squared error. Wand and Jones
(1995) proposed that AMISE be used to approximate the MISE as the sample size T
gets large. It is easy to see that AMISE is solely a function of the unknown smoothing
parameter h. This tells how important the choice of the smoothing parameter is to
kernel density estimation. Asymptotically, minimizing the MISE amounts to finding
the h that minimizes the asymptotic mean integrated squared error.

The smoothing parameter controls the spread of the kernel estimator f (z,h). If
the normal distribution is used as K (.) than h? is equal to the variance o?. A large
value of h tends to over smooth the density estimate whereas a small & will make
it spiky. This is quite understandable since when h is large, it means that more
observations will get a higher weight. When A is small the opposite is observed, that
is few observations will be given large weight. The accuracy of the estimates depends
crucially on the selection of the smoothing parameter. Then the question that arises is
how to choose the right smoothing parameter? Unfortunately the optimal k (i.e. the
one that minimize AMISE) is not computable practically because the true function

f(z) is unknown:

R(K)

_ 1/5 _ op—1/5
hamise [ug(K)2R(f”)T] T

It needs to be estimated using the data at hand. One can see easily how reasonable
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/5 its limit as T goes to infinity is zero.

assumptions (1) and (1) are: since h = ¢T'~
Similarly Th = ¢T*° therefore the limit of Th as T goes to oo is infinity.

There is a rich literature about the estimation of the smoothing parameter. Terrell
(1990, Theorem I), showed that the smoothing parameter that minimizes the mean

integrated squared error is bounded:

243R(K) 1y
hamrse < [W] /

where o denotes the population standard deviation. This led to what is called the

oversmoothing parameter:
i iy 243R(K) /s
35u2(K)*T
where s is the sample standard deviation. The oversmoothing parameter hos provides
a good start when using cross-validation methods to search for h. Many authors have
written about the selection process of the smoothing parameter. Techniques gener-

ally used include the Silverman’s “rule of thumb”, the least-squares cross validation

method and the biased cross-validation method.*

2.2. Nonparametric regression

Regression analysis whether parametric or nonparametric has two major goals:

e the first one is to investigate a relationship between the explanatory variable(s)

and the explained variable,

¢ the second objective is to provide a tool for forecasting, if necessary, the values

of the explained variable.

4 For an extensive coverage of the smoothing parameter selection techniques the reader is directed
to Kernel Smoothing by Wand and Jones (1995)
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Regression analysis is however not limited to these two goals only. For a growth curve
analysis, one might be interested in the direction of the growth as well as the speed of
it. In such case, another objective is to estimate the first and the second derivatives of
the regression function. In either case, the accuracy of the results depends critically
on appropriateness of the estimator used.
Nonparametric methods are recommended generally when the data cannot be related
to a parametric family. If the data belong to a given parametric family then any
nonparametric estimator will be less efficient than the parametric one.

Nonparametric regression methods find their usefulness in a lot of empirical appli-
cations among which the crop insurance program. Setting accurate premiums is vital
to the continuation of the program given the enormous amounts of money involved.
To set accurate rates, it is crucial among other things to estimate the yield curves
efficiently. Given the huge number of curves to estimate, it would be too rigid to
assign a parametric form to the yield curves for the data might belong to a different
parametric family from a county to another. This makes nonparametric estimators
good candidates to provide a reliable alternative in the estimation process because of
their flexibility.

Let (x4, y:) be a sequence of n vectors sampled from bivariates densities f;. A rela-
tionship between the response variable and the design variable(s) can be summarized

in the regression function:
v = m(x;) + €,i=1...n (2.11)

where m(z) = Ely|z] is the individual regression function after dropping the sub-
script. As we mentioned previously, estimating m(z) can be done by assuming what

the data generating process is. In such case, m(z) would be estimated using a para-



21

metric estimator. If the assumed functional form is incorrect, the resulting estimates
will be biased and inefficient. This summarizes in general the risk of assuming any
parametric model. An alternative way of estimating a regression function is to use
nonparametric techniques; which means that m(x) is estimated without any assump-

tion about the functional form of the data.

2.2.1. The Nadaraya-Watson Estimator

This estimator is widely used in the literature. It was introduced by Nadaraya(1965)

and Watson (1964). The Nadaraya-Watson (NW) estimator is given by:

T
m(z) =Y Wiy, (2.12)
t=1
where W), = ==X __ j5 4 weight matrix and K() the individual kernel. The

;':F=1 Kp(2—X1)

NW estimator is therefore a weighted average of the response variable. As for the
local weighted least squares, closer observations are assigned more weight than farther
ones. A big h tends to flatten the Kernel density making the NW estimator behave
like OLS while a small h tends to make the estimator spiky.

As for nonparametric methods in general, the Nadaraya-Watson estimator is biased.

It can be proved that the leading terms of the bias are:

E(m(z)) —m(z) = l,u2h2m"(ar:) + 2m/(z) J}'((j))

5 (2.13)

after dropping the subscript on f and m(z).
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The nonparametric estimate follows the patterns of the true curve (y = cos(5m)+2)

while the parametric estimate cuts across the observed data unable to pick any drop

or increase; h =0.11.
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2.2.2. Locally Weighted Least Squares

This method consists of fitting a line in the neighborhood of an observation using the
least squares method. It is a weighted local least squares; observations closer to the
one of interest are assigned significant weight while those farther are given a smaller

weight. The estimator can be written as follows:

m(z) = =0 (2.14)
where
B = (X'W(h)X)XW(h)y (2.15)
and
Wk = =X gy 0 v (2.16)

ST Kz - X;)

is the weight matrix; X is the matrix of explanatory variables. This method differs
from OLS in the way it localizes the linear relationship between the response variable
and the explanatory variable(s). By fitting a line only locally, the objective is to
provide better estimates by capturing a drop or increase in the true function if any.
Like any other kernel method the estimates are greatly dictated by the value of the

smoothing parameter.

2.2.3. Selecting a Smoothing Parameter in a Regression Context

Whether it is for density estimation or regression estimation, the selection of the
smoothing parameter (or scaling factor as it is referred by some authors) is the main
issue to address; its value affects the estimates more than anything else. In a re-

gression context as in density case, the choice of h is a tedious task. One widely
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used technique is the cross-validation smoothing method or “leave-one out” method.

Silverman (1985, page 5) describes the intuition of the method succinctly:

“The basic principle of cross-validation is to leave the data points out
one at a time and to choose the value of h under which the missing data
points are best predicted by the remainder of the data The cross validation
choice of h is then the value of h that minimizes the cross validations score

CV(R)".

The cross-validation method consists of finding the smoothing parameter h that min-
imizes the function CV(h)=S""_ (y — m(z)_,)? where /(z)., is a leave-one out esti-
madtor.

When the smoothing parameter is big, it tends to flatten the estimated curve
making it look like OLS. In contrast, a small smoothing parameter makes the curves
“noisy” with a lot of peaks. This is understandable since h controls the amout of
weight given to farther and closer observations. In summary the size of the smoothing
parameter gives some insight about how informative farther observations are in the
estimation of the observation of interest. If h is small it suggest that y; is better
explained by the observations closer to it while a big A would suggest that both closer
and farther observations have a predctive information on y;.

