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Abstract 

 

The heart of the financial/stock markets is the ability to predict future prices. The range 

i.e. the difference between the high and the low of the stock price or index in a day, could 

be a key to the amount of exposure and the possible gains from investment. So an 

extreme value approach for the range prediction is adopted to investigate the problem. 

The daily log ratio, i.e. log of the ratio of the high/low on one day to that of next day, is 

chosen as the variable of interest.  

Traditional approaches would consider the midrange, defined as the average of the daily 

high and low, as the variable of interest. The predictions from this traditional model do 

not portray possible extreme gains or losses available from range estimation. The results 

thus provide some unique insight into risk assessment and mitigation, as the approach is a 

breakaway from the tradition. 
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CHAPTER 1 

Introduction 

 

The analysis of tail behavior of asset returns with a thorough understanding of 

large movements in asset prices is important for financial risk management. Explicit 

forms of the tails of the distribution provide important information to risk managers and 

investors. 

Empirical studies have established that the distribution of speculative asset returns 

tend to have heavier tails than the Gaussian distribution tails (Mandelbrot, 1963; Pagan, 

1996). Furthermore, very often these thick tailed distributions are found to have 

asymmetric tails. Such stylized features of financial returns provide useful insight into the 

economics of financial markets and calls for appropriate methodologies of modeling such 

behavior.  

Conditional heteroskedasticity models of Engle (1982) and Bollerslev (1986) and 

their various modifications do incorporate some of these stylized features which occur 

due to phenomenon such as volatility clustering in financial data. Although the 

conditional heteroskedasticity models can explain part of the non-Gaussian features of 

the unconditional distribution, it is often found that features like heavy tails may persist 

even after accounting for conditional heteroskedasticity. 

The present research is focused on the estimation of the range of prices in 

financial markets. The daily prices of the stock indices like the S&P 500 or the DJIA are 

often expressed in the range format. Display of information in this format offers 
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information about the price changes in a day, a reflection of the price movements for that 

day.  

Range is defined as: 

Daily range = (daily-high – daily-low).  

Typically, the industry estimates the midrange defined as: 

Mid-Range = (daily-high + daily-low)/2 

This midrange estimate with its confidence interval constitutes a major part of the risk 

management strategy of investors. Figure 1.1 below displays typical price range 

information. 

Figure 1.1. A Candle Stick representation of stock prices 
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Another potential application of range prediction is the futures commodity 

markets. The daily highest and lowest are averaged out to arrive at the mean daily price. 

This mean daily price is used in future analysis of the markets or for further predictions 

for the future. There seems to be loss of information if the midrange alone is used for 

predicting future prices. Alternative perspectives on utilizing the available information 

could help investors make better and more informed decisions. As an alternative, we 

suggest predicting the range of prices.  The essence of the present exercise has been to 

mould the available data into more informative terms. The range prediction of prices 

would provide us with information, which would help one in estimating risk better than 

the mean price prediction method.  

The work done thus far in the field of mean prediction has employed the 

assumption of a normal distribution for the underlying distribution. This we perceive as a 

shortcoming for the following reasons. Firstly, if the underlying distribution is normal, 

the midrange has a very high variance for predictions purposes, making it an inefficient 

estimator. Secondly, the normal assumption is often violated empirically. So the 

midrange would typically not be a normal as it is usually assumed. To relax the 

assumptions of normality we propose to estimate the high and low separately, using the 

extreme value theory (EVT) and a generalized extreme value model is fitted to the data. 

This allows the data to define the parameters and nature of the tails of the original 

distribution would decide on the tail index. The EVT imposes fewer distributional 

assumptions than previously developed models.  
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CHAPTER 2 

Literature Review 

 

Extreme value theory has been around for some time, from the pioneering work 

on block maxima1 of Fischer and Tippett (1928) and Gnedenko (1943) to the exposé by 

Gumbel (1958). More recently, Balkema and de Haan (1974) and Pickands (1975) have 

presented results for threshold-based extreme value methods. Applications of the theory 

have since appeared in hydrology and wind engineering. More recently extreme value 

theory has been applied to finance and insurance problems.  Analysis of these 

applications can be found in Embrechts, Klueppelberg, Mikosch (1997), and in Reiss and 

Thomas (2001). 

