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Abstract

This study examines various mathematical formulations of cereal response to
nitrogen. Questions about the curvature of the response function and its shape after yield
maximum have occupied scientists for decades. Available agronomic knowledge
combined with statistical fit to field trial data were criteria for comparing and ranking ten
different functional forms. A quadratic response function with a maximum yield plateau
was judged to be the best performing model overall, although several other models seem
worthy of further considerations.

Another goal of the study was to estimate the extent of nitrogen mineralization
from soil resources. Estimation was based on the functions’ nitrogen axis intercept
assuming a zero yield without nitrogen and that the fitted functions were representative
outside the observable fertilizer domain. Available climate data could not satisfactorily
explain mineralization variation among trial sites. Economic evaluation showed that
incorrect choice of response model entails significant costs, especially if the choice is
between linear and non-linear specifications. Insurance against unpredictable
mineralization variation in the form of a permanent over-fertilization seems profitable

only if a linear response specification were correct.
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Chapter 1

Introduction

For many years, it has been a goal for scientists to establish the functional
relationship of crop response to fertilizer application. Computational costs no longer
prohibit extensive examinations of how functional forms of varying complexity comply
with empirical observation. As a result, over the last four or five decades, knowledge in
this field has accumulated at an increasing pace. However, this does not mean that today
one specific mathematical model can be nominated as best describing the relationship
between crop yield and input of plant nutrients in arable production. The long-standing
dispute over Justus von Liebig’s more than 150-year old linear/plateau model versus E.A.
Mitscherlich’s 50-year younger theory of diminishing marginal productivity is still very
much alive (Frank, Beattie, and Embleton 1990; Cerrato and Blackmer 1990; Paris
1992a).

Plant scientists know a great deal about how plant nutrient availability influences
photosynthetic activity, number of straws per plant, and number and weight of kernels.
Laboratory research in these and other fields is invaluable as a basis for hypothesizing the
nature of input-output relationships in farming. However, unlike laboratory conditions,
climate, soil quality, occurrence of pests, and availability of soil resources of nutrients for
example, vary significantly in space and time in commercial production environments.
Often, such variation is unknown or can not be appropriately quantified. Econometric
estimation of yield response to the application of nutrients based on empirical data from

practical farming and even from organized field trials may be subject to its own “law of
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the minimum.” That is, improvements in model prediction are difficult beyond a certain
plateau where availability of quality data becomes a limiting factor.

Endeavors to discover the truth about the fundamental nature of crop response
functions have a direct bearing on real life economic problems. Economically optimal
fertilizer application requires knowledge of the physical productivity function in addition
to information about expected output and input prices. Optimal (efficient) public policy
to deal with environmental damage associated with crop fertilization also demands
reliable knowledge about the nature of crop response functions.

Throughout this thesis monoperiodic production (a single timeless growing
season) under certainty is assumed. Matters involving multiperiod producﬁon and timing
of fertilizer application within a single production period are beyond the scope of this
study. The same is true regarding the consideration of risk and uncertainty as they relate
to the fertilizer-yield relationship and product and factor prices, notwithstanding their
importance in commercial farming. The statistical analysis is based on several years of
extensive dryland field trial activity undertaken by Danish farm organizations.

Again, focus of this study is on the nature of the crop response relationship. It
seems obvious that the exact nature of this relationship would vary considerably among
crops, rotation systems, etc. The estimation of functional relationships is for cereal crops
grown on soil with high water retaining capacity. The field trial results only allow for
study of the impact of nitrogen application on yield. The question of possible interaction

or substitution between nitrogen and other macro plant nutrients is not considered. The
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crop response to nitrogen in the field trials is predicated on the assumption that other

nutrients are available in non-limiting amounts.

1.1 Objective of Study

This thesis has two main objectives. The first objective is to examine which
functional forms best describe cereal yield in response to application of nitrogen. By
examining the statistical fit of functions with different mathematical properties it may be
possible to assess, for example, whether a linear or non-linear form is more appropriate.
This issue remains in dispute in the literature (Paris 1992a; Paris 1992b). Also, whether
yield tends towards a maximum plateau, or if there is an abrupt inversion at higher levels
of nitrogen is investigated. A comparison of the empirical viability of several commonly
used functional forms fitted on a rather extensive Danish field trial data set is a main
objective of the statistical analysis.

A second general aim is to assess the importance of plant available nitrogen from
natural nitrogen soil resources, which often amounts to several tons per hectare. The
major part of soil nitrogen is tied up in organic compounds and it is not immediately
available as nutrient to growing plants. A certain amount becomes plant available each
year through so-called mineralization. Plant available soil nitrogen at the beginning of
growing season can be estimated on the basis of soil samples. Mineralization during the
growing season can not be directly observed. Indirectly, the functional forms, which will
be fitted to field trial data, can yield an estimate of the amount of mineralized nitrogen.

Assuming that plant growth would be zero if no nitrogen were available, nitrogen
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provided from soil resources might be estimated on the basis of functions’ negative
nitrogen-axis intercept values for otherwise well-behaved and precisely-estimated
functional forms. Variations in the amount of mineralized nitrogen diminish the
inferences that can be made when functional relationships are based only on applied
amounts of fertilizer and plant-available soil nitrogen at planting. For example, with
above normal mineralization and other things equal a given level of output can be
achieved with a lower application of fertilizer. Therefore, to get a more complete picture
of output response to fertilizer application a part of the empirical analysis was to estimate
the extent of the mineralization process and how it is influenced by climatic variation

among field trial locations and years.

1.2 Organization of Thesis

Chapter 2 reviews the agronomic theory of nitrogen’s influence on cereal yield.
This physiological information provides guidance for hypothesis formulation regarding
the fundamental nature of the crop response models. Properties of various functional
forms are reviewed in Chapter 3. Important economic considerations and differences
among competing model specifications are discussed assuming various linear and non-
linear functional forms with plateaus, upper asymptotes, or decreasing yield at high rates
of nutrient application. Chapter 4 discusses the specific functional forms advanced for
empirical estimation and testing using the Danish field trial data.

Chapter 5 presents results of the empirical analysis for each of the functional

forms, including the estimated mineralization of organic soil nitrogen. The influence of



climatic variation on mineralizing soil nitrogen is examined in chapter 6. Chapter 7 is
devoted to farm economic and environmental policy implications. Chapter 8 provides a

summary with concluding remarks and considerations about need for further research.

14



15

Chapter 2

The Influence of Nitrogen on Cereal Yield

This chapter explores how certain plant physiological mechanisms determine
cereal yield. Agronomic theory and knowledge provides guidance for modeling proper
functional relationships between yield and applied nitrogen. Further, the question of
ascertaining total plant-available nitrogen — applied fertilizer nitrogen plus nitrogen from

“natural” sources — is addressed.

2.1 Nitrogen and Production of Organic Matter in Cereal Plants

Grain yield from a given area of land depends on the number of head-bearing
straws, kernels per head, and kernel weight (Bulman and Hunt 1988). This specification
provides a useful framework for evaluating yield response by focusing attention on how
nitrogen effects these three yield components. This section also draws from an extensive

literature summarized by Olesen (1999).

2.1.1 Number of Head-Bearing Straws
The potential number of straws per plant (main shoot plus tillers) is large but only a
fraction of initiated straws make it to the head-bearing state. In field experiments with
winter wheat, the number of heads (spikes) was found to increase linearly at
approximately one for every three tillers (Bulman and Hunt 1988). Another field trial

study showed that about 40 percent of all tillers result in fertile spikes. Nitrogen was
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found to influence the tillering capacity and thereby also the number of heads per plant
and per area unit. As described in Table 2.1, heads per m? increased from about 500 when
applied nitrogen was 50 to 100 kg per ha, to about 540 for the highest levels of nitrogen

(Spiertz and Ellen 1978).

Table 2.1 Nitrogen Effect on Yield and Yield Components

Nitrogen dressing, kg/ha
50 100 150 200
Heads per m* 509 498 540 538
Kernels per head * 32.8 35.9 37.8 38.2
Avg. kernel weight, mg " 40.0 413 42.1 42.1
Grain total, g perm® 640 732 799 821

Note: * Based on observations on 0,3 m”. ** By harvest of 60 m’.
Source: Spiertz and Ellen, 1978.

In a wheat field trial on low fertility soil, Whingwiri and Kemp (1980) found the

following on how heads per plant increase with the amount of applied nitrogen:

Nitrogen, kg per ha per Heads per plant
week for 10 weeks at maturity
0 1.0
3 1.1
10 2.8
30 3.3

The Spiertz and Ellen (1978), and Whingwiri and Kemp (1980) results suggest that the
number of heads on a given area increase at a diminishing rate with nitrogen application.
The number of heads also depend on the timing of nitrogen application(s).
Fertilizing in the early phases of the growing season has a positive effect on the number

of heads. Concentrations of plant hormones, plant nutrients, assimilated carbon
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compounds, and water in the plants have significant impact on the number of initiated
straws. It has been shown that the amount of certain essential hormones for the straw
initiating process is positively influenced by high concentrations of nitrogen in the plant
(Olesen 1999).

It is important for straw initiation that plants develop leaves with high
photosynthetic activity as early as possible. Carbon compounds assimilated in the leaves
are directed to the part of the plant where branching takes place. The level of carbon
concentration positively influences the number of initiated straws.

Photosynthetic assimilation depends on leaf area, which is positively related to the
amount of nitrogen (Langer and Liew 1973; Frederick and Camberato 1995). However,
plants will utilize most of the available light in the photosynthetic process when leaf area
reaches an optimum of 6-9 times the planted area. When leaf area exceeds the optimum
level, upper leaves will shadow for lower leaves where formation of carbon assimilates
will cease (Olesen 1999).

Increasing the application of nitrogen causes an increase in the concentration of
nitrogen in the plants (Frederick 1997). Photosynthesis is positively correlated with
nitrogen concentration but at a decreasing rate. As concentration goes up an increasing
amount of nitrogen will be inactivated and stored in the plant. Cereal plants are generally
very tolerant to high nitrogen concentrations. Therefore, the generation of organic matter
in the plants can stabilize over a rather extended plateau. It is only when nitrogen reaches
an extraordinary high level of concentration that poisonous effects may appear and cause

a yield decrease.
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2.1.2 Kernels per Head

Spiertz and Ellen (1978) found that the number of kernels per head is positively
related with applied nitrogen. The figures in Table 2.1 suggest a concave relationship
within the domain of nitrogen application. Whingwiri and Kemp (1980) found the same
functional relationship, see Table 2.2. They report figures for both main shoot and tillers.
No tillers were observed for the treatment levels 0 and 3 kg nitrogen per week. Kernels
per head is the main contributor to yield increases when nitrogen dressing goes up from
N-0 to N-3 and from N-3 to N-10. Between N-10 and N-30 there is a slight decline in the

number of grains per main shoot, whereas the decline is more evident per tiller.

Table 2.2. Nitrogen Effect on Yield Components

Nitrogen dressing
N-0  N-3 N-10 N-30
MS*  MS*  MS* T *  Tp¥ | MS*  TiF Ty
Spikelets per head 8.6 1142 178 16.6 6.6 18.8 162 15.0
Kernels per spikelet | 1.74 2.07 2.60 264 260 240 210 1.97
Kernels per head 15.0 204 46.2 43.8 432 45.2 340 29.6
Grain weight, mg 26.0 29.8 328 302 30.1 | 32.1 30.8 26.2

Note: * MS denotes main shoot and T, and T, are first and second tillers.
Source: Whingwiri and Kemp 1980.

2.1.3 Kernel Weight
Whingwiri and Kemp (1980) report an increase in average kernel weight from
increasing amounts of nitrogen up to N-10. A relatively stable kernel weight was found
between N-10 and N-30, see Table 2.2. On average, kernel weight is lower for tillers than

for the main shoot. Spiertz and Ellen (1978) also found increasing kernel weight for the
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lower nitrogen applications and stability at higher fertilization rates, see Table 2.1. The
timing of nitrogen application may influence the grain filling period and thereby also the

final kernel weight (Langer and Liew 1973).

2.1.4 Total Yield

Spiertz and Ellen (1978) show that the combined effect of the different yield
components is an increasing grain yield on a given area of land when nitrogen application
is increased. Their figures in Table 2.1 show decreasing yield growth for uniform
increments of nitrogen. Whingwiri and Kemp (1980) report the same pattern, however
with a yield decrease between N-10 and N-30. (N-30 equals 300 kg nitrogen per ha.)
Spiertz and Ellen (1978) use 200 kg for their maximum application. The actual shape of
the curve between the nitrogen applications can not be assessed on the basis of the data.
Both studies indicate decreasing marginal response and plateau and/or decrease in total
yield at high nitrogen levels. Increasing kernel numbers per area unit is the main
contribution to increased yield whereas average kernel weight is less affected by
increasing amounts of nitrogen.

Bulman and Hunt (1988) found that yield is linearly related to the number of
spikes, which increases with higher rates of applied nitrogen. They report that in other
studies the relationship between spikes and yield is described as a flat-topped parabolic
curve because younger tillers yield less than the main shoot and older tillers. Bulman and

Hunt underline the importance of high spike numbers per area unit because more kernels
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per spike and higher kernel weight cannot compensate sufficiently for low spike numbers

to make up yield.

2.1.5 Negative Indirect Effects of High Nitrogen Application

Besides these direct physiological relationships between plant growth and
nutrients, certain indirect effects play an important role. Increasing amounts of nitrogen
lead to more lush crops and a moister microclimate, which promotes attacks from various
fungicidal pests. Further, it is found that fast growing plants are more easily infested. A
high concentration of fungi on leaves is found to reduce both the number of kernels per
head and the kernel weight, primarily because of diminishing photosynthetic activity in
the leaves. Also, lush crops may attract more harmful insects. Insects cause reduced yield
through their direct feeding on the plants, secretions that reduce photosynthetic activity,
and an increased risk of fungicidal infections (Olesen 1999).