The next two graphs show the effect of a large and small smoothing parameter on

the estimates.
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When the bandwidth is large(h = 0.15), it flattens the nonparametric estimates

to a point where it tends to behave like OLS.
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Figure 2.4. Impact of a small smoothing parameter

When the bandwidth is small(h = 0.06), the nonparametric estimates are spiky

and tend to fit the data without getting rid of the noise.
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2.2.4. Critiques of Nonparametric Methods

Although nonparametric methods provide a suitable alternative to parametric tech-
niques because of their flexibility, they have some drawbacks that need to be ad-
dressed. The choice of smoothing parameter in density estimation as well as in re-
gression estimation is crucial to the accuracy of the nonparametric estimates. There
are numerous methods available, each with their proponents. Unfortunately some-
times they produce different parameters, leading to different estimates.

The most popular method for the selection of h is cross-validation, which can be
very computer-intensive when dealing with big datasets or a lot of individual curves
as in a multiple curve estimation.

The biggest disadvantage of nonparametric methods is certainly the “curse of

"5 The “curse of dimensionality” refers to the poor performance of

dimensionality
nonparametric methods when the number of regressors (denote p the number of re-
gressors) increases. The poor performance is attributed to the slow rate of conver-
gence which gets worse as the dimension p rises. The rate of convergence is the rate
at which the estimated regression function converges to the unknown true function.®
It is determined theoretically. Typically nonparametric estimators have a rate of con-
vergence of order O(T~%“+P)). When p is equal to 1, parametric estimators have a

rate of convergence of order O(T!) under the null whereas nonparametric methods

have a slower convergence rate of order O(T~4%)7. The rate of convergence being of

5 A detailed explanation of the curse of dimensionality can be found in Yatchew (1998)

6 A more extensive discussion of the parametric versus nonpararametric debate and the rate of
convergence can be found in Ker and Coble (2000)

"For more on the order notation and theory the reader is directed to Kernel smoothing by Wand
and Jones (1995)
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order O(T~!) means that

lim T'x MSFE < 0.
Tr00

Hence for nonparametric estimators with p=1,

lim T5* x MSE < oo.

T-—00

Clearly the rate of convergence is worse than that of a parametric estimator and it
gets worse as p rises. Estimators with a fast rate of convergence tend to be preferred
to those with a slow rate of convergence. One of the reasons why nonparametric
methods are not used overwhelmingly is that they have a typically slower rate of con-
vergence than their parametric counterparts under the null that is when the assumed
parametric form is the correct one. The “curse of dimensionality” has been used a lot
by proponents of parametric methods to advocate for the use of parametric models.
Some proponents of nonparametric methods propose the use of additive models as a
way to reduce the “curse of dimensionality”. It is worthwhile to note that parametric
methods have a faster rate only when the assumed functional form is correct. Under
the alternative, the rate of convergence of nonparametric methods is still O(T=*/%)
while parametric methods do not converge to the true; which gives the nonparametric
methods the benefit of the doubt since it is unknown what the true functional form
is.

Both proponents of parametric and nonparametric methods have valid arguments
and legitimate concerns about the use of either method. That is why some authors
have combined the two methods in order to develop improved estimators that would
make use of the strengths of each technique. In the density estimation case, Hjort and

Glad (1995) developed a combined parametric-nonparametric estimator to reduce the
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bias of the Kernel density estimator. The method performs well in practice. In the

regression case, Olkin and Spiegleman (1987) developed a semiparametric estimator

that is a convex combination of the parametric and the nonparametric estimators.
Ullah and Vinod (1993, page 87) summarize the strengths and weaknesses of

nonparametric methods as follows:

“Why study nonparametric smoothing methods? Because they offer ver-
satility and flexibility in estimating and forecasting -one does not need
to specify functional form (...) Why do they work? Because they use
local smoothing and because the theory (...) demonstrates so. What does
not work? They fail when there are too many regressors and/or too few

observations.”
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3. ADVANCED NONPARAMETRIC METHODS

As mentioned in chapter I, it is often necessary to estimate a set of curves representing
different experimental units. Generally, these curves are structurally related to each
other even though the degree of this relationship may be unknown. In this case,
when estimating an individual curve, it would be inefficient not to use the data on
the other individuals. Standard regression techniques ignore external information by
estimating each curve separately. In this chapter, three advanced techniques allowing

for the use of external information are studied. ®

3.1. The Altman and Casella Estimator

This estimator is also known as the nonparametric empirical Bayes estimator (NEB).
It mixes both parametric and nonparametric theory in an attempt to improve fixed-
design regression performance by making use of the possible similarities between the

individual curves®.

3.1.1. The Method

Let y;; = my(t) + € be the regression equation of individual 4 where ¢ represents
the fixed design points; this type of model is known as a fixed-design regression

model. Let m; be estimated nonparametrically using a linear smoother in the form:

8The term “advanced ” has more to do with the fact that these techniques allow the use of
external data than their mathematical complexity.

9 This estimator was introduced by Altman and Casella (1995)
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mi(t) = ZtT:1 Wiy, if the data are normally distributed, so is the nonparametric

estimator. It is easy to see that 7, is biased:

E(ris(t)|h = h) ZWhm@ ) 7 mi(t)

Given the biasness of the nonparametric estimator, it can be rewritten as: m; = ¥;+v;

o2

where v; is an error term such that E(v;(t)) = 0 and var(v;(t)) = %.
Using the Bayesian hierarchical model, the authors derived the posterior mean of
my(t) to be:

mi(t) = m(t) + a(t)[ma(t) — (1))

where «(t) is called the shrinkage parameter. In practice, the unknown parameters

would be replaced by sample estimates, which lead to the final NEB estimator:

mit) = P + a()[na(t) — m(t)] (3.1)

where: 7, = % > | Uit 1s the cross-individual sample mean of the data at point t and

~

a(t) = U—‘“;(Z—)f”% (the estimator of the shrinkage factor) is the ratio of the covariance
mit

between the data and the nonparametric estimates and the variance of the nonpara-

metric estimates, m(t) = LS 1 it Notice that this estimator uses the data from

the other individuals in the population in the regression of the curve of interest. This

is known as the Stein paradox in the sense their may not be any similarities at all

between the different individuals in the population. Then the question is how can one

gain efficiency? To answer this question, Altman and Casella showed that minimizing

the common squared error loss function (SE) could also derive the estimator:

n

SE = (i —my)”. (3.2)

i=1
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Given = £ 3" m; and m o= 13""  7hy, it is can be proved that there is an o such
that: m; = ™ + alfm; — ] has a lower squared error (SE) than the nonparametric
estimator. Evaluating the estimator at all t points yields to the NEB estimator. Then

the efficiency gains come from the minimization of a common loss function.

3.1.2. What is the Role of «o(t) ?

The scalar a(t) is known as the shrinkage parameter. It’s role is to “shrink” the
individual estimator to the mean curve. Three scenarios can arise; the first one is
0 < aft) < 1. In that case a(t) “shrinks” the individual curve to the population
average since G&(t)[m;(t) — m(t)] tends to zero. If m; is unbiased for m; then a(t) will
be between 0 and 1.