The demand for practical statistical tools to analyze the extreme events within 

time series has led to many recent advances in the theory and methods for extreme 

values. Historically, the demand came from environmental topics where extreme events 

are the only aspects of the series of practical concern (Natural Environment Research 

Council, 1975; Simiu and Scanlan, 1986; Dixon and Tawn, 1997). Other applications are 

emerging, with financial time series increasingly being analyzed to assess the risk from 

extreme events and to determine the capital that is required to control this risk (Longin, 

1996; Embrechts et al., 1997). The standard approach for describing the extreme events 

                                                 
1Two approaches to extreme value theory are block maxima and threshold methods. The theory behind the 
block maxima method can be found in work by various authors (for instance in Embrecths et al., 1997; 
McNeil, 1998; and Kellezi and Gilli, 2000 and is discussed in detail in the next chapter. As an alternative to 
looking at blocks and block maxima one can collect the returns in a series that exceed a certain high 
threshold, say u, and model these returns separately from the rest of the distribution. This is the peaks over 
threshold (POT) method.   
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of a stationary time series is to focus on its exceedances of a fixed high threshold level, 

which leads to a description of extreme events that contains four components: 

the probability of exceeding the threshold, the distribution of excesses of the threshold, 

the long-range dependence between extreme values and the local dependence within 

extreme events. The first two of these components are determined by the marginal 

distribution of the time series and the last two by its dependence structure. The marginal 

features of time series extremes are well understood from the study of independent and 

identically distributed (IID) random variables, and flexible statistical methods are 

available (Pickands, 1971, 1975; Davison and Smith, 1990; Smith, 1989) for their 

analysis. Though the theory pertains to exceedances over a threshold, the insight can be 

appropriate in the block maxima (i.e. maxima of a sample) methods too. The dependence 

structure of the maxima had been addressed in the Leadbetter and Leadbetter et.al (1983) 

in the theorem on the Asymptotic Independence of Maxima. 

In studies of today’s volatile financial markets, it is common to make a distinction 

between conditional and unconditional asset return distributions. While the unconditional 

distribution is interesting when long-term investment decisions and the occurrence of 

very rare (stress) events are of interest, the conditional distribution is more appropriate 

when day-to-day risks and short-term risk management are considered. McNeil (1998) 

calculates conditional VaR (Value at Risk)-measures by filtering return series with a 

GARCH model and then apply threshold based EVT tools to model the IID residuals. We 

follow a similar approach for the daily maximum and minimum of tick data of DJIA. The 

variations in our methodology are in adopting an AR model to filter the data, instead of 
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GARCH, and application of this method to the block maxima as compared to the 

threshold approach.  
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CHAPTER3 

Extreme Value Theory 

 
3.1. Extreme value distributions: Block Maxima Approach 

Let  be random variables representing tick data. We begin with 

the assumption that 

,( , ,m nX m n∈])

m n1, ,, ,nX X… are iid. It is our effort to find a limit distribution for 

maxima . It is transformed such that the limit distribution of the 

new variable is a non-degenerate one. Following Fisher and Tippett’s (1928) theorem, the 

variate, , is reduced with a location parameter, 

1, ,max( , , )n n mM X X= … n

nM nµ , and a scale parameter, nσ , in such 

a way that * n
nlim Pr{ }  lim  F ( z+ ) ( ) n nn n

M z Gσ µ
→∞ →∞

≤ = = z

n

,  

where *
n nM (M ) /nµ σ= − . Assuming the existence of a sequence of such coefficients, 

we have three types of non-degenerated distributions for the standardized maximum, 

(represented by the random variable z), as Gumbel (I), Frechet (II) and Weibull (III). *
nM

 

I.   ( ) exp{ exp[ ( )]},   -  < z < ;zG z µ
σ
−

= − − ∞ ∞          (3.1) 

 

0,                                         z ,
II.  ( )

exp{ ( ) },                  z > ;
G z z α

µ
µ µ

σ
−

≤⎧
⎪= −⎨

−⎪⎩

                                                             (3.2) 
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exp{ [ ( ) ]},               z < ,
III. ( )