Another indirect effect of high nitrogen levels can be lodging (Landskontoret for
Planteavl 1997). Lodging negatively influences the transport of water and nutrients to the
upper parts of the plant. Plants try to compensate for the lack of water by narrowing
stomatas to reduce evaporation. This also impedes the intake of carbon dioxide from the

air with the result that carbon assimilation in the plants is reduced.

2.1.6 Summary
Based on the foregoing information it can be concluded that within certain limits,

increasing nitrogen results in increased yields. Nitrogen influences the number of head-
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bearing straws per plant, kernels per head, and kernel weight. Some of these factors may
manifest as a linear yield response, but in combination they tend to suggest a curvilinear
or concave relationship between yield and nitrogen. A maximum grain yield will be
reached, as the crop becomes increasingly lush and the leaf area approaches 6-9 times the
planted area. Beyond that level, additional leaves will shadow existing leaves, causing
photosynthetic activity of the shadowed leaves to cease. Given the ability of plants to
store available nitrogen, which can not be utilized in the photosynthetic assimilation
process, a yield plateau level of a certain extent can be anticipated after maximum yield
has been reached. Poisonous effects may be found at higher levels of applied nitrogen so
that a yield decline may follow the plateau. Yield loss at high nitrogen levels is more
likely to be the indirect result of pests caused by fungi and insects in lush crops. Also
lodging of lush crops may reduce yields because the bent of straws restricts water supply

to upper parts of the plants.

2.2 Importance of Nitrogen in Soil

Nitrogen is essential for plant growth. Amino acids, proteins, and certain enzymes
require nitrogen as an important building block. Natural sources of nitrogen are plentiful.
Atmospheric gasses are 78 percent nitrogen, and one hectare of arable land may contain

several tons of nitrogen.
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2.2.1 Plant Available Nitrogen

Legumes and certain other plant species can assimilate atmospheric nitrogen in a
symbiotic cohabitation with bacteria. Cereal crops do not possess this ability so that they
depend on available nitrogen in soil. Their annual need is but a fraction of the total stock
of nitrogen in most soils. However, almost all soil resources of nitrogen are part of
inaccessible organic compounds (e.g. plant residues, bacteria, and complex connections
with soil particles). Through mineralization, organic nitrogen may be transformed
whereby ammonium ions and nitrate ions are set free. Only such inorganic compounds
when dissolved in soil water can be absorbed by the root system of cereal plants. Part of
the mineralized nitrogen leaches or evaporates from the root zone before it can be utilized
by growing plants. High yielding crops require nitrogen beyond the amount made
available from soil stocks of nitrogen. The deficit is normally provided for in the form of
commercial fertilizers or livestock manure.

The extent of mineralization varies in space and time depending largely upon the
organic matter in the soil and climate related factors. This is an important issue for
determining the proper application of nitrogen fertilizer to secure an adequate total

nitrogen supply for crops.

2.2.2 Factors Influencing Nitrogen Availability
Growth in the stock of nitrogen in organic material takes place when the root
system and other plant residues are left on a field after harvest. Application of livestock

manure has the same effect. When the total stock of organic nitrogen increases, potential
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mineralization increases as well. Figure 2.1 provides a schematic representation of
available plant nutrients in soil, their replenishment, and their transfer to plants (Wild and
Jones 1988).

The composition of organic material, notably the relation between carbon and
nitrogen content, is important for the mineralization process. If the carbon/nitrogen ratio
exceeds 20-25, the active microbial biomass will suffer a nitrogen deficit (Black 1968). In
this situation ammonium and nitrate ions in soil water will be absorbed and net

mineralization will become negative. If for instance straw from the crop is

Figure 2.1. Availability of Nitrogen in Soil
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Source: Adapted from Wild and Jones (1988).

ploughed into the soil, soil bacteria will require nitrogen to digest cellulose in the straw.

In this process plant available nitrogen may be immobilized. At a later stage, when



24

microbial biomass and other organic nitrogen compounds erode, plant available nitrogen
is set free.

Soil texture has an impact on speed of mineralization. Fine clay and silt particles
can bind and encapsulate organic material, thereby protecting it from mineralization. The
average topsoil organic nitrogen content in English arable fields has been found to range
between three tons per hectare for coarse sand and thirteen tons per hectare for clay
(Jarvis et al. 1996). Danish arable land contains five to eight tons of nitrogen per hectare
(Danish Farmers’ Union 1997).

Temperature plays an important role for the speed of microbial activity and
mineralization, which almost ceases at around the freezing point and is at optimum
between 25 and 35 °C. However, periods with alternating frost and thaw cause a
degradation of microbial biomass, whereby organic nitrogen becomes accessible.
Disruption of soil aggregates can have the same effect (Jarvis et al. 1996). The Q-10
value, which is the mineralization growth rate for a temperature increase of 10 °C, was
found to be around two and relatively constant over the temperature interval 5-35 °C
(Stanford, Frere, and Schwaninger 1973). Vigil and Kissel (1995) found similar results
although Q-10 values tended to increase with increasing temperature. Their results also
showed some variation for different types of organic material. High lignin content slows
down the mineralization process.

Adequate amounts of soil water in combination with high temperatures enhance

mineralization activity. Mineralization increases almost linearly with the relative moisture
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content in the soil. Extreme water deficit limits the biological activity and hence
mineralization. Excess amounts of water reduce the oxygen content in soil. Most bacteria
in the biomass are aerobe, i.e. they need oxygen for their activity. Therefore, a high water
saturation level can slow down the bacterial activity and thereby also impede the
mineralization process (Myers, Campbell, and Weier 1982; Jarvis et al. 1996).

There is little doubt that the supply of nitrogen from soil resources is substantial
but measurements of nitrogen mineralization are difficult and little exact information is
available. McTaggart and Smith (1993) conducted several experiments using N-
labelling to determine the ratio between applied fertilizer nitrogen and soil nitrogen in
plant material. '°N is a stable, non-radioactive nitrogen isotope that occurs naturally. It
can be isolated from the normal '“N by cold fractional distillation and compounded in
fertilizers. >N is absorbed and utilized by plants in the same way as '*N. By the use of
light gas spectrometry "N can be traced and quantified when analyzing plant material
samples (Thompson 2000). The results of some of the McTaggart and Smith experiments
from Southern Scotland with spring barley grown after cereals crops were reported by
Jarvis et al. (1996). It was found that the uptake of soil nitrogen averaged 57 kg per ha,
which was close to 50 percent of total uptake. Variation was substantial between sites,
types of soil and tended to increase with increasing content of organic matter in soil.
According to Olesen (1999) a maximum of about two percent of organic nitrogen
compounds in the soil are mineralized per year.

Mineralization of organic material is a slow process, which primarily adds to the

amount of inorganic nitrogen in the form of ammonium ions. The same happens when
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manure and certain types of fertilizers are applied. Positively charged ammonium ions
may be bound by negatively charged clay particles. Ammonium ions serve as nutrients in
further microbial activity, and plants can absorb them directly. Most important for plant
growth is the transformation by oxidation of ammonium ions to nitrate ions. Nitrate is the

principal form of inorganic nitrogen, which is absorbed by plants (Black 1968).

2.2.3 Leaching and Evaporation of Nitrogen

Nitrate ions are easily soluble in soil water, and therefore, they are also prone to
Jeach in periods when water moves downward in the soil. Leaching occurs when the soil
is already sated with water and precipitation exceeds evaporation. In four-season regions,
downward water movement normally occurs between harvest and the following spring,
i.e. in a period when plant growth and plant absorption of nitrogen is minimal. The
amount of nitrogen leaching to (and contaminating) groundwater depends on the amount
of soil water leaving the root zone and the nitrate concentration in that water (Danish
Farmers’ Union 1997). Nitrogen concentration may vary with the amount and
composition of organic material in the soil, type and acidity of soil, plant growth activity,
and temperature. Model studies indicate that in a temperate-climate area, like Denmark,
annual leaching may amount to over 90 kilo of nitrogen per hectare (Olesen 1999). The
risk of leaching ceases by onset of spring when water movement in the soil is reversed
and becomes upward. Remaining nitrate in soil water after the end of winter season is
generally retained in the root zone. Analysis of soil samples can determine the amount of

plant available nitrogen at the beginning of growing season (Jarvis et al. 1996).
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Nitrogen may also be lost from soil through evaporation of ammonium, especially
in the application of manure and certain types of fertilizers. Also, when the oxygen
concentration in soil is low, nitrate ions may be reduced to a gaseous state (nitrification)
and released to the atmosphere. On the positive side, soil receives small additional
amounts of nitrate, which is formed during lightning storms, and delivered through
precipitation.

Adequate farm management measures can reduce the loss of nitrogen. Whether
such measures are profitable depends on their cost in relation to possible reduction of
fertilizer expenditures. Leaching and evaporation of nitrogen are important environmental
issues, which give rise to various social costs. Restrictions on the use of fertilizers and
manure have been introduced in many countries to reduce pollution. Concerns primarily
focus on nitrate levels in ground water (drinking water). In addition, eutrophication of
streams, lakes, and coastal waters is considered a problem. High concentrations of
nutrients cause algae growth and a reduction of oxygen content, which subsequently
results in fish mortalities. Air pollution through ammonium evaporation from fields and
manure storage facilities is also cause for concern. All of these undesired effects imply

social costs (Rude and Frederiksen 1994).

2.2.4 Summary
Soil resources provide a share of total annual nitrogen needed in modern
agriculture. The contribution of soil sources of nitrogen varies in time and space, among

other things as a result of climatic differences. In this study, crop yield response to
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varying levels of applied nitrogen is estimated on the basis of Danish field trial data. The
plant growth theory and knowledge discussed in Section 2.1 provided guidance as to
which functional forms were considered for empirical investigation. There is also a need
to include information about the relative importance of nitrogen made available from soil
resources to get an accurate picture of the “actual” nitrogen available under differing
experimental trials. This will enable a more accurate assessment of the true functional
relationship between yield and nitrogen. Data on mineralized nitrogen in the soil at the
beginning of the growing season are available dating back to the early 1990s in the
Danish experimental data. However, estimates of mineralization during the growing
season are not available. Indirectly, this amount may be estimated on the basis of fitted
response curves, assuming that no yield would result if the nitrogen level were zero. The
climatic influence on mineralization was examined by combining field trial data with
local climate data, which were available, by years and geographical regions for post 1992

field trials.
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Chapter 3

Production Economics Theory and Alternative Production
Function Specifications

This chapter surveys various mathematical functional forms that have been used
to describe (model) crop response to fertilizers. Three considerations are important in
crop response modeling. First, crop response models should comply, insofar as possible,
with established plant physiology and agronomic theory. Chapter 2 discussed some key
relationships of the law-of-nature type. A second consideration that is particularly
germane for economic modeling is to have functional forms mirror as accurately as
possible observed empirical data. Lastly, hypothesized functional forms must be
amenable to appropriate statistical procedures to enable estimation of model parameters
and evaluation of the quality of fit.

Drawing upon production economics theory, Section 3.1 outlines important
properties to be considered in modeling crop response to fertilizer and other inputs.
Emphasis in the present study is on models relating arable output to nitrogen fertilization.
Section 3.2 surveys principal functional forms that have been tested against crop response

data.

3.1 Some Theoretical Aspects of Functional Forms
Like other production processes, crop production is a complex process of
combining and coordinating a great number of input materials and productive forces in

the creation of an output. The fact that crop production involves biological processes adds
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to the complexity of modeling the input-output relationship. Specification of the
quantitative (mathematical) relationship between yield and factors of production is a
compact means of describing technical production opportunities. This abstract
representation of the relationship between inputs and output is referred to as a production
function (Beattie and Taylor 1993). The term response function is also used (Dillon
1977). !

In generalized notation, a single-product production function (model) is given by

(3.1) Q=1(Zy, 7y, Z3, -+, Zn)
where output (Q) is a function of various inputs or factors ( Zi, Z, Z3, -+, Zn ). Normally,
knowledge about productive forces is far from complete. Most often, production
functions must be hypothesized as simplified models of the real world. Usually, only the
most significant factors of production are identified.

Land is an important input in the classical list of production forces. Land’s special
significance in crop production is obvious. However, in this study, land is treated as a
fixed factor; specifically, land is fixed at the level of a hectare and all other inputs and
output are measured per unit of land. That is, if Z, in equation (3.1) is land, then the
following transformed model is obtained:

(3.2) Y=1(X], Xy, X3, -+, Xp-1)
where Y is output per hectare (Q/Z,) or simply yield and X;= Zi/Z,fori=1, 2, -, n-1

are the various non-land input levels per hectare.

! Throughout it will be assumed that best available technology is embedded in the production function.
Land tillage, pest management, timeliness of planting and fertilization, and harvesting are conducted in
such a way that maximum utilization of applied nitrogen is achieved.
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3.1.1 Single Factor Variation

To simplify further, the present application represents an extreme short-run
scenario with applied nitrogen (X,) as the single choice/variable input. Other (non-land)
inputs are considered fixed (X, X3, -+, Xy.1), although not in the traditional sense.
Rather, the field trials, which are the source of the empirical data, were so designed that
other inputs (except, of course, land) may be presumed available in sufficient amounts so
as to not limit yield for any level of nitrogen input.