If m7; is biased for m;, a(t) could be less than 0 or greater than 1; a(t) is less than
0 if and only if the data are negatively correlated with the nonparametric estimates
since the denominator is positive. In such case, &(t) will make the data and the

nonparametric estimates positively correlated: &(t)[/;(t) — 7(t)] will transform the

smallest m;(t) value into the largest m;(t) value and vice versa. By changing the sign
of the estimates the “shrinkage” parameter will ensure that the data and the final
estimates are correlated positively.

The last scenario is a(t) greater than 1, which happens when the covariance
between the data and the nonparametric estimates is larger than the variance of

the latter. This situation arises when the data points are more disperse than the

estimates. In this case, the term &(t)[/;(t) — 7n(t)]will augment the spread of the

A~ ~

NEB estimates:&(t)[/;(t) — m(t)]will turn the small m;(t) value into a smaller m;(t)

~ ~

value and the big m;(t) value into a bigger m;(t) value thereby making the NEB
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estimates more scattered. Clearly in the last two scenarios «(t) does not have a
shrinkage role. The reader is directed to Altman and Casella (1995) for a complete

derivation of the model.

3.1.3. The Disadvantages of the Method

This estimator is confined to a fixed and balanced design type of regression only; the
inability to handle random design regression makes the method very limited. Another
major limitation of the method is its inability to forecast, which is quite important
in a lot of econometric studies.

Besides, when the data points are similar from an individual to another (it happens
often when error terms are correlated), the estimator breaks down. To see that, let’s

focus on the second expression of the estimator:

lim [(t) — )] =0,  Vi,j. (3.3)

Yi,t Yt

This equation says that the similar the data points are, the closer their estimates
also are hence the difference between the estimate of an observation for curve ¢ at
a given time ¢ and the average of the estimated values at that time is very close to
0. The implication of that result is that the Altman and Casella estimator will be

LS Yie. But for a given period of time ¢,

dominated by population average ¢, = =

the population average 7, and the y;’s would have almost the same values making
the estimator fit the raw data. This problem will be further discussed in chapter IV.

Last, it is worthwhile to note that the estimator is constructed on the assumption
that the data (response variable) is normally distributed. This assumption could be

wrong for small samples; in which case the estimator will be mispecified.
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3.2. The Racine and Li Estimator

This estimator was motivated by the failure of nonparametric methods to estimate
categorical data satisfactorily. The goal is to adequately estimate regression functions
with many discrete variables without having to split the data into subsets, the number
of which depends on the values that the categorical variables take on. The estimator
can be however adapted in a context of multiple curve estimation.

Let X¢ € RY be a matrix of random continuous variables and X¢ denote the
discrete regressors. Instead of smoothing the discrete variables with a kernel function,
the technique treats them separately of the continuous variables. They are smoothed
as follows:

L(X(t), 2(t), A) =

{1 if X4(t) € z%(¢) (3.4)

A otherwise

In the context of multiple curve estimation, the discrete variable represents the dif-
ferent experimental units considered. If there are n individual curves to estimate the
discrete variable is then X% = 1,2,3,...n where the numbers 1,2, ...n indicate the
number of each curve. Consider the example of yield data in two counties from the
same crop-reporting district. When estimating the curve of county one, the discrete

variable smoother is:

1 for data from county one
d d _
LX), 2°(8), A) = { A for data from county two (3.5)
When estimating the curve of county two it is the other way around:
d d [ 1 for county two
LXE(8), 2%(2), A) = { A for county one (3.6)

The scalar A is the smoothing parameter for the discrete variable. When the curves

are not similar, A should be as small as possible reverting the estimator back to the
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ordinary Nadaraya-Watson estimator. When the curves are similar, the weight on
the external observations should be high to reflect the similarities, hence boosting the
performance of the estimates. It should be pointed out that for the smoothing of the
discrete variable(s) the weights do not add up to 1. However that is a not a problem
considering that the weights appear on both the numerator and the denominator of
the estimator. As for the continuous variables, they will be smoothed by the standard
c-variate kernel: Kj, = h™°[];_; kn(z;) where ky(z; is the individual kernel estimate

for each curve. Then the Racine and Li estimator can be written as:

%%
ﬁ'L(.’,U) Zt 1 YtVWha
Whm
where Wy, = Kp(z)L(X{, ¢, A) after dropping the subsript indicating the differ-
ent curves for simplicity. The smoothing parameters A and h are both chosen by

minimizing the cross-validation function:

CV(hA) = lye — ;"I

;" is a leave-one out estimator.

3.3. The Ker Estimator

The objective of this estimator is to reduce the bias of the standard Nadaraya-Watson
estimator (NW) by starting with a nonparametric-pooled estimator and then using
a correction function to adjust for individual effects. Recall that the leading terms
of the bias of the Nadaraya-Watson estimator are a function of the curvature of the

true function:
[ ()
f(x)

1
—poh®m” (z) + 2m/(z)

E(rm(z)) —m(z) = 5

(3.7)
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Clearly one can decrease the bias by reducing the curvature of the m(z).

3.3.1. The Method

The idea is to pool the data and estimate a single regression function mi,(z) using

the Nadaraya-Watson estimator. Then when estimating the individual curve, the

pooled estimator is multiplied by a correction factor r(z) = ;Zo((”;)) in order to adjust

for individual effects. The correction factor is itself estimated nonparametrically by:

9-3 52

t=1 p

Kh (z — X,). (3.8)

The Ker estimator is:

A~

ST v 22O K (2 — X)
mixg) = =1 Ty (X) ‘

S K (55

Again the subscript indicating individual i’s curve has been drop for notational con-

(3.9)

venience. Ker(2000)showed that m(z) is biased and the leading terms of the bias

are:
1
2

()
fz)

It can be shown that the variance converges at the same order than that of the

E(m(z)) —m(z) =

SHph*mp(z)r" (z) + 2m(z)r (3.10)

Nadaraya-Watson estimator.
It is easy to see that the bias of the Ker estimator is not a function of the curvature

of the true regression function as it is for the standard Nadaraya-Watson estimator.

Rather it is function of the second derivative of the correction factor r(z) = 3
which represents the “residual” curvature after starting with the pooled estimator.
If the pooled estimator coincides with the true function, then r(z)will be a straight

line hence r”/ = 0. Statistically, this means that a significant part of the bias equal
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to $poh*my(z)r”(x) will go away. But this is the ideal scenario that is not likely to
happen in practice. The objective is to estimate my(x) and m(z) nonparametrically
so that their ratio fluctuates around 1 making the “residual” curvature close to zero. If
indeed there are structural similarities between the individual curves, the correction
factor should be less variable than the individual true curves hence its curvature
should be smaller than that of the individual curves.

Why use a pooled estimator as a start? Ker suggested that pooling the data of
the different curves should provide more information when the curves are similar.
Using a nonparametric-pooled estimator instead of a parametric one is driven by the

possibility that the individual curves could belong to different parametric families.