1,                                          z ;

z
G z

αµ µ
σ

µ

−⎧ − −⎪= ⎨
⎪ ≥⎩

                                                            (3.3) 

for parameters σ >0 , µ  and, in the case of families II and III,  α>0. 

von Mises (1954) and Jenkinson (1955) independently proposes a generalized extreme value 

(GEV) distribution, which includes the three limit distributions distinguished above: 

 
1/( ) exp{ [1 ( )] },{ :1 ( ) 0},                                                   (3.4)

where -  <  ,   > 0 and -  <  < .

z zG z zξµ µξ ξ
σ σ

µ σ ξ

−− −
= − + + >

∞ < ∞ ∞ ∞
 

where ξ  is a shape parameter. For ξ  >0, ξ  <0 and ξ  =0 we obtain the Frechet, Weibull and 

Gumbel families, respectively. The Frechet distribution is fat tailed as its tail is slowly 

decreasing; the Weibull distribution has no tail—after a certain point there are no extremes; the 

Gumbel distribution is thin-tailed as its tail is rapidly decreasing. The following figures show the 

different curves for varying values of the shape parameter. In the graphs below, the horizontal 

axis represents the random variable while the vertical axis represents the pdf value. 
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Figure 3.1-A Gumbel Distribution Curve with Mu=0, Sigma=1, Zeta=0 
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Figure 3.2-A Fretchet Distribution Curve with Mu=0, Sigma=1, Zeta=1 
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Figure 3.3-A Weibull Distribution Curve with Mu=0, Sigma=1, Zeta=-0.5 
 

 
 
 
 
 
 
 

The discussion thus far in this chapter has highlighted the extreme value theory and the 

types of extreme distributions. This needs to be applied to the data. In the next chapter the 

data description and the application of the knowledge from this chapter to the data is 

included.  
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CHAPTER4 
Data Source and Methodology 

 
4.1. Data Description 
 

Dow Jones Industrial Average (DJIA) is the source of information for the present 

study. The sample consists of the daily index maximum and minimum for a period of 

about 7years, from April 1st 1993 to October 31st 2000.  The sample size is 1908 

observations of which 1884 were used in the model development, and 22 observations 

from the month of October 2000 were set aside for out sample validation. The source of 

this data is www.tickdata.com. According to the EVT, these data would be distributed as 

Gumbel/Frechet, depending on the underlying distributional assumption. These maxima 

and minima being over daily volumes of about 1000 or more ensures that they are large 

samples. As the underlying samples need to be large for EVT to be applicable. A normal 

distribution assumption would lead to a Gumbel limiting distribution for the maximum 

and minimum. The literature, however, indicate returns are usually fat tailed, suggesting 

the Frechet distribution would be appropriate.  

The graphs 4.1.1 and 4.1.2. represent the daily high and low respectively of the DJIA. 

The increasing trend can be seen in the graphs. 
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Figure 4.1.1: Distribution of DJIA high from April 1st 1993 to September 29th 2000 
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Figure 4.1.2: Distribution of DJIA low from April 1st 1993 to September 29th 2000 
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4.2. Model Specification: 
 

The dynamics of model specification, very often, involves analysis of the data and 

certain assumptions. There are numerous avenues for exploration. The various 

combinations of the extreme value model parameters as functions of time or other 

covariates, is one of them. The underlying principle is parsimony and simplicity. For 

example, when modeling we would have to ascertain that the data is devoid of trend- 

linear or quadratic, or an exponential relation. After analyzing the DJIA sample for the 

present exercise, we concluded that an AR (1) process would the simplest alternative.  

The model for the prediction of the daily log ratio  is specified as described 

below: 

ty

1 0.577t t ty yα β ε−= + + − σ                                                                                       (4.2.1a) 

for the maxima, and 

1 0.577t t ty yα β ε−= + + + σ                                                                                       (4.2.1b) 

for the minima; 

where,  are the daily log returns of the DJIA, ty ε  is the error term and α (intercept) and 

β  (slope) are the two out of the three parameters to be estimated. The third parameter is 

the scale parameter σ (refer equations 4.2.3 and 4.2.4). The factor of 0.577 is used as the 

mean of a Gumbel distribution is 0.577µ σ+ , whereµ  is the location parameter of the 

Gumbel. This adjustment eliminates the bias in the estimation for the Gumbel estimation.  