Strictly speaking, since yield is specified here as output per hectare, then, by
definition, land is not assumed available in a non-limiting amount. Thus, if no factors
other than land and nitrogen are in limiting supply, yield can be expected to take on a
maximum value as determined by the crop’s genetic potential (Dillon 1977). An absolute
upper yield limit given by genetic capacity seems plausible. However, the possibility of a
limiting effect of land may complicate matters. Defining yield as output per hectare might
inhibit attainment of the maximum genetic capability of the plants. There is a physical
limit to the number of plants and straws that can be squeezed into a given area. Also,
there is the indirect “crowding” effect on attainable yield manifested in relation to
photosynthetic utilization of light, see Chapter 2. Whether influence of the spatial barrier
sets on gradually as input of nitrogen increases, or more abruptly when input intensity
reaches a certain level, or at all is an open question.

However, for purposes of this study we are not concerned whether the limiting
factor is genetic potential or the one-hectare land constraint or some combination of the

two. That is, in this study it is assumed that genetic potential and land set an upper barrier
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to yield beyond which no further increase is possible even if the amounts of other inputs
increase. The limiting influence of genetic potential and/or land provides appealing
motivation for the existence of a yield maximum or a yield plateau, which is a central
question relative to the discussion about possible functional forms. Traditionally, plateau
yield is described as a situation where availability of other variable inputs limits yield. If
input of a limiting factor is increased a new and higher plateau will occur at a point where
the limiting factor is once again in deficit. However, in our case everything is assumed to
be non-limiting except for genetic potential and one hectare of land.

Yield decline may occur if at high intensity levels certain nutrients exert a
poisonous effect. Excess amounts of water may have the same result, e.g. by reducing the
oxygen content in the soil or by lodging of the crop. The point at which yield decline
occurs determines the extent (width) of a possible yield plateau.

The foregoing discussion highlights the hypotheses that are explored in this
thesis: (1) The nature of the crop response relationship from a zero level of applied
nitrogen (X;) up to the point of yield maximum. Is the yield-nitrogen relationship linear,
strictly concave (e.g. quadratic) or quasi-concave (e.g. cubic)? (2) Is there a yield plateau
of some discernable width? (3) Is there an eventual poisoning effect giving rise to a yield

decline?

3.1.2 The Two Variable Factor Model
Although the focus is on a one-product one-factor relationship between yield of

grain and applied nitrogen, this study also takes steps to include climate as an explanatory
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factor. Analyses were limited to an evaluation of climatic impact on mineralization of
organic soil nitrogen. Examination of direct climatic influence on the response function
would be a natural continuation of these analyses. In anticipation of such expansion at a
later stage, this chapter also discusses some of the salient features of a two-factor model.
In simplified,? general notation, let

(3.3) Y=1(X1,X)
where X denotes quantity of nitrogen per hectare and X, could denote a continuous
climate index. If X5 is unchanged for all levels of X; the functional relationship only
relates yield to varying amounts of X;. However, the response curve is determined by the
interplay between X; and X,. Even with only two factors the response surface can take
many different forms depending on the actual relationships between yield and those
factors. Two different situations are illustrated in the examples below.

When no substitution is assumed between nitrogen and climate the relationship
takes the form of a Leontief production function with a plateau:

(3:4) Y =min (£ (X, £ (X2), Ynax)

Figure 3.1 illustrates a case where the functional relationships, { (X;) and f (X2),
are assumed to be linear so that the response surface is formed by two intersecting planes.
Isoquants are L-shaped signifying that the factors combine in a constant proportion. The
rate of technical substitution is not everywhere defined. The best and only operating

condition is found on the factor ray that connects the knots of the isoquants. In this case,

2 The other factors (X5, - X,.1) in equation (3.2) are held constant in the two variable factor model and are
not explicitly shown in (3.3) for expositional simplicity.
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with equidistant isoquants,3 the relationship between nitrogen and yield will be traced out
as a straight line like that in Figure 3.1, Panel B. This description parallels the first
scientific formulation of a plant growth model made by Justus von Liebig more than 150
years ago (von Liebig 1846). von Liebig’s two-factor model generally assumes two
different macronutrients as the relevant choice variables. In another situation it may be
assumed, for example, that the pre-plateau response surface follows a quadratic

functional relationship such as

(3.5)  Y=min (b + b1X| + byX? + b3Xs + byXo + bsX1 X2, Yinax)-

Figure 3.1 Production Function — No Substitution between Factors
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A vyield plateau is reached at Ymay; X and X, are complementary factors if bs > 0; by and
b; are positive; and b, and by are negative. A graphic representation is given in Figure3.2.

The response surface is concave and isoquants are everywhere differentiable.

3 The case depicted is that of constant returns to quasi-scale (Beattie and Taylor, pp. 58-59).
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Figure 3.2 Quadratic Function — Imperfect Factor Substitution
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When the other factor (e.g. climate) is available in non-limiting amount, the best
operating condition, or maximum attainable output, coincides with the upper ridgeline,
that is the loci for an undefined isoquant slope. The combination of nitrogen and other
factors along this ridgeline represents the maximum attainable output for varying
amounts of nitrogen. The functional relationship between yield and nitrogen, which is
traced out along the ridgeline, is strictly concave (marginal physical productivity
decreasing in both factors) until it reaches the plateau. Other functional forms that do not

assume a yield plateau are discussed in Section 3.2.

3.1.3 Economic Optimization
Under conditions of monoperiodic production with certainty, and single factor

variation, the profit maximizing factor level is easily determined.® Much of the interest in

* 1t is assumed that yield is independent of fertilization and production in previous years. Carry-over of
nutrients is captured by measured nitrogen supplied from soil resources at the beginning of the growing
season. Expected output and all prices are known with certainty. Quality differences, such as varying
protein percent in grains, are disregarded, as is the amount of straw.
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the functional forms in Section 3.2 relates principally to different specifications, e.g.
polynomial or linear with plateau as illustrated in Figure 3.3, and is concerned with

implications for the optimal choice (profit-maximizing level) of applied nitrogen. With

Figure 3.3 Economic Optimum - Different Functional Forms
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total physical product of grain measured along the vertical axis and application of
nitrogen along the horizontal, the function, TPP = f (N), is obviously continuous in both
Panel A and B. However, in Panel B the marginal physical productivity, MPP =
Of(N)/ON, is not defined at the knot point, where the response curve is not differentiable.

For given unit prices of output, p, and nitrogen, r, economic optimal application
of nitrogen can be derived in Panel A. Optimum is defined as maximum monetary profit.
For this single-factor case, profit is given by

(3.6) m=pfN)—N-C
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where p and r are unit prices for grain and fertilizer nitrogen and C denotes fixed costs
associated with production factors other than nitrogen. For simplicity it is assumed that
nitrogen application costs and output handling costs are zero. Differentiating the profit
equation with respect to N, on/6N = pdY/ON —r, the critical N-value can be found where
the slope of the response function equals the inverse price ratio, 9Y/ON = 1/p, i.e. at the
point of tangency. It is assumed that concavity of the profit function is ensured in the
form of a negative second derivative, &*r/oN? < 0, so that the point of tangency is a
maximum. This is clearly the case in Panel A where the function exhibits decreasing
marginal productivity.

In the example given in Panel B the same procedure can not be applied because
the response function is not everywhere differentiable. Economic optimum for N occurs
at the knot on the response curve, that is at maximum TPP, for positive 1/p values less
than the slope of the pre-plateau segment of the response curve. If the t/p ratio exceeds
the slope, optimum applied N is zero. Had the increasing segment of the response curve
been curvilinear, an economic optimum would still be at the knot point if the marginal
productivity everywhere exceeds the inverse price ratio. Statistical techniques allow for
fitting splined curves even when they, as in B, are only almost everywhere differentiable.
Care must be exercised to ensure that the knot point is indeed the economic optimum.

It is evident that the calculated economic optimum in Panel A is sensitive to
changes in the t/p price ratio. In Panel B the optimum is stable at the kink point for all

positive price ratios less than the slope of the increasing branch of the curve. It should be
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obvious from a cursory examination of Figure 3.3 that knowing the nature of the response

function is crucial in determining the optimal application of nitrogen.

3.2 Review of Some Principal Functional Forms

Since Justus von Liebig more than 150 years ago formulated his “law of the
minimum,” numerous alternative theories and crop response models have been tested
against experimental data and field trial results. This research area is important since
fertilizer recommendations are based on what is considered the most appropriate model
(Paris 1992b). Decisions on adequate rates of fertilization have attracted increasing
attention over the past 50 years with a significant expansion in the use of fertilizer
(Cerrato and Blackmer 1990; Bock and Sikora 1990). Optimal rates are closely linked
with the question of farm profit and increasing environmental concern associated with
agriculture’s use of nutrients, notably nitrogen.

Most response models are based on one of two distinctly different “laws” of plant
growth. One is the previously mentioned von Liebig’s “law of the minimum.” The other
is Mitscherlich’s “law of decreasing response,” which was first published at the
beginning of the 19" century. The two scientists should perhaps share the paternity of
the two competing functional forms with some of their contemporaries (Paris 1992b).
Nevertheless, their names are used in the following sections when grouping functional
forms, some of which combine properties from the von Liebig and Mitscherlich laws,

while others have unique characteristics.
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3.2.1 von Liebig’s Law of the Minimum

Justus von Liebig’s law states that the yield of a crop is governed by the change in
the quantity of the most scarce factor called the minimum or limiting factor (von Liebig
1846). As the minimum factor is increased the yield will increase in proportion to the
supply of that factor until another factor becomes limiting. If a non-minimum factor is
increased or decreased, the yield would not be affected (Redman and Allen 1954). There
is no possibility of substitution of one factor for another (the isoquants are L-shaped).

Other translated quotes from the more elaborate later editions of von Liebig’s
“Die Chemie in ihrer Anwendung auf Agricultur und Physiologie” say that the crops on a
field decrease or increase in exact proportion to the diminution or increase of the mineral
substances conveyed to it in manure (Wild 1988). The productivity of a field is in direct
relation to the necessary constituents contained in the soil in smallest quantity (Black
1925).

von Liebig did not present his theory in mathematical terms. Most modern day
scientists have applied his model assuming that it should be interpreted as follows:

(3.7) Y = min (Y*, B1 + B2N, B3 + B4P)
where in this example N and P are nitrogen and phosphorus, respectively, and Y* is
maximum yield. The formula can easily be extended to accommodate several nutrients.
The von Liebig function is consistent with the idea that macronutrients perform different
biochemical functions in plant growth. Further the function implies that plants respond
(in a linear fashion) only to the most limiting nutrient. After some level of application

(say N* and P*) the plant will no longer respond to the applied nutrients. At this point,
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the plant reaches maximum growth at Y* (Frank, Beattie, and Embleton 1990). This
linear version of the von Liebig function is called the LRP-Liebig (linear response with
plateau). These three central features - no substitution between nutrients, linear response,
and a plateau maximum yield - were outlined in Figure 3.1 of Section 3.1.

The LRP model was discarded for a long period when curvilinear functional
forms attracted the attention of agronomists and economists as being in better compliance
with the law of diminishing marginal return. The LRP model was revived when Boyd et
al. (1970) suggested that two intersecting straight lines gave a better approximation to
crop response than the traditional curvilinear models. In their analysis of UK field trials
with nitrogen on sugar beets Boyd et al. found that such a model closely fits the
individual replications of a trial. Anderson and Nelson (1975) used the von Liebig theory
as the basis for a proposed family of models involving intersecting straight lines. Some of
these models were of the LRP type. Anderson and Nelson found that for agronomic
purposes and for certain crops the response relationship between yield and major
nutrients is linear until yield reaches a maximum plateau. Their examinations showed that
some curvilinear models tended to suggest optimal fertilization rates that were too high.
Perrin (1976) utilized the LRP relationship in his economic analyses of crop response. He
found that it provided recommendations as valuable as those derived from the then
widely used polynomial forms. He believed that his results should cast some doubt on the
widespread notion among economists that fertilizer response should always be analyzed

by fitting a smooth response surface.
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In their study Boyd et al. showed that the calculated optimal nitrogen application
rate (knot of the two intersecting lines) might differ between replications in an
experiment. Also the height of the plateau could be different from one replication to
another. Therefore, it is possible that a smooth, curvilinear function fitted to the average
of many replications of an experiment can yield a better fit than two intersecting straight
lines. However, this process (averaging across replications) does not reflect the true
underlying physiological relationship (Boyd et al. 1970).

Berck and Helfand (1990) argued a reconciliation of the LRP function with
smooth, curvilinear curves. They found that even if at plant level the LRP function is
correct, the estimation of a production function at the level of a whole field, a farm, or a
county is a different matter. Variation in distribution of inputs (soil quality, amount of
nitrogen etc.) across any large area causes plants in different locations of a field to be
limited by different limiting values of inputs. Such heterogeneity of one or more inputs
can result in a smooth production function when estimated as an aggregate for a whole
field.

This point of view is not supported by Olesen’s analysis of Danish field trials with
winter wheat. By fitting curves to individual replications in a large number of field trials
he found no evidence that the LRP function performed better on individual replications
than on aggregate data (Olesen 1999). In experiments with barley Boyd, Yuen, and
Needham (1976) showed that results were well represented by two intersecting straight
lines, and on average the von Liebig LRP model had the least residual variation

compared with alternative functions.
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A series of studies carried out during the 1980s by Paris and co-authors gave
strong support to the von Liebig model. By assuming weak separability between nutrients
and other factors like soil quality and climate the functional relationship between yield
and application of nutrients can be estimated (Lanzer and Paris 1981). Further, non-
substitution between nutrients makes it possible to examine yield response for one-
product, one-variable factor relationships, when other factors are assumed to be available
in non-limiting amounts. The validity of the LRP form was supported by an examination
of data from extensive experiments with application of potassium and phosphorus to
several crops (Ackello-Ogutu, Paris, and Williams 1985). The LRP also performed well
in competition with other model specifications in a study of field trials with application of
water and nitrogen to different crops (Grimm, Paris, and Williams 1987). The von Liebig
response function’s simplicity, its good fit to experimental data, and its explanation of
non-substitution between nutrients were underlined as positive features (Paris and Knapp
1989).