3.3.2. Advantages of the Ker Estimator

The nonparametric estimator with a pooled start has some advantages that ought to

be enumerated:

e when the curves are similar, it has a lower bias thanks to the correction factor

and the “abundance” of data;

e unlike the Altman and Casella estimator, the Ker estimator does not assume
any functional form of the data or the error term, circumventing the possibility

of a wrong assumption about the underlying density;

e also this estimator does not require that the regressor be a fixed or balanced
design. Random as well as fixed designs can be used as explanatory variables

and they do not have to be of the same length for each individual.
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3.4. The Major Limitation of The Advanced Methods

The main limitation of the competing estimators is the selection of the optimal num-
ber of individual curves. Since the objective is to gather enough “similar” data in
order to produce more accurate estimates, it might be problematic if unnecessary or
extraneous information is included in the estimation process. To limit such a possi-
bility Ker proposes that cross validation be used for to select the “optimal” curves
to be included. Such procedure could certainly be computationally intensive and
time consuming when dealing with a big data set and/or numerous individual curves.
The results of curve selection for the Ker estimator are presented in chapter IV. The

procedure is applicable to both Ker and Racine and Li estimators.
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4. MonNTE CARLO SIMULATIONS

4.1. Efficiency Comparisons

The main goal of this thesis is to undertake a performance comparison of the advanced
methods based on the empirical and simulated data. This chapter focuses on Monte
Carlo simulations. Monte Carlo methods are widely used in the applied econometric
literature as a tool of exploration of finite sample properties of an estimator. The
replications are undertaken for each estimator and for different sample sizes. Since
the focus is on the advanced methods and their incorporation of similarities between
different experimental units, four curves are generated with [0,1] interval as a support.

A gaussian white noise error process is added to randomize the data. The four curves

F(t) = sin(157t) + ¢ (4.1)
g(t) = sin(5mt) + e (4.2)
h(t) = 10e™% 4 ¢ (4.3)

2(t) =t +e (4.4)

Estimates of the true functions are computed using the Nadaraya-Watson esti-
mator; the Altman and Casella estimator; the Racine and Li estimator; the Ker

estimator; and finally the pooled Nadaraya-Watson estimator. Two scenarios are

10 The first three curves were used by C. Hurvitch and J. Simonoff in their article “Smoothing
Parameter Selection in Nonparametric Regression Using an Improved Akaike Information Criterion”
(1998). The last curve was used by A.Yatchew in his article “Nonparametric Regression Techniques
in Economics (1998).
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investigated in the simulations. In the first scenario, all the individual curves are
considered to be exactly the same and equal to g(t). The choice of g(t) does not
bear any statistical reason and does not need to. The data from an individual to
another will not be the same because of the random errors added. This is the ideal
case obviously; the goal is to see how “better” the estimators making use of external
information would be in a situation where all the individual curves were identical. Re-
member that the incorporation of external information is based upon the assumption
that the different experimental units are similar to some extent.

In the second scenario, all of the four curves are dissimilar. This is another
extreme case that would provide some insights about how the estimators making
use of external information behave when the assumption of similarity is violated.
Unfortunately the assumption of similarity could be wrong in some instances. If that
happens, the use of external data could lead to an efficiency loss. The choice of these
two scenarios is motivated by empirical econometric analysis. It is hard to believe that
in empirical applications, the different experimental units in a set will be identical or

totally unrelated; the truth lies somewhere between these two extreme cases.
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4.1.1. Case of Identical Curves

As said above, only one curve g(t) is generated and individual errors added to make
the data vary from an individual to another. Advanced methods are expected to do
much better (in terms of efficiency) than the standard methods because they have
more information. The performance of each curve is assessed via its mean integrated
squared error. The mean integrated squared error is computed twice; first using
cross-validation to choose the smoothing parameter and second using squared error
minimization to choose the smoothing parameter. The last method is not applicable
in empirical studies because it requires the knowledge of the true regression function.
The smoothing parameter was computed using two different methods: the least-
squares cross-validation and the squared error minimization (best h). A summary
of the mean integrated squared error results is reported in tables 4.1 and 4.2. More
detailed results are posted as an appendix.

Overall the pooled estimator performed better than all the competing estimators;
which was expected. Since all the four curves are exactly the same pooling the data
(the pooled estimator has four times more data then the competing estimators) should
result in a more precise estimation. However the advantage of the pooled estimator
over the Racine and Li and the Ker estimators shrunk as the sample size grew up. The
general tendency is that the advanced estimators did moderately to drastically better
than the standard method for all the sample sizes. For the nonparametric estimator
with a pooled start for example, the gains ranged between 50% and 66%*. Recall
that the main objective of the nonparametric estimator with a pooled start (Ker

estimator) is to reduce the bias of the Nadaraya-Watson estimator by replacing the

11 Gains with respect to the Nadaraya-Watson estimator.
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curvature of the true function-in the expression of the bias of m(xz)- by the curvature
of a correction factor. If the start is sufficiently close to the true function then the
correction function should be close to 1 therefore having little curvature. Judging
by the results of the simulations, it is clear that the goal was realized. When the
curves are similar, the bias of the Ker estimator is considerably lower than that of
the Nadaraya Watson as theoretically derived. The success of the Ker estimator in
this case is highly attributable to a lessening in the bias of the Nadaraya-Watson
estimator as shown in table 4.7.

The Racine and Li estimator also gained appreciably with respect to the Nadaraya-
Watson estimator.
As for the NEB estimator, it remained less competitive than the other estimators
as the sample size grew up. Altman and Casella (1995, page 513) stated that “the
effectiveness of the NEB estimator is greater when there are more curves per set and
when there are fewer design points per curve.” In these simulations only four curves

are used, which could account for the poor performance of the NEB.

4.1.2. Case of Dissimilar Curves

Before getting into the results of the replications, it should be mentioned that the
study of this case is purely motivated by an investigation of the performance of the
estimators when the curves are dissimilar. In an empirical analysis the advanced
methods should be used only if a reasonable assumption of similarity between the
individual curves can be made, otherwise their use could lead to an efficiency loss.
Contrary to the previous case, all four different curves are generated in order to

assess the performance of the advanced methods when the assumption of similarity is
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wrong. These simulations are very important; the odds of having a wrong assumption
are not negligible at all. If the estimators lose too much with respect to the standards
methods it may not be “safe” to use them. A summary of the mean integrated
squared error results is reported in tables 4.3 and 4.4.

The results are encouraging for the Ker estimator and for the Racine and Li estima-
tor. They did better than the NEB estimator and did not lose to the Nadaraya-Watson
estimator as the sample size increased. It should be noted that the performance of
the Ker estimator is greatly attributable to the correction factor #(x). Since the
curves are not similar in this particular case, the correction factor adjusts the pooled
estimator up or down depending on the individual curve that is being estimated.
The possibility of accounting for individual effects makes the estimator perform well
even when the start function is not suitable. As for the Racine and Li estimator, it
lost slightly to the Nadaraya Watson due to the fact that irrelevant data are given a
weight (ideally negligible since the data is not similar) but its performance was very
improved as the data set grew up.

The replications are quite informative: they have shown there is a lot to gain and
not much to lose by making use of external data. When the similarity assumption
is correct, the advanced methods have a noticeably lower mean integrated squared
error with the exception of the NEB. Even with quite dissimilar curves, the Ker and
the Racine and Li estimators remained highly competitive. As said above this does
not imply that the Ker and Racine and Li estimators can be used whenever there are
two curves or more. They should be used only if one is reasonably confident in the
similarities between the curves. The pooled estimator was expected to do less well

because it uses extraneous data to estimate the individual curve without accounting
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for local corrections. The nonparametric estimator with a pooled start worked well
basically because it allows for individual corrections to be made. Therefore even when
the curves are quite dissimilar, starting with the pooled estimator is still acceptable
thanks to the correction factor.