The corresponding correction for the GEV is (1 (1 ))σµ ξ
ξ

− −Γ − . 
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Two possible scenarios arise depending on the assumption that can be made about the 

distribution of ε . 

Case 1: ε ~ Gumbel(µ ,σ ) 

Case 2:ε ~ GEV(µ , ,σ ξ ). 

So, the assumption for the Gumbel estimation is: 

                                                     . 
 1( ( ) 0.577 ) 0t tE y yα β σ− + =− +

The density functions for the Gumbel and GEV are: 

1( ) .exp( ).exp( exp[ ]), ( , ).f ε εε
σ σ σ

= − − − ∈ −∞ε ∞                                                      (4.2.2) 

(1 1/ ) 1/1( ) .[1 ( )] .exp( [1 ( )] ), ( , ).f ξ ξε εε ξ ξ ε
σ σ σ

− + −= + − + ∈ −∞ ∞                                      (4.2.3) 

These density equations are applicable for the maxima. The corresponding equations for 

the minima are obtained by replacing ε with –ε in the above equations. Thus, the 

likelihood equations for the minima are: 

1( ) .exp( ).exp( exp[ ]), ( , ).f ε εε ε
σ σ σ

= − ∈ −∞ ∞                                                           (4.2.4) 

(1 1/ ) 1/1( ) .[1 ( )] .exp([1 ( )] ), ( , ).f ξ ξε εε ξ ξ ε
σ σ σ

− + −= − − ∈ −∞ ∞                                        (4.2.5) 

 

As would be discussed in the next chapter, Gumbel is a special case of GEV, where the 

shape index,ξ , is equal to zero. When the underlying distribution is normal, the maxima 

and minima converge to a Gumbel.  Case 1, with the Gumbel error distribution, is a 

simpler approach to the problem in hand. The issues with the estimation of case 2, error 
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with GEV distribution, is more tedious taking into account the estimation trouble with the 

shape parameter of the GEV. There is extensive literature highlighting the above 

observation. (Morrison and Smith, 2002). This difficulty in estimation of the shape 

parameter has caused us to abandon our efforts to estimate case 2.  

 

4.3. Parameter Estimation by the Maximum Likelihood Method: 
 
4.3.1. Inference for the GEV Distribution-General Considerations: 
 

The GEV provides a model for the distribution of block maxima.  Its application 

comprises partitioning the data into blocks of equal length, and fitting the GEV to the set 

of block maxima, e.g.: maximum rainfall from a set of yearly rainfall data points. But in 

implementing this model for any particular dataset, the choice of block size can be 

critical. The choice means a trade-off between bias and variance: blocks that are too 

small mean that approximation by the limit model is likely to be poor, leading to bias in 

estimation and extrapolation; large blocks afford too few block maxima.  

We now simplify notation by denoting the block maxima 1, , tZ Z… . These are 

assumed to be independent variables from a GEV distribution whose parameters are to be 

estimated. If the iX are independent, then the iZ are also independent. However, 

independence of the iZ is likely to be a reasonable approximation even if the iX constitute 

a dependent series (discussed in detail in section 4.4). 

Many techniques have been proposed for parameter estimation in extreme value 

models. These include graphical techniques based on versions of probability plots; 

moment-based techniques in which functions of model moments are equated with their 
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empirical counterparts; procedures in which the parameters are estimated as specified 

functions of order statistics; and likelihood based methods. Each technique has its pros 

and cons, but the flexibility and adaptability to complex model-building of likelihood-

based techniques makes maximum likelihood estimation (MLE) particularly attractive. 