In Paris’s studies of the 1980s, the tested von Liebig theory was taken to be
synonymous with plateau yield, non-substitution and linear pre-plateau response. In his
1992-articles, Paris argues that von Liebig’s thesis about “direct relation” between yield
and nutrient need not imply linear response (Paris 1992a; Paris 1992b). In an unpublished
paper, Beattie (1998) advocates the linear interpretation for the pre-plateau curve segment
with reference to the term “exact proportion” in Wild’s (1988) translation. The question
is important not only for historical correctness but also relative to unambiguous

specifications of von Liebig models. The term LRP leaves no doubt as to the question of
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linearity. Paris’s interpretation of von Liebig opens the door for useful model
constructions in which plateau yield can be combined with non-linear pre-plateau
functional forms. A principal thrust of this thesis is to explore the empirical viability of

both versions of the von Liebig model.

3.2.2 Mitscherlich’s Law of Diminishing Response

Like von Liebig, Mitscherlich was a German natural scientist. His examination of
large numbers of field trial results led to his plant growth theory. Mitscherlich proposed a
smooth, curvilinear, and concave response function that approaches a maximum
attainable yield. Under the Mitscherlich law, yield increases continuously at a decreasing
rate with the amount of applied nutrient and approaches a maximum yield asymptotically.
The nearer the yield to the maximum, the less the increase with each increment of
fertilizer (Black 1925). Key features of Mitscherlich’s basic hypothesis are that there is a
maximum attainable yield and that yield increases diminish for additional increments of
nutrients the closer actual yield is to maximum (Redman and Allen1954; Jonsson 1974;
Olesen 1999).

In his review of Spillman’s treatise on diminishing returns, Black (1925)
welcomed Mitscherlich’s approach in contrast with von Liebig’s theory. Black believed
von Liebig’s theory was inconsistent with the principle of diminishing returns and
marginal productivity theory, which are generally taken as starting point in value theory.
(Recall that prior to Paris’ interpretation, the Liebig model was assumed to be LRP).

Since 1839, when von Liebig for the first time formulated the law of the minimum, soil
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and plant chemists had struggled trying to reconcile “the law” with practical field
experience. Mitscherlich in a series of experiments, the first results of which were
published in 1909, claimed to show that von Liebig’s law of the minimum was wrong,
and that the principle of diminishing return was the true principle involved.
Mitscherlich’s work was well received as providing a formula better aligned with the
general conception of physical and chemical processes (Black 1925).

Mitscherlich specified his law as an exponential function:

(3.8) Y=m(l-ke™)
where k and B are response parameters and m is the asymptotic yield plateau for a
single-factor response function (Paris 1992b). The German mathematician, Baule,
generalized the formula to multiple factors. The Mitscherlich-Baule function is given as

(3.9) Y =mIl (1 - k™)
where the subscript j denotes the individual nutrients. This formula allows substitution
between nutrients in contrast to a von Liebig multifactor function (Frank, Beattie, and
Embleton 1990). It also differs from the LRP-Liebig by being curvilinear, and its
“plateau” is an upper asymptote, which is only gradually approached (and never reached).
Like von Liebig’s function, equation (3.9) never displays decreasing yield.

With product and nitrogen prices, p and r, profit in the monofactor case is given

(3.10) m=pm (1 -ke®™)-N-C
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When the first-order derivative, dn/8N = pmkpe™™ —1, is set equal to zero and solved for

T

N, the critical point is found at N* = _Fl ln{ ii . The second-order derivative

pmk
(3.11) 8*n/6N*= - pmkp* PN
is negative for all N > 0 since all parameter values are positive. Thus, the stationary value
is guaranteed to be a maximum.
Until computing facilities improved in the last half of the 20™ century, practical
application of the Mitscherlich-Baule function was rather limited because parameter

estimation requires non-linear estimation methodology.

3.2.3 Polynomials

First to research the adequacy of polynomials were Heady and Pesek (1954).
They fitted quadratic and square root polynomials to data from field trials with nitrogen
and phosphorus on corn (Heady and Pesek). Polynomial models assume curvilinearity for
all input levels as in the Mitscherlich model. The notion of a plateau yield is not
maintained. Polynomial specifications also introduce the possibility of substitution
between nutrients in opposition to von Liebig models. Single nutrient response curves
can be estimated for different fixed levels of the other nutrient(s).

Following Heady and Pesek the use of polynomial models was definitely in vogue
in research, extension, and farm management (Jonsson 1974; Boyd, Yuen, and Needman
1976, Sparrow 1979; Cerrato and Blackmer 1990; Bullock and Bullock 1994).

Polynomial formulas were readily estimated without incurring substantial computational
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costs. Of particular interest in this study, Danish farm organizations have, for many years,
based normative nitrogen use recommendations mainly on results using cubic
polynomials. Since 1998, Danish environmental legislation has restricted farmers’ use of
nitrogen based on the same procedure of calculating economic optimum with a deduction
of ten percent from the result (Plantedirektoratet 1999).

The properties of polynomial functions are presented in Table 3.1 for quadratic,
cubic and square root response curves for single nutrient models. Other types of
polynomials, like the so-called three halves, have been applied in some of the cited
studies. Yield maximizing nitrogen application and maximum yield can be established by
means of the usual first and second derivative procedures. The yield maximizing input of

nitrogen is determined as a function of estimated parameter values. As discussed

Table 3.1 Properties of Single-Factor Polynomial Functions

Yield function, Y N at max. yield N at economic optimum
Quadratic | a+ b)N+b,N? -b,/2b, (t/p—by)/ 2b,
Cubic a+bN+b N +bN° | (-by £ (b2 = 3bb3)**)/3bs (b, # (by"— 3bs(b, - 1/p))*)/3bs
Square root | at+bN +bN*? by’/(-2b,)* b */2(t/p - b))

previously, economic optimum values reported in Table 3.1 were found by differentiation
of the profit function (see equation 3.6).

The examples given in Figure 3.4 illustrate the symmetry of the quadratic
polynomial with respect to its maximum. As such it can not approximate a plateau yield.
The asymmetric cubic and especially the square functions have the ability to display an

approximate plateau over the post-maximum curve segment. The cubic function deserves
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special attention. Its flexible form — a convex segment and a concave segment — ensures a

good fit to data.’

Figure 3.4 Comparison of Polynomial Response Curves

Polynomial Response Functions

Yield

Quadratic —a— Square root —a— Cubic Nitrogen

The cubic curve in Panel A of Figure 3.5 exhibits all three stages of production
(increasing average productivity followed by decreasing average productivity and finally
negative marginal productivity) whereas the cubic in Panel B, like the quadratic, exhibits
only Stages II and I1I over the domain represented in the graphs. The curves have been
fitted to two randomly selected data sets from the many included the present study.
Observations in the data sets cover a limited segment of N-axis values. It is not always

possible to predict in advance which segment of the cubic function will be revealed over

> Although it is possible depending on relative parameter signs and magnitudes for the concave segment to
precede the convex segment, most investigators would reject such a model as being inconsistent with
production theory. Also when the curve displays an overall decrease from left to right (which is possible)
that too is inconsistent with production theory.
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Figure 3.5 Different Behaviors of Cubic Function

: _ ial 47
Yield Trial # 16 Yield Trial #76
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Nitrogen Nitrogen
—— Sq. Root —&— Cubic —a— Quadratic’ ’———— Sq. Root —m— Quadratic —&— Cubic
Panel A Panel B

the domain of observed data. In Panel A, the cubic curve has no N-axis intercept to the
left of the observed data. Over nitrogen levels, for which predictions may be desirable,
the cubic displays all three stages of an S-shaped production function. Yet the
“interesting” Stage I and III segments are revealed (for the most part) outside the domain
of data. In Panel B, the cubic curve intersects the X-axis not far from the smallest N-
observation and it displays no Stage I segment for positive nitrogen values. Further, in
Panel A the cubic curve bends down sooner and more steeply than the quadratic curve. In
this case the cubic is even less capable than the quadratic of indicating a somewhat flat
(plateau) segment. In Panel B the two functions are almost identical over the observed
domain and its immediate neighborhood. With other data sets, new and different

variations are likely to appear. The examples given in Figure 3.5 emphasize the need for
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caution in curve fitting especially when using cubic models. Further, if functions are
used, as they sometimes are, for inferences and prediction of values outside the domain of

the observed data particular care must be exercised.

3.2.4 Other Functional Forms

The literature is abundant with other mathematical models and modifications of
the ones mentioned above, which have been explored and compared. Inverse polynomials
and hyperbolic curves (Jonsson 1974), Cobb-Douglas functions (Tronstad and Taylor
1989), modifications of exponential models of the Mitscherlich type (Burt 1995) are just
a few examples.

A quadratic polynomial with plateau is a modification of the LRP model that
attracted much interest in the 1990s. As the name indicates a quadratic pre-plateau
segment is combined with plateau yield and no factor substitution. Other non-linear
curves can be substituted for the linear response, consistent with Paris’s findings (Paris
1992a; Paris 1992b). As early as 1975, a quadratic plateau model was considered a
possibility (Anderson and Nelson 1975). Its general formulation

(3.12) Y =min(Y*, a + bN + bN?)
does not indicate how the pre-plateau segment and the plateau should be joined. To avoid
the question of non-differentiability, which was discussed relative to the LRP model as
shown in Figure 3.3, some authors (Bock and Sikora 1990; Bullock and Bullock 1994;
Olesen 1999) favor a model where the plateau is joined with the quadratic polynomial at

its maximum point. The mathematical formulation of this version of the model is
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(3.13) Y=a+bN + bN? for N < -b/2bs, and
Y =a+ bi(-b1/2by)+ by (-b1/2by)* , i.e. constant  for N > -b;/2b,

By constraining the model in this way the first derivative of the function equals
zero for both left-hand and right-hand segments at the joint point. In other words, the
function is everywhere differentiable and economic optimum can be found by applying
the usual optimization procedure.

A less restrictive version is given by

(3.14) Y =a+bN + b,N? for N <J, and

Y=a+bJ+bJ? , 1.e. constant forN=1J

subject to J <-by/2b,
where J denotes the nitrogen rate, which occurs at the intersection of the quadratic
response and the plateau line. It is only required that the joining point not be to the right
of the maximum of the parabola. While (3.14) has greater fitting flexibility than (3.13),
the “drawback”™, of course, is the slight complication of a stable economic optimum point
for certain 1/p ratios.® Both versions of the quadratic with plateau model are examined in
this study. It is not immediately clear which of the two versions Cerrato and Blackmer
(1990) applied. They do not explicitly tie the joining point to the maximum of the
quadratic curve. On the other hand, they state that economic optimum is found by
equating the first derivative of the response function to the fertilizer-output price ratio

and solving for the independent variable without making reservation with regard to

differentiability everywhere on the curve. This suggests the same approach as used by

Bullock and Bullock (1994) and by others.

¢ Whether or not this feature is a drawback depends on one’s view regarding the possibility of
discontinuities in the marginal productivity curve. The author does not find this feature disconcerting.
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Figure 3.6 Quadratic and Quadratic with Plateau Functions

Comparing Quadratic and Quadratic with

Yield Plateau

Quadratic w ith plateau starting at or to the left of top

=
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Quadratic with pléteau starting from top
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Figure 3.6 compares fits of a quadratic curve with the two versions of the
quadratic/plateau model to one of the data sets. In this example, both location and
curvature of the increasing curve segment display certain deviations between the three
functional forms. The yield maximizing N-application is highest for the quadratic
function (represented by A). It is lower (B) when a plateau starting at the top of the
parabola is introduced and even lower yet (C) when the plateau is allowed to start before
the parabola’s maximum has been reached. The estimated maximum yield also differs
between the curves. Other data sets produce different patterns. Further details are

provided in Chapter 5.



52

3.3 Summary

Functions used to represent yield in response to application of nutrients should
comply with agronomic theory, mirror accurately observed empirical data, and be
amenable to appropriate statistical procedures so that parameter values can be estimated
and empirically evaluated for statistical fit. It is generally assumed that there is no
substitutability between different plant nutrients. The relationship between yield and a
single nutrient can therefore be examined when ascertaining that other factors of
production are available in non-limiting quantities. Because yield and variable inputs are
measured per unit of land, land can be treated as a fixed factor. Agronomic theory
suggests that yield response is bounded by a maximum and, further, that yield may be
constant over a certain range for additional nutrient application. There is a long-standing
discussion about the shape of the response curve up to the maximum. Is it linear or is it
strictly concave or quasiconcave?

Various functional forms can accommodate an evaluation of the appropriateness
of different response theories. Continuous curves, which combine a growth segment with
a maximum/plateau segment at a kink, do not always satisfy the generally held
requirement that they be twice differentiable everywhere. However, this does not
preclude establishing an economically optimal application of a nutrient, and with basis in
agronomic theory growth/plateau curves are indeed possible candidates for well-behaved
functional forms.