As previously said, the logic behind the choice of the two extreme cases is that
the truth lies somewhere between the two when it comes to empirical applications.
Judging from their performance in the simulations, there is a strong probability that
the use of the Ker and Racine and Li estimators will generate a better estimation of

the individual curves even when the similarity assumption is violated.

4.2. Advanced Methods and Curve Selection

Until now, the emphasis has been on the inclusion of external data from possibly
similar curves for efficiency gains. However, finding the “optimal” curves to include
in the estimation process is an important concern in the use of the advanced methods.
It is clear that if the individual curves do not have the similarities they are assumed
to have, using the advanced methods could lead to ineflicient or worse misleading
estimates. To select the individual curves for the advanced methods, Ker proposes
that cross-validation be used. For the estimation, one would use the sample of curves
that minimizes the cross-validation score. The method works the same way than the
cross-validation for the smoothing parameter and is applicable to both the Ker and
Racine and Li estimators. In this chapter only the curve selection results for the Ker
estimator are presented for sample sizes T = 25, 50, 100 and 500. As in the previous

section, two extreme cases are investigated: a case of identical curves and a case of
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dissimilar curves. For simplicity only the results for the curve g(t) are presented.

The results are posted in tables 4.5 and 4.6. They show the number of times the
different curves f(t), g(t), h(t) and z(¢) have been included in the pooled start of the
Ker estimator for the estimation of g(#).

The replications show that when the curves are all similar, the Ker estimator
makes use of the data from the remaining curves in the population. Each of the four
curves has been selected more than 70% of the time for all sample sizes; which is
consistent with the expectations given the curves are identical. The percentage of
inclusion grew up with the sample size. The number of times the Nadaraya-Watson
estimator has been used in negligible.

When the curves are dissimilar, the opposite is observed: fewer curves are included
in the pooled start. This also is consistent with expectations since the curves are
dissimilar. Although the remaining curves have been included the percentage of
inclusion decreased as the sample size grew up except for g(¢) which is the curve

being estimated here.
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TABLE 4.1. Average MISE*100 for the case of identical curves: method of least

squares cross-validation.

|

T =25 |
NW NEB Ker Pooled | Racine and Li

20.76907 | 23.856748 | 10.393694 | 4.6224098 |  7.4805452
T=50

9.1796395 | 15.363084 | 4.7476092 | 2.7597298 |  3.3706197
T=100

49576954 | 12.676808 | 2.4369758 | 1.5798329 |  1.73607
T=500

1.3344219 ] 9.9716733 | 0.6116169 [ 0.4474773 |  0.4543125
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TABLE 4.2. Average MISE*100 for the case of identical curves: method of squared

error minimization.

[ T =25
NW NEB Ker Pooled | Racine and Li

11.993081 | 21.491211 | 5.964608 | 4.110164 | 4.1446102
T =50

7.2192163 | 16.024076 [ 3.4170944 | 2.4731641 |  2.4938289
T =100

4.2317549 | 12.200125 [ 1.9229589 | 1.4583455 |  1.4704434
T =500

[0.0461135 | 8.721456 | 0.5456322 [ 0.4007325 | 0.4272035 |
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TABLE 4.3. Average MISE*100 for the case of dissimilar curves: method of least

squares cross-validation.

| T =25 |
NW NEB Ker Pooled | Racine and Li
22.604844 | 29.590071 | 23.472613 | 31.511426 |  23.243858
T = 50
0.6582812 [ 20.557586 | 11.085589 | 29.579152 |  13.15461
T = 100
4.9297477 [ 17.785701 | 6.4515517 | 27.606241 |  7.0070324
T = 500
[ 1.3260667 [ 15.722575 | 1.9691218 | 25.589078 | 2.0751343 |
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TABLE 4.4. Average MISE*100 for the case of dissimilar curves: method of squared

error minimization.

| T =25 |
NW NEB Ker Pooled | Racine and Li
11.558408 | 22.864163 | 12.823735 | 30.437596 |  6.7373031
T = 50
7.0655439 [ 19.550934 | 8.8510286 | 28.77789 | 10.953052
T = 100
4.218005 [ 17.488481 [5.8698167 | 27.253604 |  16.843468
T = 500

[1.2245831 [ 15.694512 | 1.8748517 [ 25.554444 |  2.0525395 |
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TABLE 4.5. Curve selection for the Ker estimator for the case of similar curves.

| T = 25 |
No start | g(t) | f(t) | z(t) | h(t)
02 [81.8]79.8[73.8]726
T = 50
04 | 78 [81.8]78.8]|786
T = 100

[0 [752]81.6[808]79.2]

Tables 4.5 and 4.6 exhibits the percentage each of the four curves has been selected to
be part of the pooled start of the Ker estimate of g(¢). The column “No start” refers
to the ordinary Nadaraya-Watson estimator; if no curve is included in the pooled

start, the Ker estimator reverts back to the Nadaraya-Watson estimator. .
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TABLE 4.6. Curve selection for the Ker estimator for the case of dissimilar curves.

| T = 25 |
No start | g(t) | f(t) | z(t) | h(t)
1.6 66.8 | 35.8 | 41.4 | 36.2
T = 50
08 | 92 | 14 |488]208

T = 100

|

0.6

| 94 | 16 [36.5]18.8]




TABLE 4.7. Bias results for the case of similar curves.

| T = 25 |
NW Ker Pooled

1.5435512 | 0.642875 | 0.8548098
T = 50

1.4156884 | 0.4390969 | 0.5059055
T = 100

0.8851497 ] 0.2987018 I 0.3167598
T = 500

[0.2686621 | 0.089205 | 0.0940388 |

93



TABLE 4.8. Bias results for the case of dissimilar curves.

l T = 25 I
NW Ker Pooled
12.833349 | 12.92856 | 28.440004
T = 50
1.0290213 | 1.6715469 | 26.95288
T = 100
0.920278 | 1.6132288 | 25.81984
T = 500

[ 0.2846808 | 0.4738972 | 25.060287 |

94
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5. EMPIRICAL APPLICATIONS

5.1. Nonparametric Wage Modeling

To assess the predictive ability of the competing estimators it is important to carry
out an out of sample prediction based on empirical data. To do so a cross-section
dataset on male and female wages is used. More explicitly, the dataset considered

has three explanatory variables:

e a dummy variable representing the sex of the worker
e a dummy variable representing the union status of the worker

e 2 continuous variable representing the experience of the worker.

The explained variable is the natural log of the wage of the worker. The data can be

summarized in a regression function as follows:
Yy = m(sexs, union;, experience;) + ¢, t = 1..534 (5.1)

where 3, = log(wage);. The dataset has 534 observations. The first dummy variable
(sex) was used to separate the data into two subsets representing male and female
data. The data of each subset is used to estimate the male and female curves and
also to predict out of sample. Out of the 534 observations, 106 (roughly 20%) were
set aside as a hold-out sample for prediction purposes. The prediction performance
of each estimator is measured by the mean integrated prediction error (MIPE). The

formula for the MIPE is:
T

1 X
MIPE = — > (@ — ) (5.2)
2=
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where T4 is the size of the hold out of sample upon which the prediction is based and
7; 1s the predicted value of y;. For this study the Altman and Casella estimator is
disqualified by since the dimension of the regression matrix exceeds 1.