A potential difficulty with the use of likelihood methods for the GEV concerns the 

regularity conditions necessary for the MLE to be valid. Such conditions are not satisfied 

by the GEV models because the end points of the GEV distribution are functions of the 

parameter values: /µ σ ξ− is an upper end point of the distribution when ξ <0, and a 

lower end-point when ξ >0. This violation of the usual regularity conditions means that 

the standard asymptotic likelihood results are not automatically applicable. Smith(1985) 

studied this problem in detail and obtained the following results: 

• when ξ >-0.5, MLE yields regular estimates, in the sense of having usual 

asymptotic properties; 

• when –1<ξ <-0.5, MLE yields results, but they might not have the standard 

asymptotic properties; 

• when ξ <-1, MLE results are not likely to be obtained. 

The case ξ ≤ -0.5 corresponds to distributions with a very short bounded upper tail. 

This situation is rarely encountered in applications of extreme value modeling, so the 

theoretical limitations of the MLE are usually no obstacle in practice. 
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4.3.2.Maximum Likelihood Estimation: 

Under the assumption that 1, , tZ Z…  are independent variables having the GEV 

distribution, the log-likelihood for the GEV parameters when ξ ≠ 0 is  

1/

1 1
( , , ) log (1 1/ ). log[1 ( )] [1 ( )]

t t
i i

i i

z zl t ξµ µµ σ ξ σ ξ ξ ξ
σ σ

−

= =

− −
= − − + + − +∑ ∑            

provided that 1 ( )iz 0µξ
σ
−

+ > , for i=1,………,t.                                                       (4.3.1) 

At parameter combinations for which equation (3.8) is violated, corresponding to a 

configuration for which at least one of the observed data falls beyond an end-point of the 

distribution, the likelihood is zero and the log-likelihood equals -∞ . 

The case ξ =0 requires separate treatment using the Gumbel limit of the GEV 

distribution. This leads to the log-likelihood 

1 1
( , ) log ( ) exp{ ( )}

t t
i

i i

zl t izµ µµ σ σ
σ σ= =

−
= − − − −∑ ∑ −                                                    (4.3.2) 

Subject to the limitations on ξ  discussed in the previous section (Eq. 4.3.1), the 

approximate distribution of ˆˆ ˆ( , , )µ σ ξ is multivariate normal with mean ( , , )µ σ ξ  and 

variance-covariance matrix equal to the inverse of the observed information matrix 

evaluated at the ML estimate. Though this matrix can be evaluated analytically, it is 

easier to use numerical differencing techniques to evaluate the second derivatives, and 

standard numerical routines to carry out the inversion. Confidence intervals and other 

forms of inference follow immediately from the approximate normality of the estimator. 
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4.4. Dependence in Data: 
 

The approach for this problem so far has been one based on the IID assumption of 

the data. This assumption is likely not met in the real world scenario. Hence, basing one’s 

inference on such analysis could be erroneous. The IID assumption is relaxed and 

replaced it with a more acceptable assumption of stationarity. This replacement is not far-

fetched and can be realized in the real world scenario. To achieve stationarity, the log 

ratio values were considered, instead of raw returns. The figures below present the 

approach. Figures 4.1.1 and 4.1.2 are those of the data. It can be seen that there has been 

an increase in the value of the DJIA. Return ratios assisted in transforming it into the 

stationary type as can be seen in figures 4.4.1 and 4.4.2. 

The log ratio in the daily high case is defined as: 

1

log( )
log( )

t
t

t

h ighy
high −

= , while that in the daily low case is defined as: 

1log( )
log( )

t
t

t

lowy
low

−= . 
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Figure 4.4.1: Daily High Log Ratios of DJIA from April 1st 1993 to September 29th 2000. 
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Figure 4.4.2: Daily Low Log Ratios of DJIA from April 1st 1993 to September 29th 2000. 
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Now the question would be how far are we justified in employing the EVT which was 

developed on the IID assumption. Leadbetter and Leadbetter et.al (1983) have proposed 

the following theorem called the “Theorem on the Asymptotic Independence of 

Maxima”.  

Theorem: 

Asymptotic Independence of Maxima(AIM) 

Let , max( ,...... )i j i jM X X=  and  for some  and n nu  = a x + bn na nb , and x any real 

number. 

The AIM( ) condition is that there exists a sequence of positive integers with 

=O(n) such that for all i and j , 

nu nq

nq

n n1,i n i+q ,i+q +j n 1,i n 1,j nmax |Pr(M u ;M u )-Pr(M u ) Pr(M u )| 0 

as n .