Historically, von Liebig’s more than 150 years old LRP-curve — non-substitution,

linear response and a yield plateau — represents the first scientific formulation of a yield
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response theory. Mitscherlich’s plant growth theory from the beginning of the 20"
century found widespread support as being in better compliance with the economic law
of diminishing marginal return. For a number of years, the more manageable polynomial
models as introduced by Heady around the middle of the 20™ century, were also
considered superior to the LRP-model. Over the last three decades, a number of scientists
have underlined the virtues of plateau models and nutrient non-substitution, which led to
a revival of von Liebig’s theory. Today, many economists consider a combination of
plateau yield with curvilinear pre-plateau response as an appropriate functional form.
This recent development is not least the result of Paris’s research activity. The next
chapter examines how well a number of different response functions such as those
reported in the present chapter match empirical field trial data on crop response to

application of nitrogen.
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Chapter 4

Models and Data

This thesis examines how well different functions fit observed data on crop
response to applied nitrogen. Estimation of the amount of nitrogen supplied to the plants
from soil resources is a second topic. Models, statistical procedures, and the data base for

the analyses are explained in the following sections.

4.1 Models and Statistical Procedures
4.1.1 Comparison of Different Functional Forms

Model comparison involved ten different functional forms, which were fitted to
the empirical base of trial data on yield response to nitrogen application. The functions
shown in Table 4.1 do not cover all relevant possibilities but were selected to encompass
a range of plausible growth patterns and combinations of growth curves with plateau
segments. It was also an aim to accommodate comparison with models that have been
featured/advocated in the literature. Observed data can only represent yield over the
domain where available and applied nitrogen can be measured directly. A substantial
share of total nitrogen supply comes from soil resources of organic nitrogen compounds.
Observed data on cereal grain yield include yield owing to the total nitrogen supply,
including unmeasured soil nitrogen.

In the functions in Table 4.1, Y denotes yield, N is the level of applied fertilizer,
and j is the replication number in a given trial. The residuals between observed and

estimated yield, €, are assumed normally distributed with a mean of zero. The estimated
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yield-axis intercept is generally denoted o. However, in the Mitscherlich function, which
is a slight modification of equation (3.8), a is the asymptotic maximum yield and the Y-
intercept is o - B, which results from setting N to zero. In the square root and the Cobb-
Douglas models the Y-intercept is a complex term involving two or more of the other

parameters and the term, o, does not appear in those two functions.

Table 4.1 Functions Fitted to Trial Data

Model Functional Form
1. Quadratic Y=o+ BN + BN + g
2. Cubic Yi= o+ BN + BN+ B3N’ + g
3. Square root Yi=Bi(B2+ N) + Bs(Ba+ N+
4. Cobb-Douglas Y; = Bi(BN)»+ €
5. Mitscherlich Y=o - BetP + ¢
6. Linear with plateau Yi=a+ [31N*+ g forN < N**and
(von Liebig) =a+ PN +g forN=N

7. Quadratic with plateau Yj=o+ BN+ BoN” + gj for N <N* and
= o+ PIN* + Bo(N*)” + g for N > N*
s.t. N* < - 31/2, which is N-coordinate for
top of parabola

8. Cobb-Douglas w/ plateau Y; = [31([32+N)B3+ gj for N < N’ and
=Bi(Br+ N )P +g for N> N

9. Mitcherlich with plateau Y = o -B1e* + ¢ for N <N* and
= o - PN + g for N > N*
Note: Two versions of the quadratic with plateau were included: one where the onset of the

plateau is tied to the top of the parabola, and the other where the onset can be to the left of the
parabola top. Thus, 10 functions were fitted to trial data in Chapter 5.

The first three functions — quadratic, cubic and square root — all have the ability to

reveal a concave response curve with a unique maximum. The properties of the cubic
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function call for special attention when inferences are made outside the domain of
observed data, as was explained in Section 3.2.3. Models 4 and 5 — Cobb-Douglas and
Mitscherlich — have no maximum. The Cobb-Douglas curve increases indefinitely
contrary to agronomic theory. Nevertheless, this popular constant-elasticity function was
retained in the calculations to check its ability to represent the response curvature for
lower levels of nitrogen. A plateau version of the Cobb-Douglas function was included to
remedy the indefinite growth feature of this historically popular and robust model. The
Mitscherlich function approaches a yield maximum asymptotically. It can be regarded as
a step in the direction of models 6, 7, 8, and 9 where the plateau represents maximum
yield.

In order not to force the Cobb-Douglas curve through the origin when applied
nitrogen is zero a shifter, By, was included in the formula for both the non-plateau and
plateau version. In the square root function a shifter makes it possible to define values of
the dependent variable for negative values of the independent variable. These
modifications allow for estimation of negative nitrogen axis intercepts, which serve as an
estimate of the amount of mineralized nitrogen made available to plants during the
growing season, see Section 4.1.2.

Models 6, 7, 8 and 9 combine a growth segment with a constant-value plateau
segment. The location of the intersection between the two curve segments (knot point) is
determined in the fitting procedure, which minimizes the sum of squared deviations over
the two segments. Two versions of the quadratic with plateau were examined, one where

the knot point coincides with the parabola top, and one where the onset of the plateau can
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be to the left of the parabola top. The effect of including a plateau can be directly
assessed for the quadratic with plateau, the Cobb-Douglas with plateau, and the
Mitscherlich with plateau, which all have counterparts in non-plateau versions — models
1, 4 and 5, respectively. A similar comparison is not provided for linear with plateau. A
simple linear function as counterpart of the LRP-Liebig was excluded because of its poor
fit. Overall linearity is also inconsistent with agronomic theory. Visual inspection of trial
data plots clearly reveals concavity and the linear relationship ranks last, far below the
other functions in terms of goodness-of-fit. However, by comparing the LRP-Liebig with
the other plateau models the validity of pre-plateau linearity can be assessed.

All functions were fitted to data using the SAS software, Model Procedure.
Minimization of the sum of squared errors was applied as the common criterion for all of
the functions — linear in parameters, non-linear in parameters, and compound plateau
functions. In all cases the residuals between observed and estimated yield values were
assumed normally distributed with zero mean. By logarithmic transformation certain
functions, e.g. quadratic and cubic, could have been rendered linear in both variables and
parameters, so that the usual OLS technique could have been applied. However, had this
been done logarithmic values of residuals instead of absolute values would be minimized.
Other functions, like e.g. Mitscherlich and models with shifters, can not be transformed
to yield a linear in parameter specification. In these cases a search procedure was used for
the estimation. Likewise, in the plateau models the estimated intersection coordinates
between the growth segment and the plateau were determined using an iterative search

procedure. Thus, all functions were estimated in non-transformed state. The default
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convergence criteria setting of .001 was used in all cases. Adequate starting values for
parameters were supplied to ensure convergence when fitting the different functions
using the SAS Model Procedure.

Various methods can be used to evaluate how well different functions describe
observed data. The coefficient of determination, Rz, is a commonly used expression for
how well a curve fits observed data. Total yield variation (SST), i.e. sum of squared
deviations between observed dependent variable data and their global mean, can be
decomposed as

@D Y-V =DV -0 + 2 (Y - Y) or

SST = SSR + SSE
where SSR is variation accounted for by the fitted function and SSE is residual variation.
R? is defined as SSR/SST. The applied fitting procedures are designed to minimize
residual variation (SSE), which is synonymous with maximizing R’ Ranking of
alternative models fitted to a given set of data according to R? is a logical procedure for
finding the function that best fits observed data. R? was used as the evaluation criterion in
some of the literature cited in Section 3.2 (Heady and Pesek 1954; Jonsson 1974,
Anderson and Nelson 1975; Bock and Sikora 1990).

However, searching for a high R? is not unconditionally an adequate procedure. It
is possible to improve R? simply by including additional explanatory variables. Even if
such an extended model fits the data well it may be incorrect if it captures accidental
variation in the particular data set rather than the true underlying relationship (Kennedy

1998). An alternative for overcoming this problem is to use adjusted R%:
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K-1

42) R'’=1-—o
(4.2) T K

(1-R%)

where K is the number of independent variables and T is the number of observations.
Models with many explanatory variables are thereby “punished” according to their extra
use of degrees of freedom.

A similar adjustment is to use calculated mean square error (MSE) as a selection
criterion. MSE is the residual variation, SSE, divided by its degrees of freedom. This
procedure was used in several previous studies (Boyd, Yuen, and Needham 1976;
Sparrow 1979; Cerrato and Blackmer 1990; Olesen 1999). MSE was adopted as the
preferred criterion in this study because it — like adjusted R? — better than R? compares
parsimonious models with functions based on more variables. Moreover, the absolute
numerical MSE value, more directly than the relative R?, indicates the magnitude of
unexplained variation in comparisons across models.

The comparison of statistical fit between different functional forms was based on
a ranking of functions according to numeric MSE values. Frequency counts revealed how
often the individual functions ranked as number 1 through 9. For all ten functions this
procedure was executed for all 84 trials and for various sub-samples of trials, €.g. by
crops, using the Danish data set.

Further, the MSE-performance was evaluated by testing differences of MSE
averages for the different functional forms where the tested Ho-hypothesis was that
average MSE values are not significantly different between functional forms as explained
in Chapter 5. Results were obtained in a two-way analysis of variance where

(4.1) MSE = f ( Functional Form, Trial)
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Unfortunately, the MSE goodness-of-fit criterion only relates to the domain of the
production function where data observations are available. It does not necessarily reflect
how well the function complies with agronomic theory, and whether it is representative
outside the data domain. These questions concern the basic model structure and call for
supplementary evaluation criteria. Therefore, the MSE criterion can only be one element
when assessing the adequacy of different functional forms. Other properties, which must
be considered, are the possibilities of deriving meaningful maximum and optimal values
for nitrogen application and plausible negative nitrogen-axis intercepts as an estimate of
nitrogen supplied by soil resources.

Formulas for deriving maximum and optimum values were generally discussed in
Chapter 3. Following the modification of certain functions as shown in Table 4.1 the
amount of applied N, which corresponds with maximum yield, was calculated on the
basis of estimated parameter values as given in Table 4.2. Depending on the parameter
values the Nyax expression may not be defined in all cases. Given information about unit
prices of cereals and nitrogen, p and r, respectively, economic optima were established

via usual derivation procedures based on the formulas shown in Table 4.2.

Table 4.2 N-Application at Estimated Maximum Yield and Economic Optimum

Yield function, Y = N at max. yield N at economic optimum
Quadratic | o+ BN+ B,N? -B1/2B, (t/p—B1)/ 2B,
Cubic ot BN+ BN+ BN (Bt (B2 3BiB)"7)/3Bs (-B2 £ (B2”-3Bs(B1 - 1/p))**)/3Bs
Square root | By (N+B)+Bs (N+B2)*°  B3*/(-2B1)*- Ba By/(2(x/p - B1))*-B2
C-Douglas | By (B, +N)P; no maximum (/(pBiBs)) B g,
Mitscherl. o - BP0y o is asymptotic maximum -In(r/(pPB2)) B
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For the plateau models yield-maximizing nitrogen application corresponds with
the N-coordinate of the intersection between the functions’ growth segment and plateau.
N-application at economic optimum is also found here if at this point the slope of the
growth segment of the response curve is greater than the 1/p ratio. Otherwise, the
optimum is found somewhere in the growth segment of the function. If, for the whole
domain of observed data, 1/p is greater than the slope of the growth segment the optimum
nitrogen application is set at zero. Further details are provided in Chapter 5, which

reports analytical results.

4.1.2 Estimation of Nitrogen Supply from Mineralization of Soil-N

Total nitrogen uptake in cereal crops can be divided into that derived from applied
fertilizer and that from the soil. It was assumed that fertilizer nitrogen and mineralized
soil nitrogen are equally accessible to the growing plants and that each has the same
nutritional value. Further, the estimation was based on the condition that yield would be
zero if no nitrogen were available. Provided that the functional form is representative for
the yield/nitrogen relationship over the total domain of nitrogen supply, in particular over
the low N-level unobserved portion of the domain, the amount of plant available soil
nitrogen can be estimated on the basis of the intersection between the response curve and
the nitrogen axis as indicated in Figure 4.1.

The validity of this assumption is central for the relevancy of the procedure that is
applied to estimate mineralization. If a specific function both displays a superior

statistical fit compared with other functions and generally behaves in accordance with
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Figure 4.1 Estimation of Nitrogen Supplied from Soil Resources

Yield

S O Nitrogen

Soil Nitrogen e Fertilizer Nitrogen[

agronomic theory outside the observed data domain it could be considered a natural
candidate for the estimation process. If several functions display adequate statistical fits
the choice becomes more difficult. By definition, exact knowledge about the “true”
yield/nitrogen relationship outside the data domain is not available. However, the
assumed zero-yield in the absence of nitrogen and various indications about the order of
magnitude for mineralization may provide some guidance for the evaluation of the
examined functional forms and serve as a basis for narrowing down the range of
mineralization. Moreover, even if one had to accept that the intercept procedure can not
provide the exact magnitude of mineralization it is possible that the variation in
mineralization among trial sites in space and time would be well represented. In that case
— and given the lack of actually observed mineralization data — the estimates resulting
from the procedure applied in this study could still be a valuable data input in a model

evaluation of how different factors — e.g. temperature and moisture — influence
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mineralization. However, it is important to note/remember that extrapolation outside the
domain of the data is nevertheless speculative.

The distance SO on the horizontal axis in Figure 4.1 represents the amount of
mineralized soil nitrogen used by the crop. Algebraically it corresponds to setting Y equal
to zero and solving for N in the pertinent response function

42) Y=f(N)
where N denotes applied fertilizer. For most response functions this procedure is
straightforward. Certain functions like the quadratic and square root have two N-axis
intercepts and care must be taken to chose the lower intercept value. The cubic function
has 1 or 3 N-intercept solutions, which must be found by iteration, e.g. via SAS Solver
Procedure. Depending on the data set the cubic function is not always well behaved when
it comes to inferences outside the data domain, and it may have no stationary point, see
Section 3.2.3 and the reported results in Chapter 5.