Even though this is just an application on labor data, it is appropriate to explain
the structure of wage equations to help the reader who is not familiar with labor
economics. The dependant variable is the natural log of wage instead of wage, the
reason being that the distribution of the wages is not believed to be normal but
rather positively skewed. 2 The log of the wages looks normally distributed than
that of wages hence the use of log(wage) as a dependant variable. Besides it is
widely believed in labor economics that factors such as experience and education
affect wages in a multiplicative manner. Combining these two elements produces a
linear relationship between log(wage) and the explanatory variables; such relationship
is needed to apply linear least squares methods. The normality assumption of the log
of wages also guarantees that the error term is normally distributed.

Single equation estimation has been commonly used by labor economists to inves-
tigate important economic issues such as wage inequalities between male and female
workers or whites and non-whites workers. It is also used to analyze the effect of
unions on earnings. A pioneering work has been done by Oaxaca (1973) in wage dif-
ferentials. In most cases however, the estimation of wage equations has been confined
to parametric estimators such as the ordinary least squares method. In this appli-
cation, OLS as well as advanced nonparametric methods have been used to estimate

the wage equations of male and female workers and compare their predictive ability.

12 Gee Schooling, Experience, and Earnings by Mincer, J (1974).
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Let the following equations

yr = g(x1s, Tag, .. Tp) (5.3)
ym - h('rlm) m2m7 LN} me) (5.4)
yp :p($1f>x1m7fc2f>x2m,---;fo,CCTm) (55)

be the female, male and pooled male-female wage equations respectively where y, =
log(wage), and the z;;’s are the explanatory variables such as experience, years of
schooling, union status etc. Also let ¥, ¥ and g, represent the mean relative wages
for females, males and the pooled males and females respectively. ¥ and g, is in-
terpreted as the estimated overpay or underpay (depending on the sign) of female
workers. Similarly the difference between %, and g, measures the favoritism or dis-
crimination of male workers. Given the sensibility of the wage discrimination issue it
is important to estimate it accurately.

As said previously, the performance comparison between the estimators is based
on the out of sample prediction error (MIPE). The results are displayed in table 5.
The Wilcoxon nonparametric test suggests that the MIPE of the Ker estimator is
significantly lower than that of the competing estimators at a 1% level. To reduce
criticism of the results, the out of sample was randomly picked and the prediction
error computed; the procedure was replicated 100 times. The reported values are the

averages of the MIPE across the 100 replications.
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TABLE 5.1. Out of sample prediction error of the different methods.

| Out-of-sample=106 obs |

NW Ker Racine and Li Pooled OLS
397.97496 | 378.81303 386.07591 440.34925 | 544.26751
(8.588) . (8.276) (8.544) (8.626)

The numbers in brackets are the computed critical values of the Wilcoxon (Sign) test
Hy: X — Ker = 0 against H; : X — Ker > 0, X= {NW,Racine and Li, Pooled, OLS}.
The critical values reveal that Hy can be rejected in favor of Hy at a 1% significance

level.

5.2. Rating Crop Insurance Policies Using Advanced Methods

Crop insurance is a major component of the agricultural system in the U.S 3. In
his 1999 state of the union address to Congress, President Clinton reiterated the

important role of the crop insurance program:

“ As this Congress knows very well, dropping prices and the loss of foreign
markets have devastated too many family farmers. Last year, the Congress
provided substantial assistance to help stave off disaster in American agri-

culture, and I am ready to work with lawmakers of both parties to create

1B A detailed discussion of the U.S. crop insurance program can be found in Ker and McGowan

(2000); McGowan (1999); and Goodwin and Ker (1998).
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a farm safety net that will include crop insurance reform and farm income

assistance.”

In 2000, the Congress passed the “Agricultural Risk Protection Act (ARPA)”,
which is estimated to cost 8.2 billion over a five-year period. ARPA effectively raised
the federal expenses on crop insurance to an estimated 16.1 billion. The key feature
of the federal crop insurance is its regulation by the federal government via the De-
partment of Agriculture’ Risk Management Agency (RMA). The RMA is in charge
of rating crop insurance policies. Given the rates set by the RMA, the private insur-
ance companies either accept or decline the proposed contracts depending on their
expected payoffs. For simplicity, we assume that insurance companies are risk-neutral
and profit maximizers. Since information on yield data is freely available, insurance
companies have the possibility to assess whether the proposed Contrécts are under-
rated or overrated by using different estimators than the RMA. If their estimator(s)
offer a superior performance, they can weed out all the contracts deemed undesirable.

In this section, we undertake simulations designed to investigate the performance
of the advanced methods relative to the one-knot linear spline used by the RMA to

model the temporal process of yields:

Yo = a -+ Bi(tlos () + (1 — Los () + B2(l — Liog ()t — 6)) + €(t) (5.6)

where I(.) is an indicator function.
To investigate the relative performance of the competing estimators, we use soy-
beans data for 87 counties in Iowa grouped in 9 crop-reporting districts. For each

county, data is measured between 1956 and 1999. Out of the 44 observations available
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for each county 15 were used as a hold out sample to evaluate the empirical rates. To
evaluate the rate for say 1990, all the data up to and including 1989 was included.*
Let I' be the universe set of 1305 policies (87 counties x 15 years), then the loss ratio

can be defined as:
> ier maz (0, ay® — ys)w;
Zz’el‘ Tiw;

where w is a weight matrix such that w;=1 if policy ¢ is retained and 0 otherwise; 7);

LR =

(5.7)

is the premium rate estimated by the RMA for policy 4, y° is the predicted yield for
the year of coverage using the different estimators and « is the coverage level.

As outlined earlier, the temporal process is believed to be similar from a county
to another within the same CRD or sate for reasons such as weather, soil type or
technology among other factors. If indeed the similarity assumption is correct, using
external data while rating policies for a given county should yield a smaller loss
ratio for the insurance company. The simulations are based on the following basic
assumption:

Insurance companies use both the Ker, the Racine and Li and the pooled Nadaraya-
Watson estimators to evalutate their loss ratios given that the government is using

the one-knot spline estimator to model the temporal process of yields.

14 The data was obtained from the National Agricultural Statistics Service website: www.nass.gov.
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Table 5.2 provides the results of the simulations for the 75% and 85% coverage levels.
The results indicate that the advanced methods provide a much smaller loss ratio
for the insurance companies if the governement is using the one-knot linear spline.
As such, the use of the Racine and Li or Ker estimator enables insurance companies
to save a lot of money buy effectively weeding out contratcs with big loss ratios:
the overal loss ratio of the program is almost twice as big as that of the insurance
companies if they were to use the Racine and Li or the Ker estimator for a 75%
coverage level. However, only the Ker estimates are found statistically significant at
a 5% level for the 85% coverage level. For the 75% coverage level both the Racine

and the Ker are significant but the pooled Nadaraya-Watson is not.