≤ ≤ ≤ ≤

→∞

→
 

This condition ensures that separated groups of extreme point become increasingly close 

to being independent as their separation and level both increase at appropriate rates. 
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CHAPTER 5 
Estimation Results 

 
5.1. Summary of Results: 
 

The daily high and low from the tick data from DJIA (04/01/1993- 10/29/2000) is 

summarized in table 5.1.1. 

Table 5.1.1: Summary statistics of DJIA Data  

Variable Sample Period Sample  
Size 

Sample 
Minima 

Sample 
Maxima 

Sample 
Average 

DJIA Daily Low 04/01/1993- 10/29/2000 1884 3363.79 11614.40 6801.87 

DJIA Daily High 04/01/1993- 10/29/2000 1884 3381.35 11749.70 6894.12 

 

The raw data for daily highs and lows were transformed by taking the daily log returns. 

An AR(1) model with Gumbel error distribution was estimated, both for both the high 

and the low. Prior to estimation, daily log returns were divided by a factor of 1000 to 

magnify the parameter estimates.  The following models are estimated for daily highs and 

lows, respectively: 

1 0.577t t ty yα β ε− σ= + + −  

1 0.577t t ty yα β ε− σ= + + +  

where yt is daily log returns of the DJIA daily high (or low); α, β and σ are parameters to 

be estimated; and ε is an error term with Gumbel distribution.   

Maximum likelihood estimates of parameters for daily maximum and minimum 

are presented in Tables 5.1.2 and 5.1.3, respectively.   Results in Table 5.1.2 indicate that 

all three parameters for the daily high model are significant at 95% level of confidence. 
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For the daily minimum model in Table 5.1.3,α ,β and σ are significant at 95% level of 

confidence. 

Table 5.1.2: Maximum likelihood estimates for the DJIA daily high model 
Coefficient 

Estimate Standard Error t-stat 

α 1.4257 0.303 4.70 

β 0.3120 0.014 21.81 

σ 8.2178 0.112 73.31 

Summary Statistics:    

Sample Size:   1884    

Log-Likelihood:  -6857.20    

R-Square:   0.9996    

RMSE(%)  0.102    
Note: R-Square is calculated as squared correlation between actual and predicted y.  RMSE is 
Root Mean Square Error. 
 
Table 5.1.3: Maximum likelihood estimates for the DJIA daily low model 
Coefficient 

Estimate Standard Error t-stat 

α 9.4912 0.254 37.36 

β 0.1899 0.008 23.37 

σ 9.9388 0.127 78.25 

Summary Statistics:    

Sample Size:   1884    

Log-Likelihood:  -7164.15    

R-Square:   0.9994    

RMSE(%)  0.117    
Note: R-Square is calculated as squared correlation between actual and predicted y.  RMSE is 
Root Mean Square Error. 
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For both the models, β is estimated to be positive indicating that current and lag 

returns are positively related.  This positive correlation is consistent with fact that DJIA 

was on the increasing over the estimation period.  

R-squares for both models are high indicating that the extreme value models do a 

good job of estimating daily highs and lows.  Further validation of the model can be 

examined by examining how well the model tracks the actual data.  One such goodness of 

fit measure is the root mean square error (RMSE).  RMSE is defined by: 

2

2
1

ˆ( )1 n
t t

t t

y y
n y=

−∑ , 

where, is the actual value of the log of daily maxima (or the minima) , is the 

estimated log of daily maxima (or minima) and n is the sample size.  RMSEs for models 

are presented in Tables 5.1.2 and 5.1.3.  The RMSE for the daily maxima model is 

0.102%, while that for the minima model is 0.117%. These RMSE values are very low 

and indicate that both models do an excellent job of tracking the actual values.   

ty ˆty

 

5.2. In-Sample Predictions: 

The data are split into demi-deciles(20 groups) based on actual y and the means 

for  and across these segments were plotted to view the model performance.  Figures 