For simplicity an abbreviated notation will be used in the following when
referring to different sources of nitrogen supply. The total amount of nitrogen made
available to plants by mineralization of soil resources (NS) consists of the plant-available
nitrogen that is in the soil at the beginning of growing season, i.e. available N from pre-
season mineralization and/or carry-over fertilization from the previous season (N1), and
an amount provided by mineralization during the growing season (N2), so that

(43) NS=NI+N2
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For 46 of 84 trials, information about N1 is available so that for those trials an estimate of
N2 is possible. Applied fertilizer nitrogen will be denoted NF, so that total nitrogen
supply (NT) is

(44) NT=NS+NF=NI1+N2+NF

Chapter 6 presents modeling and analysis of climatic impact on nitrogen

mineralization.

4.2 Data
4.2.1. Field Trials — Cereal Response to Nitrogen

The empirical analyses in this study were based on data from Danish field
experiments. The National Department of Plant Production, The Danish Agricultural
Advisory Center, which is owned by The Danish Farmers’ Union, and The Family
Farmers’ Association, provided the data.

Each year the Danish farm organizations carry out more than 2,000 field
experiments. Advisors in local farm organizations conduct the experiments in fields
belonging to members of the organizations. Experiments enable evaluation of yield
potentials for both common crops and potential new crops. For each crop, different
varieties are compared. Pest management programs, yield response to varying fertilizing
intensity, etc. are evaluated. Results of all experiments are recorded, examined and
interpreted by National Department of Plant Production. An extensive annual report on

this activity is made available to local advisors and other interested parties. Results are
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accessible on line in the integrated computer system, which links the national center with
all local advisory service units.

Results of ongoing field experiments are an important platform for advisory
services directed toward individual farmers. In recent years, field experiment results have
also played an important role in environmental legislation, e.g. provisions for limited of
nitrogen use in field crops.

The present examination focuses on cereal yield response to increasing amounts
of nitrogen. Data from about 1,200 dry land field experiments were available from the
period 1987-1998. In order to rule out various uncertainties and disturbing factors, which
could not be handled in the study, a number of restrictions were applied for the final
selected data sets. Experiments were excluded when manure and slurry had been applied
to the field trial site in previous years. In addition, only experiments with cereal as the
preceding crop soil types JB#6 or JB#7 with high clay content (and high water retaining
capacity) were included in the final sample. The selection procedure resulted in a sample
of 84 data sets, which are presented in Appendix A, Table A.1.

Experiments normally have five or six levels of nitrogen application with five
replications. Each plot is a minimum 30 square meters (about 330 square feet). The
content of plant available N in the soil at the beginning of the growing season is
established for each experiment on the basis of lab tests of 16 soil samples from the trial
site. Measurement of N was phased in after 1990. Samples are taken from the upper 75
cm of the soil. An average result of the 16 samples represents the pre-season plant

available N for each plot in an experiment. The plots in an experiment are arranged
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systematically in blocks, each block representing one replication, and all levels of
nitrogen application in each block.

Only yield of grain is measured; straw yield and protein content are not recorded.
Standardization is made for moisture content of the grain. Possible quality differences,
e.g. due to varying protein content in grain, are not taken into account.

Experiment data have been coded with their geographic location (denoted grid
number) since the beginning of the 1990s. In the analysis this information is combined
with climate data differentiated by years and grid numbers.

The numbers of retained data sets by year and crop are shown in Table 4.3.

Table 4.3 Number of Field Trials by Year and Crop

Year: Spring Barley | Winter Barley = Winter Wheat Total
1987 4 1 2 7
1988 13 0 2 15
1989 4 0 4 8
1990 3 2 2 7
1991 2 0 2 4
1992 1 0 0 1
1993 1 1 2 4
1994 2 0 6 8
1995 2 2 8 12
1996 2 1 4 7
1997 2 1 7 10
1998 0 0 1 1
Total 36 8 40 84

The field trials are ordered by number of nitrogen applications and replications in
Table 4.4. The 27 data sets with wheat, which are pooled in a single calculation (see

Chapter 7), all have six levels of nitrogen applications with 250 kg nitrogen per ha as the



highest level of nitrogen application. In 17 trials the number of replications is five, in

nine trials it is four, and in one trial the number of replications is six.

Table 4.4 Field Trials by Number of Nitrogen Applications and Replications
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No. of Nitrogen Number of Replications
Applications: 4 5 6 Total
5 7 25 0 32
6 13 37 2 52
Total 20 62 2 84

Table 4.5 shows that in 46 of the 84 trials measurements were made of N1 or

mineralized nitrogen available at the beginning of the growing season.

Table 4.5 Field Trials by Crops and Information about N1

Number of Trials

Spring Barley = Winter Barley | Winter Wheat Total
N1 available 10 6 30 46
N1 not available 26 2 10 38
Total 36 8 40 84

Climate data are available for 41 (9 trials with spring barley, 5 with winter barley, and 27

with winter wheat) of the 46 trials with N1 information.

4.2.2 Unit Prices of Cereals and Nitrogen

To establish economic optimum, price data on cereals and nitrogen were utilized,

see Section 3.1.3. Different functional forms display varying degrees of sensitivity to

changes in the input/output price ratio. A range of price ratios was established based on

actual conditions over various time periods, as shown in Table 4.6. Unit prices are
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expressed in terms of the appropriate quantity units of the productivity functions, i.e.

kroner per hkg of grain and per kg of nitrogen.

Table 4.6 Cereals and Nitrogen Prices

Unit Prices, Danish Kroner

Per Hkg of Grain | Per Kg of Nitrogen
Scenario 1: Before 1993-Reform 120 4.0
Scenario 2: After 1993-Reform 85 3.5
Scenario 3: After Agenda 2000 72 3.5
Scenario 4: Sc. 3 plus nitrogen levy 72 8.5

The prices in scenario 1 illustrate the situation as it was before the 1993-reform
of the Common Agricultural Policy (CAP) of the European Union. Cereal prices were
lowered by about 30 percent as a result of the 1993-reform, and fixed hectare subsidies
were introduced as compensation (European Commission 1994). The second scenario
represents the after-reform situation at the turn of the century. The third scenario is based
on anticipated cereals price reductions, which will occur in 2001, when the so-called
Agenda 2000 Reform is fully in force (Danish Farmers’ Union 1999b). The fourth
scenario adds the effect of a nitrogen levy to scenario 3. The levy of 5 DKr per kg
nitrogen was enacted in Denmark in 1998 (Environmental Group, The Danish
Agricultural Advisory Center 1999). The levy is waved if a farmer annually submits
plans and documentation showing that his/her use of fertilizers and manure does not
exceed prescribed norms by crops, type of soil, etc. (Plantedirektoratet 1999). Estimated
cereal and nitrogen prices for the four scenarios are based on Danish Farmers’ Union

(1999a) and author calculations.
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4.2.3 Climate Data

Climate data on a weekly basis are available for the period 1993-1998 in 44
areas (grid numbers). The data include information on precipitation, potential
evaporation, air temperature, and global short-wave radiation. Averages for the growing
season (calendar weeks 13 through 31), the first half (weeks 13 through 22), and the
second half (weeks 23 through 31) were calculated by the author for each trial in the
analyses, i.e. by pertinent years and grid numbers. Calculations are presented in
Appendix A, Table A.2.

Climatic conditions during the fall and winter seasons also influence
mineralization as well as leaching of nitrogen to ground water. Therefore, the amount of
plant available nitrogen at the beginning of the growing season (N1) may vary depending
on temperature and precipitation during especially the winter period. In the calculations,
where climatic factors are taken into account, only field trials with N1 information are
considered. Effects of fall and winter climate are captured by the measurement of N1, so

that only climate information for the growing season was needed for this study.
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Chapter 5

Results of Statistical Analyses

This chapter compares the behavior of different functional forms that were fitted
to data on crop response to nitrogen in 84 cereal field trials. The statistical fit to observed
data is compared among functions and each functions’ ability to provide “reasonable”
estimates of economic optimum and of mineralized soil nitrogen is evaluated. The
influence of climatic variations on mineralization of soil nitrogen is appraised in Chapter
6.

Analytical results are based on data for cereal crops under specific field
conditions. Therefore, results are not generally applicable to other crops or other
circumstances. A main purpose in this study is to compare different functional forms, not

different crops, different soil types, etc.

5.1 Comparison of Results from Fitting Different Functional Forms
5.1.1 Goodness of Statistical Fit to Trial Data
Each of the ten functional forms are ranked in Table 5.1 according to how well
they fit observed data in 84 field trials. The ranking criterion is mean squared error, MSE,
so that rank number one denotes the lowest MSE. The numbers in the table are a
frequency count of how many times each function ranks as number 1 through 10.
Columns therefore sum to 84, i.e. the number of data sets. Rows also sum to 84 except

for a few cases where ties occur between functions.
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Table 5.1 Comparison of 10 Response Functions Fitted to All 84 Data Sets

Frequency of Scores — Functional Forms Ranked by Mean Square Error

Rank | QUA ICUB SQR ! CD MI QP1 QP2 CDP MIP LRP
1 15 11 11 3 13 16 5 5 7
2 14 10 12 5 8 18 10 2 1 3
3 6 12 8 2 8 14 15 6 6 6
4 8 15 7 1 14 9 9 11 6 5
5 6 11 7 4 14 12 7 11 9 4
6 4 13 6 5 12 4 12 12 11 3
7 3 5 12 2 10 5 8 16 19 4
8 8 5 15 10 3 6 8 8 16 5
9 16 2 6 23 2 8 8 8 11
10 4 29 2 5 8 36
1+2 29 21 23 8 21 34 15 7 1 10
9+10 20 2 6 52 2 10 13 16 47

When including the linear model it scores 77 of 84 in rank group #11

On this basis the quadratic function with plateau starting at the parabola top
comes out as number one in the comparison with 16 placements in rank group 1, and the
LRP model is in last place with 36 placements in rank group 10. Considering scores in
the top two and the bottom two rank groups, respectively, the quadratic with plateau is
still number one with the quadratic as a close runner-up. The Cobb-Douglas function is
now in the last place. The Cobb-Douglas also ranks lowest (group 9 + 10) for spring
barley and winter barley, and it shares this placement with the LRP-Liebig in the case of
winter wheat, see Table 5.2. The quadratic scores most frequently in group one for spring
barley, but the square root is number one when group 1 and 2 are merged. Quadratic with
plateau from parabola top ranks highest for winter wheat. The LRP-Liebig displays a
high ranking in the winter barley sample, which counts only eight data sets. More details
are provided in Appendix B, where frequency tables on ranking are also shown for other

sub samples of the 84 trials.
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Table 5.2 Comparison of Fit for 10 Response Functions, by Crops

Frequency of Scores — Functional Forms Ranked by Mean Square Error
Rank | QUA CUB SQR CD  MIT @ QPl QP2 CDP MIP LRP
Spring Barley, 36 Data Sets:

1+2 12 11 14 5 7 12 6 3 3
9+10 11 12 2 20 2 4 5 8 18
Winter Barley, 8 Data Sets:

1+2 4 4 1 2 1 4
9+10 1 5 4 4 2

Winter Wheat, 40 Data Sets:
1+2 13 6 9 3 13 20
9+10 8 4 27 6 4 4 27

o o]
=
p—
W

Note: Linear would appear 32, 7, and 38 times in rank group # 11 for s.barley, w.barley, and w.wheat
respectively

Although a certain pattern emerges from the tables the ranking figures do not
clearly identify one functional form that is superior to all others from a goodness—of-fit
point of view. Comparison of the actual MSE values that result from fitting each of the
functional forms can broaden the basis for evaluation.

Table 5.3 shows the average MSE values for each of the different functional
forms that were fitted to all 84 field trials. For comparison, a linear specification is
included in the table together with the ten functions that were seriously considered. As
one would expect, the fit of the simple linear equation is inferior to the other functions in
the table. A t-test can reveal whether the difference between the average MSE values for
any two functions is statistically significant at the five percent error level.

However, with eleven functions, there will be 11x(11 — 1)/2 = 55 pairs of MSE
averages to compare and in each comparison there is a five percent probability of falsely

rejecting the null hypothesis (type 1 error). The probability of making at least one type I
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error increases with the number of comparisons. With eleven different averages and 55
pairs of averages to compare an upper bound estimate of the probability of a type I error
is 1 —(1—0.05)> or 94 percent. A simultaneous test of all averages where the
probability of making at least one type I error is controlled was therefore preferred over
the repeated t-test.

Accordingly a Tukey-Kramer test was applied in a simultaneous comparison of
MSE averages and averages of other key factors like optimal N-application and estimated
N-mineralization. A SAS procedure is available for execution of the Tukey-Kramer test
(SAS Institute Inc. 1993). The means of two functions, i and j, are considered statistically

different when the following criterion is satisfied:

i MSEi - MSEj |

(5.1 > )
1 1 q o5,

I e

Ni Nj

N denotes the number of observations, s is the estimated root mean square deviation, Gij,

and q is a studentized range distribution of k (11) variables with v (830) degrees of
freedom. In Table 5.3 the same letter was assigned to the functions for which the multiple
test shows that averages are not significantly different at the 5 percent error level. After
the linear specification, the LRP-Liebig model has the highest average MSE of all other
models, which suggests that linearity should be ruled out as the growth pattern for the
pre-plateau curve segment of plateau models. However, besides the linear function, the

LRP-Liebig can only be discerned at the five percent error level from the quadratic with
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plateau from top of parabola and the cubic function. For the other functions, the average

MSE values are not significantly different.