TABLE 5.2. Crop Insurance Rating simulation for soybeans for all 87 counties in

Towa

| 75 Percent Coverage Level |

Ker Pooled-NW | Racine and Li
Insurance Company Loss Ratio 0.48943 0.8413287 0.49456
Percentage of Contracts Retained | 0.4812261 | 0.4015326 0.06283
Loss Ratio of RMA 1.3630571 | 0.8206314 0.86809
Overall Loss Ratio 0.832077 0.832077 0.832077
85 Percent Coverage Level
Ker Pooled-NW | Racine and Li
Insurance Company Loss Ratio | 0.6273756 | 0.7408744 0.455656
Percentage of Contracts Retained | 0.5111111 | 0.3478927 0.0666667
Loss Ratio of RMA 1.5783423 | 1.2031936 1.023927
Overall Loss Ratio 0.968261 0.968261 0.968261
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6. SUMMARY AND CONCLUSION

A main objective of applied econometrics is to find the most efficient estimators so
as to be closer to the true unknown function to estimate.‘ Years of research have
enriched the econometric literature with a multitude of estimation techniques, each
of which has its own merits. Nonparametric methods are certainly younger than
their parametric counterparts but they are not any less worthy. It is now proven that
they can be either suitable substitutes or complementary (semiparametric methods)
to parametric techniques for both regression and density estimation. The attractive-
ness of nonparametric methods lies in their flexibility. By not constraining the data
to any parametric family, they generally succeed in displaying a good structure of
the true relationship. Such flexibility however comes with the cost of a much more
tedious statistical inference and a lower rate of convergence compared to parametric
estimators when the assumed functional form is correct. The latter concern should
not discourage anyone from using nonparametric methods since the very reason for
their use is that the true function is unknown!

In this thesis, the goal was to evaluate some leading nonparametric regression
methods, which were divided into two categories: the standard estimators and the
advanced ones. In the quest of finding the most appropriate estimators for multiple
curve regression, the mean squared error was used as the sole arbiter. From yield
data to stock market data, economic data is often presented in a form of a set of
curves. Advanced methods can then be used to boost the precision of the estimates.

As pointed out earlier in the thesis, these methods have two goals: significantly out
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perform the standard methods when the assumption of similarity is correct while not
loosing much of efficiency when the curves are quite dissimilar. The results of the
replications are enlightening about what are the “best” nonparametric methods for
a multiple curve estimation. The simulations showed that when the curves are very
similar, the advanced methods have a considerably lower mean integrated squared
error than the standard ones except for the Altman and Casella estimator. It is not
really surprising for the advanced methods to perform well when the curves are the
same since they use more data than the standard ones do. However when the curves
are quite dissimilar, the results are very disappointing for two of the four competing
estimators: the NEB and the NW pooled estimators. The pooled estimator was not
expected to do well because it uses extraneous data to estimate a single regression
function without allowing for individual corrections. The Racine and Li estimator
performed very well as the data set got bigger. The nonparametric estimator with a
pooled start worked satisfactorily basically because it allows for individual corrections
to be made. Therefore even when the curves are quite dissimilar, starting with the
pooled estimator is still acceptable thanks to the correction factor.

The nonparametric with a pooled start and the Li and Racine estimator did not
loose much to the standard method when the curves were all dissimilar and gained a
lot when the curves were all the same; which means that these two methods are the
most appropriate to use among the advanced methods studied in this thesis for they

remain viable even when the curves are dissimilar.
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A. APPENDIX: DERIVATION OF THE NW ESTIMATOR.

By definition a probability density function is:

fle) = lim oo Pl —h < X <2+ h). (A1)

Therefore an estimator of the true density can be obtained by replacing P(z — h <
X < z+h) by the percentage of the data falling in the interval (x —h < X <z +h),

which leads to: T
A 1 (x — X3)

where w(u) = $1jy<1. However w(u) is generally replaced by a smooth twice differ-
entiable function and symmetric around 0 called kernel function, hence

T
A 1 (x — X
=T E o= X) (A.2)
where K (.) is the kernel function. By definition,
J yf T y )dy
m(z) = BY|X| = A3

Analogically to the one-diemnsional estimator f (z) , the bi-diemnsional estimator is:

Flow) = g KU (A4

Using one of the properties of the kernel funtion : [ K(u)du = 1, yields
[ (@ y)dy = 73 Z%l K (’”‘hxi
Juf(e )y = 7 Sy K55 [ yKaly — Yo)dy

[yf(z,y)dy = 77 Yoo, K24y,
Substituting these results in the E[Y|X] gives the desired result.
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B. APPENDIX: MISE RESULTS FOR EACH INDIVIDUAL CURVE.

B.1. Method Of Least Squares Cross-Validation
B.1.1. Case Of Identical Curves

| T =25 [

rCurve | NW | NEB l Ker | Pooled | Racine and L1 |
g(t) 20.72418 | 21.243134 | 10.018895 | 4.6224098 7.4651668
f(t) | 20.129997 | 21.09666 | 10.393866 | 4.6224098 7.5496414
z(t) | 21.537767 | 27.186135 | 10.590098 | 4.6224098 7.4038587
h(t) | 20.684336 | 25.901065 | 10.571917 | 4.6224098 7.503514

T = 50

[ Curve l NW [ NEB | Ker | Pooled | Racine and Li ]
g(t) |9.2709134 | 15.534941 | 4.6577056 | 2.7597298 3.3291956
f(t) | 9.1627238 | 15.568016 | 4.6879064 | 2.7597298 3.3969154
z(t) | 9.1018502 | 15.142989 | 4.8303613 | 2.7597298 3.3296771
h(t) | 9.1830705 | 15.206391 | 4.8144634 | 2.7597298 3.4266907

T = 100

[Cave] NW [ NEB | Ker | Pooled | Racine and Li ]
g(t) |4.9435386 | 12.610485 | 2.4422237 | 1.5798329 1.7234327
f(t) | 5.0232013 | 12.852991 | 2.4192199 | 1.5798329 1.7572632
z(t) | 4.9248814 | 12.737523 | 2.4049929 | 1.5798329 1.7151046
h(t) | 4.9391602 | 12.506234 | 2.4814668 | 1.5798329 1.7484793

T = 500 ‘

[ Curve | NW | NEB l Ker ] Pooled } Racine and Li ]
g(t)y | 1.3310111 | 9.9587196 | 0.6162842 | 0.4474773 0.453653
f(t) | 1.3373609 | 9.9085542 | 0.5989836 | 0.4474773 0.454861
z(t) | 1.3294284 | 10.005928 | 0.6288069 | 0.4474773 0.4532038
h(t) | 1.3398871 | 10.013492 | 0.602393 | 0.4474773 0.4555322