5.2.1 and 5.2.2 present these in-sample predictions for daily maxima and minima models 

by demi-deciles.  Figures 5.2.1 and 5.2.2 indicate that for both models, the predicted 

values follow the actual data very closely over all the do-deciles.  Though there is a 

consistent under-prediction across all the segments, indicating a bias.  

ty ˆty
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Figure 5.2.1: A plot of the actuals and predicted daily maxima 

Actuals vs Predicted by demi-deciles in the Maxima Estimation
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Figure 5.2.2: A plot of the actuals and predicted daily minima 

Actuals vs Predicted by demi-deciles in the Minima Estimation
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One of the objectives of the thesis is to predict daily ranges.  While both models 

may be performing well individually, it is important to assess how the models, taken 

together, predict that daily range.  Figure 5.2.3 combines the predictions from both 

models into predictions of the daily ranges, where predicted daily range is obtained as the 

difference between predicted daily high from the daily high model and predicted daily 

low from the daily low model.  As with individual models, the data are sorted and 

presented by demi-deciles.  Predictions in Figure 5.2.3 indicate that the model does an 

excellent job of tracking daily ranges.  Of course, unlike previous studies, the present 

models can predict both the magnitude and the location of daily ranges.  Figure 5.2.3 

illustrated only the magnitudes of daily ranges.   

 

Figure 5.2.3: A plot of the actuals and predicted of daily range.  

Range Prediction from the Gumbel Model
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The parameters from the estimation are used to plot the following distribution 

curves in figure 5.2.4. They are location parameter has been set to a zero in these curves. 

 
 
Figure 5.2.4: Gumbel distribution with the estimated parameters for the daily high ( µ̂ =0 and 
σ̂ =8.2) & daily hlow( µ̂ =0 and σ̂ =9.9) 
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5.3. Out of Sample Prediction: 
 

Out of Sample validation was done on 22 observations from the month of October 

2000.  The predicted values are closer in the daily high case as compared to the daily low 

case. The variation in the daily low is higher than in the daily low case. This variation is 

not being captured by the AR model executed so far. So an alternative approach of an 

ARCH or a GARCH model could perform more satisfactorily. While figures 5.3.1 and 

5.3.2 show the out of sample validation on the daily high and daily low respectively, 

figure 5.3.3 is a candle stick representation of the range for the out-sample data. In figure 

5.3.3 the dotted boxes are the predicted ranges(daily high predicted -daily low predicted) 

and the solid lines are the actual ranges(daily high-daily low) . 

 

Figure 5.3.1: A plot of the Out of Sample Validation (actuals vs predicted) for the daily highs  
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Figure 5.3.2: A plot of the Out of Sample Validation (actuals vs predicted) for the daily lows 

Daily Low Out of Sample Prediction
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Figure 5.3.3: A Candle Stick Representation of the daily range (10/01/2000-10/31/2000) 

Candle Stick Representation of Daily Range of DJIA
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CHAPTER 6 
Conclusions and Future Developments 

 
The results, presented in the previous chapter, show that the prediction of range 

via Extreme Value Theory can be a practical approach. The prediction accuracy has been 

consistent over the entire data. Although, the results thus far have been satisfactory, there 

are still possible avenues for further exploration and improvement. A few of them are 

discussed below. 

The bias in estimation needs to be accounted for which would mean an additional 

adjustment to be made the predicted values. The normal assumption of the log returns can 

be challenged in favor of other fat tailed distributions. This scenario would lead to the 

GEV model where the data defines the tail index, as our initial trials have been. The 

answer to successfully implement this approach would be in investigating estimation 

methodology concerned with the tail index of the GEV distribution. In this study Gumbel 

models for maxima and minima are estimated separately. A joint estimation of these two 

models can lead to more efficient parameter estimates. 

Another possibility for improvement would be with the exploration of advanced 

model specifications like ARCH or GARCH, which would improve the applicability of 

the model to situations with volatile markets or varying variance scenarios. This would 

enhance the sensitivity of the model to small changes. 

Apart from the stock market, this approach can be employed in commodity 

pricing and meteorological application. In commodity price modeling, midrange based 
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estimation is commonly employed. The present approach would lead to more informative 

predictions, where the high and the low of the commodity can be predicted. 
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