Table 5.3 Comparison of Average MSE by Models, 84 Trials

Function Avg. MSE t-grouping *
Linear 35.53 A

LRP-Liebig 14.36 B
Cobb-Douglas 13.80 B C
Mitsch./plateau 12.70 B C
Square root polynom. 12.05 B C
Cobb-Douglas/plateau 11.96 B C
Quadratic polynom. 11.93 B C
Quad./plat.- top/left 11.72 B C
Mitscherlich 11.62 B C
Quad./plateau - top 11.35 C
Cubic polynomial 11.25 C

* Means with same letter are not significantly different (95% level)

Surprisingly, the quadratic with plateau tied to the top of the parabola has a lower
MSE value than the version where the plateau can start from any point of the growth
segment. For the latter, the increased fitting flexibility was expected to result in a lower
MSE value. However, when the knot point is not pre-specified, an extra degree of
freedom is used, which increases the calculated MSE. The plateau version of the Cobb-
Douglas function is placed in the group of functions with low average MSE. On average,
the flexible cubic function displays the best fit to trial data despite the fact that the cubic
uses one more degree of freedom than the quadratic.

The overall impression of the ranking of models is similar when comparing data

in Table 5.1 and Table 5.3 even if certain differences occur. The quadratic with plateau is
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less convincing in Table 5.3 where all placement information, and not just top or bottom
placements, is taken into account. For wheat trials alone, the conclusion is similar to that
of all 84 trials. As expected the LRP-Liebig average MSE is relatively low in barley
trials, especially in the small sample of winter barley trials, where the LRP-Liebig scored
well in the ranking calculations. The general pattern is the same in the reduced sample of
46 trials with information about N1. This is true also in the restricted sample of 27 wheat
trials that will be used in the examination of climate impact on mineralization.

As was the case in relation to the ranking/frequency approach in Table 5.1 and
5.2, it is not possible to nominate one single, ideal function based on the MSE averages in
Table 5.3. However, the numbers in both tables indicate that linear growth should be
ruled out, at least in wheat trials. The LRP-Liebig with a linear growth segment scored
consistently low in wheat trials. It ranked better in barley trials, especially in the small
sample of winter barley trials. The Cobb-Douglas without plateau performed relatively
poorly in almost all the samples. The variation in MSE averages among different
functional forms is lower for barley samples than for wheat. More details are available in
Appendix B.

The number of fertilizer application levels used in field trials and the range of
nutrient application spanned may influence the ranking of models. The impacts of
different trial designs were evaluated for all models using different samples of the trials
as a basis, see Table 5.4. Of 36 spring barley trials, 24 were designed with five levels of
fertilizer nitrogen ranging from 0 to 160 kg per ha with equal increments of 40 kg. In the

remaining 12 trials a sixth application of 200 kg nitrogen per ha was added. The average
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Table 5.4 Average MSE in Spring Barley Trials with Varying N-Applications

24 Trials with 5 N-application levels 12 Trials with 6 N-application levels
Function Avg. MSE  t-test | Function Avg. MSE  t-test
Linear 17.76 A | Linear 23.76 A
Mitsch./plateau 10.19 B | Cobb-Douglas 11.46 B
LRP-Liebig 9.40 B | Mitsch./plateau 10.24 B
Cobb-Douglas 8.99 B | LRP-Liebig 9.96 B
Quadratic polynom. 8.07 B | Sq. root polynom. 9.92 B
Cobb-Douglas/plat. 8.06 B | Mitscherlich 9.92 B
Quad./plat.- top/left 8.02 B | Quad./plat.- top/left 9.53 B
Quad./plateau - top. 7.83 B | Cobb-Douglas/plat. 9.32 B
Mitscherlich 7.78 B | Quad./plateau - top. 9.29 B
Cubic polynomial 7.76 B | Quadratic polynom. 9.28 B
Sq. root polynom. 7.74 B | Cubic polynomial 8.73 B

* Means with same letter are not significantly different (95% level)

MSE is lower for all models when only five levels of nitrogen are considered. The
ranking differs to a certain extent between the two groups of trials. It was expected that
the higher number of nitrogen applications would favor the plateau models, and the table
does generally display an improved ranking. The square root polynomial, which scored
best in the group with five N-levels, falls to number seven when six N-levels are applied.
However, in the light of the small differences between means in the models, not much
emphasis can be attached to changed ranking between the two groups of trials.

Across the models, the more narrow domain of nitrogen application results in
average figures for the yield maximizing nitrogen amount that are lower compared with
averages for trials with 6 nitrogen applications. The same is true regarding the calculated
nitrogen application corresponding to the economic optimum. By going from six to five
observations the decrease in yield is generally relatively modest. This plateau tendency

does not comply well with models like the symmetric quadratic functional form.
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Removing the sixth observation improves the fit of the quadratic curve. At the same time,
the curve becomes narrower and more sharply peaked and the calculated optimum
nitrogen application falls. The same effect is seen for the plateau versions of the quadratic
model. In the case of the square root model the removal of part of the “plateau” from the
observation data points effects the shape of the fitted function so that calculated optimum
nitrogen application increases dramatically.

Jonsson (1974) found similar tendencies when fitting quadratic and square root
functions to Swedish cereal trials when he deleted the upper or the two upper out of total
seven application levels. Sparrow (1979) and Cerrato and Blackmer (1990) report similar
effects. When the number of nitrogen applications increases and the highest level of
nitrogen increases, greater variation among model fit is observed. It is therefore important
that the domain of nitrogen application and the number of individual levels be
sufficiently large to span the yield-maximizing domain of N. Similarly, it is important
that a sufficient number of observations allow for evaluation of curvature at the lower end
of the scale. This is especially true when attempting to predict the functional relationship
to the left of the lowest nitrogen application where only soil sources of nitrogen are
represented.

An evaluation of how trial design affected results was also attempted on the basis
of the sample of 27 wheat trials with climate data (see Table 5.5). All 27 trials were
treated with 6 levels of nitrogen fertilizer ranging from 0 to 250 kg per ha in equal

increments of 50 kg. The effect of trial design was assessed by removing the highest
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nitrogen level observations, fitting the functions, and repeating the goodness-of-fit

calculation on the basis of the truncated data sets.

Table 5.5 Average MSE in 27 Winter Wheat Trials with Varying N-Applications

5 N-application levels, without 250 kg 6 N-application levels as in actual trials
Function Avg. t-test | Function Avg. MSE  t-test
Linear 37.64 A | Linear 50.53 A
LRP-Liebig 15.32 B | LRP-Liebig 17.31 B
Cobb-Douglas 14.41 B | Cobb-Douglas 15.73 B
Cobb-Dougl./plateau 14.35 B | Quadratic polynom. 13.76 B
Mitsch./plateau 13.29 B | Square root 13.49 B
Square root 13.14 B | Mitsch./plateau 13.16 B
Mitscherlich 12.67 B | Quad./plat.- top/left 12.95 B
Quadratic polynom. 12.51 B | Cobb-Dougl./plateau 12.84 B
Quad./plat.- top/left 12.35 B | Mitscherlich 12.62 B
Cubic polynomial 12.34 B | Cubic polynomial 12.36 B
Quad./plateau - top 12.27 B | Quad./plateau - top 12.34 B

* Means with same letter are not significantly different (95% level)

As was the case with spring barley in Table 5.3, fewer observations lead to a
decrease in average MSE for almost all functional forms. Also, a general narrowing of
the difference between functions takes place. A few shifts occur in the ranking of
functions, but no firm conclusion about the effect of changed trial design can be made on
the basis of average MSE data. Additional calculations of the general impact on
maximizing and optimizing nitrogen amounts by truncating the nitrogen application
domain display the same tendencies as were explained above in relation to spring barley.

Goodness-of-fit as defined on the basis of MSE is an important, but not the only,
criterion of selecting the best functional form(s). A few of the examined functions, e.g.

LRP-Liebig and Cobb-Douglas, tend to be ranked low. However, in general they can not
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be distinguished from other functions, which are very close regarding statistical fit to
observed data. Other behavioral characteristics like the ability to yield adequate estimates
of yield maxima, economic optima, and mineralized nitrogen are considered in the

following sections to broaden the basis for comparing the different functional forms.

5.1.2 Some Behavioral Features of Different Functional Forms

The quadratic function is generally well behaved. The estimated coefficient, [32 ,

(the quadratic effect) is always negative indicating concavity for all trial data sets. In

three cases, where the observed data approach linearity, ﬁz was not significant at the 95
percent level, and the calculated yield maximizing and yield optimizing nitrogen
application —Nay and Ny — seem unrealistically high. The same is the case with
estimated total nitrogen mineralization, NS, which is based on the negative N-axis
intercept. In general, the regularity of the quadratic function makes it possible to establish
realistic estimates of Ninax, Ymax (maximum yield), Nopi, Yopt (yield at economic

optimum), and NS. The cubic function is more complex as was explained in Chapter 4. In

only 22 of the total of 84 trials did the cubic coefficient [§ ,obtain a negative sign.” Local

stationary values did occur in all situations so that a growth segment could be displayed
in the domain of observed data. Only five of the 22 cases displayed an inflection point

found in the domain of total nitrogen supply (including the estimated mineralization

7 To reveal a classic three-stage text book pattern with decrease as N gets larger requires 3, to be negative.
However, if /3, is positive it is still possible to have Stage Il and Stage 111 revealed. Good fits to data may

be obtained in both situations, but the fitted function is not necessarily well behaved in the vicinity of the
observed data domain.
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domain) so that a three-stage production function could be revealed. In the other 17 cases
the local minimum was located at high negative nitrogen axis values so that strict
concavity prevailed in the nitrogen supply domain. In seven of the 22 trials with negative
cubic coefficient there was no intercept with the negative part of the nitrogen axis, and an
estimate of total mineralization was therefore not displayed. If a three-stage performance
were the relevant response pattern, this could possibly be revealed with additional data
points at the low level of the nitrogen application scale.

In the other 62 trials, where the estimated cubic coefficient was positive, the fitted
cubic function had no local stationary values in 27 situations so that no N and Ymax
values could be estimated. Economic optimum based on present price conditions
(scenario 2 in Table 4.6) could not be established in 18 out of the mentioned 27 trials.
This demonstrates that, although the cubic function has great flexibility and fitting ability
in the domain of observed data, it often does not comply well with agronomic or
economic theory. The cubic function was not satisfactory in many cases and a good deal
of caution must be exerted when attempting inferences about functional relationships
outside the data domain. This does not preclude that appropriate Npmax and Ny results can
be obtained in those situations where a cubic specification is meaningful. This is probably
the reason why the cubic function has been the model of choice for purposes of setting N-
application policy in Denmark.

When fitting the square root polynomial, parameter signs are significant and
consistent with concavity in all trials. In about half of the trials the fitted square root

polynomial displays estimated Npay values, which — in many cases dramatically — exceed
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maximum nitrogen application. This influences the function’s ability to yield adequate
estimates of other key variables like Ny, on a consistent basis. It is reasonable to expect
that the experts by design of trials have defined nitrogen applications in a way so that
yield optimum and maximum can normally be found within the highest level of nitrogen
application. The steep descent of the square root curve to the left results in very low
estimates of mineralization. In 26 out of 46 trials with information about plant available
mineralized nitrogen at the beginning of growing season (N1), the estimated
mineralization during the growing season (N2) is negative. Negative net mineralization
can occur under certain circumstances, e.g. by extreme climate situations or when the
bacterial erosion of large amounts of organic material binds free nitrogen. However,
given the climatic data, soil type, and crop rotation negative mineralization is unlikely in
any of the selected Danish field trials. Therefore, the square root function is deemed a
less adequate model for the purposes of the present analysis.

By definition, the Cobb-Douglas without plateau displays no yield maximum. As
a result calculated Ny tends to be unrealistically high in many trials, as was the case with
the square root function. Further, negative N2 values were found in 37 out of 46 trials for
which N1 can be established. Taken together with the relatively poor statistical fit (see
Section 5.1.1) it can be concluded that the Cobb-Douglas function does not satisfy the
general requirements.

With the Mitscherlich function, which asymptotically approaches a maximum

yield, there is no Ny, The level of the asymptote is higher — although not significantly

higher — than the yield maxima found with the cubic and quadratic polynomials and the
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plateau functions. Estimates of Ny and Y values for the Mitscherlich are also on the
high side but in most cases not significantly different from the averages provided by the
polynomial and plateau functions. The Mitscherlich function’s steep descent to the left
results in relatively low NS estimates, and even a small number of negative N2 estimates.
The Mitscherlich function displays relatively good fits to data with statistically
significant parameter estimates throughout. Certain modifications of the basic formula,
e.g. as suggested by Burt (1995), who introduced polynomials of the independent
variable instead of the simple independent variable in the exponent specification, could
possibly correct for its somewhat high estimates of optimum values and low N2
estimates.

In nine out of ten trials the Mitscherlich plateau version yields estimates of
optimal values and mineralized nitrogen that are comparable with results of the
Mitscherlich function without plateau. However, in the plateau version the estimated Npax
at the knot point assumes values that in almost all trials exceed the maximum nitrogen
application dramatically. This indicates that the plateau feature does not add to the overall
performance of the general Mitscherlich function. The Mitscherlich with plateau does not
provide additional relevant information.