B.1.2. Case of Dissimilar Curves
| T =25 |
[ Curve | NW | NEB | Ker I Pooled | Racine and Li [
g(t) | 21.673759 | 31.148529 | 21.24108 | 44.080997 26.619727
f(t) | 51.468621 | 41.397166 | 51.671092 | 53.944872 50.330942
z(t) | 7.7171983 | 22.396525 | 9.1187993 | 19.295811 8.3986675
h(t) | 9.5597957 | 23.418062 | 11.859478 | 8.7240261 7.6260945
T = 50
[ Curve | NW | NEB | Ker l Pooled I Racine and Li |
g(t) | 9.2709134 | 20.301806 | 9.8094033 | 39.879477 11.582789
f(t) | 20.628567 | 29.595526 | 20.14619 | 50.449841 20.507959
z(t) | 3.4872522 | 15.278363 | 6.4695597 | 18.181921 10.233868
h(t) | 5.2463925 | 17.054648 | 7.9172049 | 9.8053679 10.293824
T = 100
[Cuve[ NW | NEB | Ker | Pooled | Racine and Li |
g(t) | 4.9435386 | 17.938383 | 5.6296867 | 35.989214 5.7132496
f(t) | 9.9676379 | 22.250233 | 9.8606091 | 45.508545 11.772208
z(t) | 1.6718378 | 14.679067 | 5.1230165 | 17.907822 5.1937916
h(t) | 3.1359762 | 16.27512 | 5.1928944 | 11.019384 5.3488807
T = 500
[Cuve] NW [ NEB | Ker | Pooled | Racineand Li |
g(t) | 1.3310111 | 16.070122 | 1.6200937 | 34.484919 1.6932427
f(t) | 2.6901558 | 17.386571 | 2.6263977 | 38.987476 3.4192943
z(t) | 0.4112157 | 14.514309 | 1.8710859 | 17.646661 1.5814448
h(t) | 0.8718843 | 14.919299 | 1.7589098 | 11.237256 1.6065554
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B.2. Method of Squared Error Minimization

B.2.1. Identical Curves
| T =25 |
[Cuove[ NW [ NEB | Ker [ Pooled | Racine and Li |
g(t) 12.07322 | 21.033366 | 5.8891287 | 4.110164 4.1370921
f(t) 11.956001 | 21.567046 | 5.9276014 | 4.110164 4.1499222

(t) 11.868447 | 21.792663 | 6.0209777 | 4.110164 4.1406882

h(t) 12.074658 | 21.571768 | 6.0207242 | 4.110164 4.1507383
T = 50

[Carve] NW [ NEB | Ker | Pooled | Racine and Li |

g(t) | 7.1237467 | 17.613589 | 3.3718964 | 2.4731641 2.4875523

f(t) 7.29325 | 15.467719 | 3.3917286 | 2.4731641 2.4972436

z(t) | 7.1826636 | 15.577487 | 3.4474006 | 2.4731641 2.4941105

h(t) | 7.2772049 | 15.437507 | 3.457352 | 2.4731641 2.4964093
T = 100

[ Curve | NW | NEB | Ker l Pooled | Racine and Li I

g(t) | 4.1834606 | 12.012177 | 1.9036003 | 1.4583455 1.4663148
f(t) | 4.2975123 | 12.048319 | 1.9323622 | 1.4583455 1.4754626
z(t) | 4.1769992 | 12.399812 | 1.9412467 | 1.4583455 1.4688432
h(t) | 4.2690475 | 12.340195 | 1.9146263 | 1.4583455 1.471153

T = 500
| Curve l NW | NEB [ Ker [ Pooled | Racine and Li |
g(t) 0.8489 2.9323 0.3648 0.3884 0.4032
f(t) 0.8158 2.9516 0.3517 0.3884 0.4028
z(t) 0.8141 2.9255 0.3516 0.3884 0.4041
h(t) 0.8484 2.9363 0.368 0.3884 0.4078
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B.2.2. DissimiLar Curves
| T =25 |
[Curve[ NW [ NEB | Ker | Pooled | Racine and Li |
g(t) 12.07322 | 23.626352 | 12.368647 | 42.358604 14.354198
f(t) | 26.805463 | 35.249329 | 26.783875 | 52.929029 31.093744
z(t) | 2.8590875 | 15.92908 | 5.0556504 | 18.185358 10.97880
h(t) | 4.4958631 | 16.651892 | 7.086767 | 8.2773916 10.947127
T = 50
[ Curve | NW | NEB | Ker ] Pooled | Racine and Li l
g(t) | 7.1237467 | 19.605836 | 7.8859699 | 37.54812 8.953505
f(t) | 16.018863 | 27.690728 | 15.897717 | 48.659762 19.467898
z(t) | 1.6882511 | 14.580068 | 5.3427849 | 18.22484 7.676760
h(t) | 3.4313147 | 16.327104 | 6.2776424 | 10.678838 7.7140464
T = 100
| Curve | NW | NEB | Ker | Pooled | Racine and Li \
g(t) | 4.1834606 | 17.606796 | 4.9931094 | 35.341562 5.3857198
f(t) | 9.3490553 | 22.016201 | 9.1886389 | 43.817845 11.608215
z(t) | 0.9553908 | 14.307412 | 4.5827652 | 18.255705 4.8808498
h(t) | 2.3877132 | 16.023513 | 4.7147534 | 11.599305 5.0744279
T = 500
] Curve | NW | NEB | Ker 1 Pooled ] Racine and Li |
g(t) | 1.2152272 | 16.048592 | 1.5405973 | 34.544591 1.663336
f(t) | 2.6655793 | 17.421745 | 2.5673953 | 38.519849 3.4182853
z(t) | 0.2695979 | 14.44411 | 1.7407919 | 17.777637 1.5512695
h(t) | 0.7479282 | 14.8636 | 1.6506221 | 11.3757 1.5772674
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C. APPENDIX: BIAS SIMULATION RESULTS

C.1. Case of Identical Curves
| T =25 |
[Curve | NW | Ker [ Pooled |
g(t) | 1.7086196 | 0.6599748 | 0.8548098
f(t) | 1.5754048 | 0.6713257 | 0.8548098
z(t) | 1.3577803 | 0.627912 | 0.8548098
h(t) | 1.5324003 | 0.6122874 | 0.8548098
T = 50
| Curve | NW ] Ker | Pooled |
g(t) | 1.3027837 | 0.4468328 | 0.5059055
f(t) | 1.5293041 | 0.4380713 | 0.5059055
z(t) | 1.4090016 | 0.4327291 | 0.5059055
h(t) | 1.4216641 | 0.4387543 | 0.5059055
T = 100
[Curve] NW | Ker | Pooled |
g(t) | 0.8580819 | 0.3071596 | 0.3167598
f(t) | 0.9220165 | 0.3044441 | 0.3167598
z(t) | 0.8705085 | 0.3039829 | 0.3167598
h(t) | 0.8899919 | 0.2792207 | 0.3167598
T = 500
I Curve | NW | Ker I Pooled |
g(t) |0.2639614 | 0.088872 | 0.0940388
f(t) | 0.2836919 | 0.0883134 | 0.0940388
z(t) | 0.2627882 | 0.0937041 | 0.0940388
h(t) | 0.2642067 | 0.0859305 | 0.0940388
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Case of Dissimilar Curves

T = 25

NW

Ker

| Pooled

1.3443316
48.211876
0.4336558
1.3435328

1.58388
46.67916
0.9883468
2.4628515

41.009574
50.873449
16.224388
5.6526033

T

= 50

NW

Ker

| Pooled

1.3027837
1.5177201
0.2409215
1.0546599

1.4848416
1.7175819
1.4033739
2.0803902

37.253205
47.823569
15.555649
7.1790961

T = 100

[ W

Ker

| Pooled

0.8580819
1.823169
0.1576054
0.8422557

1.0383854
1.8398797
1.828484
1.7461662

34.202813
43.722144
16.121421
9.2329829

T = 500

NW

Ker

| Pooled

0.2639614
0.6460724
0.0581047
0.1705845

0.3253766
0.5591815
0.5272765
0.4837541

33.956128
38.458685
17.11787
10.708465
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