The LRP-Liebig function displays statistically significant parameter estimates in
all trials but compared with other functional forms the MSE fit is relatively poor,
especially in wheat trials. Further, linearity of the growth segment results in calculated
nitrogen axis intercepts, which are considerably lower than in the curvilinear functions,

i.e. the estimated nitrogen mineralization is higher. Residual plots for the LRP-Liebig
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curve, which is shown together with all other functions in Appendix B, Section B4,
displays a tendency to overestimate yield around the calculated optimum. Yield is
underestimated in the middle section of the growth segment. Similar deviations were
found in the plot for a strictly linear function. For polynomials and curvilinear plateau
models the deviation pattern is more evenly distributed on negative and positive
deviations over the whole nitrogen application domain. When forcing linearity upon
apparent curvilinear observation patterns, the result is systematic lower values of yield
and profit maximizing nitrogen application levels. The results do not suggest that LRP-
Liebig is superior to other (plateau) functions when fitted to barley trials. When fitted to
winter wheat data the LRP-Liebig is inferior to other functional forms.

The Cobb-Douglas with plateau displays fairly reasonable results in most
analyses. Profit maximizing quantities of applied nitrogen tend to be lower than those
found in other curvilinear plateau functions. Also, estimated N2 figures are relatively low
although higher than in the Cobb-Douglas function without plateau.

The quadratic with plateau yield ranks well in terms of statistical fit. The plateau
model with forced onset of the plateau at the estimated parabola maximum, QP1, displays
estimates of yield maximizing and profit maximizing quantities of applied nitrogen that
in most cases are smaller than and never exceed corresponding estimates based on the
simple quadratic function. As expected, the yields corresponding with Nax and Nop are
only moderately lower, and consistently never higher than in the simple quadratic model.

Estimated total availability of mineralized nitrogen is also lower in the plateau version
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because the estimated parabola becomes narrower, when the plateau captures
observations in the flatter curve segment.

In the other quadratic/plateau version, QP2, where the plateau can start to the left
of the estimated parabola maximum, Ny and Ny are generally lower than in QP1. The
estimated parabola is generally wider. As a result, estimated availability of mineralized
nitrogen tends to be higher than in QP1. Estimated yield maximum and yield at economic
optimum are very similar in the two plateau models. In QP2, as in QP1, the coefficient of
the squared independent variable is negative in all trials indicating concavity in the
growth segment of the function. However, in 28 trials this coefficient is not statistically
significant for QP2, i.e. the function fit approaches that of the LRP-Liebig form. In
almost all of these cases the plateau onset is well to the left of the parabola top.
Therefore, the domain of the growth segment typically only comprises three data points
and only the steepest segment of the parabola, which adds to the uncertainty of the
curvature estimate. QP2 also produces a number of key variable values, which fall
outside the nitrogen application domain. A larger number of N-applications in the domain
of yield growth could possibly improve the statistical fit. On this background more
emphasis will be placed on QP1 when making inferences based on quadratic/plateau

models.

5.1.3 Estimation of Optimal Nitrogen Application
Prediction of economically optimal nutrient application is a main goal for yield

response research. Table 5.6 shows the average nitrogen application estimated by fitting
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different functional forms to all 84 field trials. A distinction between crops is necessary
because of general differences in yield. Winter barley is omitted in the comparison
because of few observations. The Mitscherlich with plateau, the Cobb-Douglas, and the
square root functions are not considered here for reasons mentioned in Section 5.1.2.
Outliers — defined as averages exceeding 120 percent of the highest level of nitrogen
application in each trial — are not considered. If the estimated optimal nitrogen amount is
negative a zero is assigned to the pertinent trial. The numbers in brackets next to function
names show how many individual trial results are included in each average calculation.

Optimal nitrogen application is based on Scenario 2 in Table 4.6, that is price levels of

Table 5.6 Estimated Optimal Nitrogen Application, All Trials

Kg Nitrogen per Ha
Spring Barley, 36 Trials Winter Wheat, 40 Trials
Function Nopt, Kg/Ha Function Nopt, Kg/Ha
Quadratic (34) 139 Mitscherlich (29) 214
Quad./Plateau 1 (34) 129 Quadratic (38) 201
Cobb-D./Plateau 126 Quad./Plateau 1 (38) 188
Mitscherlich (24) 122 Cubic (28) 186
Cubic(29) 121 Quad./Plateau 2 (39) 178
Quad./Plateau 2 (35) 117 Cobb-D./Plateau (39) 174
LRP-Liebig (36) 103 LRP-Liebig (40) 131

Note: Numbers in parenthesis are lower than the total number of trials due to omission of outliers or
no solutions.

nitrogen and cereals as determined by markets and policy instruments in the period
following full implementation of the 1993-Reform of the common agricultural policy

(CAP) in the European Union.
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The LRP-Liebig displays the lowest optimal amount of nitrogen in both spring
barley and winter wheat trials. In spring barley trials the quadratic function yields an
average figure, which is significantly higher than results of the other functions.
Mitcherlich is highest for winter wheat trials. The ranking of individual functions is
somewhat different between barley and wheat trials. The cubic function tends to be in the
middle with QP1 showing a higher and QP2 a lower nitrogen optimum. To reduce
uncertainty caused by a possible yield trend over the time period covered by the analysis
an alternative calculation was based on the smaller sample of trials for which information
about N1 was available. These trials were executed during the last half of the total period

1987-1998, see Section 4.2.1. The results in Table 5.7 show that the ranking of functional

Table 5.7 Estimated Optimal Nitrogen Application, Trials with N1 Data

Kg Nitrogen per Ha
Spring Barley, 10 Trials Winter Wheat, 30 Trials
Function Nopt, Kg/Ha Function Nopt, Kg/Ha
Quadratic (10) 173 Mitscherlich (23) 217
Mitscherlich (6) 169 Quadratic (29) 199
Quad./Plateau 1 (10) 166 Quad./Plateau 1 (29) 185
Cubic(8) 151 Cubic (21) 185
Quad./Plateau 2 (10) 142 Quad./Plateau 2 (30) 177
Cobb-D./Plateau 141 Cobb-D./Plateau (30) 172
LRP-Liebig (10) 124 LRP-Liebig (30) 126

Note: Numbers in brackets are lower than total number of trials due to omission of outliers or
no solutions.

forms does not change between the barley and wheat calculations except for a switch of
positions between Mitscherlich and QP1. The absolute level of nitrogen optimum in later

years is considerably higher than the average for the whole period in the case of spring
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barley. Only 10 out of 36 barley trials refer to the last part of the period, and the figures
do indicate an increase over time in N-optimum. The same effect is not apparent for
winter wheat trials. Further details are available in Appendix C.

Similar estimations from some of the studies that were cited in Chapter 3 are
shown in Table 5.8. Even if different crops and geographic sites etc. prevent a
meaningful comparison of absolute figures between the individual examinations, it is
interesting to compare the ranking of functions with the results of the present study.
There is a general tendency for the quadratic model and the Mitscherlich model to yield
high optimum nitrogen amounts. The quadratic with plateau was also relatively high in
Cerrato and Blackmer’s (1990) and Bullock and Bullock’s (1994) examinations, but
closer to average in Olesen’s (1999) study. The cubic form, which was included in
Olesen’s study, had a medium to high placement. The LRP- Liebig model invariably
displays the lowest estimate. The square root function, which was tested in three of the
quoted examinations, results in very high N-optimum in Cerrato and Blackmer’s (1990)

study and it was also in the top of the scale according to Olesen (1999). Anderson and

Table 5.8 Calculated Economically Optimal Nitrogen Application, Kg per Ha

Andersson| Boydet @ Cerrato etal.  Franket Bullocket | Olesen

etal. 1975 al. 1976 1990 al. 1990 | al. 1994 1999
Model: Corn Barley Corn Corn Corn W. Wheat
Quadratic 166 138 225 235 211 149
Quad./Plat. 184 182 125
Square root 139 379 147
LRP-Liebig 102 95 128 112 108
Mitscherl. 160 252 178 146
Cubic 141
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Nelson’s (1975) calculations based on corn trials placed the square root towards the
middle of the scale. Taken as a whole the results found in the present study are consistent
with findings of previous studies.

Olesen’s (1999) winter wheat results in Table 5.8 suggest a considerably lower
optimal-N than those found in the present study (Table 5.6 and 5.7) despite the fact that
the same source of empirical information was used. The main reason for the difference is
probably that Olesen used a broader sample of winter wheat trials, which includes soil
types of lower quality. Further, Olesen includes trials with preceding crops other than
cereals, which reduced the need for fertilizer-nitrogen application.

Plantedirektoratet® (1999) has fixed the Danish maximum norm at 183 kg
nitrogen per ha in winter wheat grown after cereals crops on the same soil type as used in
this study. The figure is based on optimum minus ten percent found by fitting the cubic
function to field trials that were executed over the last ten years. The calculated optimum
is therefore 203 kg per ha. The corresponding result in this study is lower, about 185 kg
per ha. The reason for this difference is most likely a less strict correction for outliers in
the official norm calculation than in this study. If a calculated optimum exceeds the
highest nitrogen application level by more than the difference between the two highest
application levels, the optimum is set at the limit in the official norm calculation. In the
present study such observations are omitted. Also, in certain cases where it is not

meaningful to fit a cubic function, the quadratic may be chosen as a substitute. Since the

® plantedirektoratet, which is an agency of The Ministry of Food and Agriculture, is responsible for
administration and control of various legislative environmental measures in relation to crop production.
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quadratic tends to result in relatively high N estimates this procedure can result in a
certain upward correction of optimum.

Clearly the choice of model has a significant impact on the calculated optimum
nitrogen application. This is an important issue for recommendation of fertilization
norms. Figure 5.1 shows the sensitivity of the optimum nitrogen application solution for
different functional forms when the unit price ratio, 1/p, between nitrogen and grain
varies. The four price scenarios are taken from Table 4.6 and, in the example, the figures

are averages from fitting the different functions to all 40 winter wheat trials. In Scenario

Figure 5.1 Nitrogen Application at Economic Optimum, Kg Nitrogen per Ha

By Functions and Nitrogen/Cereal Price Ratios
Functions Fitted to all 40 Winter Wheat Trials
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4, where a significant nitrogen levy is assumed, the calculated optimal nitrogen
application is quite similar for all functional forms. LRP-Liebig displays a lower N-

optimum than the other functions. LRP-Liebig is unaffected by price ratio changes
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between the different scenarios, because the optimum solution is stable at the knot-point
of the two linear curve segments. The Cobb-Douglas with plateau displays the same
feature as the LRP-Liebig because the growth segment is relatively steep. The
quadratic/plateau model with possible onset of plateau to the left of the parabola
maximum is the least price sensitive of the other functions. The optimal nitrogen amount
changes considerably more in the Mitscherlich function, and the other functional forms
fall in between. The price ratio representing the nitrogen levy alternative is far removed
from the non-levy alternatives, which reflect changes in cereals policy in the European
Union over the last decade. The trend in N-optimum as the r/p ratio increases, which is
seen over the whole range of price ratios in Figure 5.1, is discernible also over the
narrower domain of Scenarios 1 through 3. Scenario 4 is pertinent to farmers who do not
register and respect environmental legislation involving maximum norms for nitrogen
application. Unlike complying farmers they must pay a nitrogen levy of DKR 5 per kg
nitrogen applied.

Cerrato and Blackmer (1975) compared their models fitted to corn trial data under
the assumption of different price ratios as shown in Table 5.9. In the LRP-Liebig model
optimum nitrogen application is stable at the knot point for all price ratios because the
slope of the pre-plateau curve exceeds price ratios. Quadratic and quadratic with plateau
show significant sensitivity by variation of the 1/p price ratio. At a low nitrogen-corn
price ratio the square root model and the Mitscherlich model result in unrealistically high
nitrogen optima, which is caused by modest curvature of the response curve in the

segment where its slope is near the numerical value of the inverse price ratio. The
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Table 5.9 Predicted Optimum Fertilization of Corn, Kg Nitrogen per Ha
Source: Cerrato and Blackmer (1975)

Nitrogen-corn o ) ) )
price ratio: LRP-Liebig | Quad./Plateau . Quadratic = Mitscherlich Square root
2 128 190 233 296 490
4 128 182 221 237 347
6 128 174 208 203 261
8 128 165 196 179 205
10 128 157 184 160 163

quadratic and the quadratic with plateau have steeper pre-maximum slopes, which yields
a less dramatic change in calculated nitrogen optimum when the price ratio changes.

These results are generally in concert with the results of this study.

5.1.4 Estimated Mineralization of Soil Nitrogen

Estimates of plant available soil nitrogen are established on the basis of function
intercepts with the nitrogen axis as explained in Chapter 4. This procedure involves
predictions outside the observed data domain. Therefore, the estimates are encumbered
with uncertainty, which should be borne in mind when evaluating the calculation results
(see also the caveat about this question in Chapter 4, Section 4.1.2). Lack of relevant
information justifies this attempt to generate mineralization data. The results also serve as
a basis for comparing the general behavioral characteristics of different functional forms.
For the whole sample of 84 trials, estimates were made of total soil nitrogen availability
(NS) for each trial. In 46 trials dating from the last half of the period, available
mineralized nitrogen at the beginning of the growing season (N1) is measured in soil

samples. An average for the whole trial site represents all plots in the trial. Mineralized
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nitrogen during the growing season (N2) is estimated as the difference between the two
(N2 = NS —N1). Both NS and N2 are considered in the following. Special interest is
attached to 41 of the 46 trials. For the 41 trials both N2 and information about climatic
conditions can be established. Chapter 6 considers, whether a connection can be made
between N2 fluctuations and variation in climatic conditions.

Table 5.10 shows that estimates of plant available soil nitrogen vary considerably
among functional forms. Except for the LRP-Liebig, which displays average figures far
above all other functions, averages are similar when comparing spring barley and winter
wheat trials. The square root, the Cobb-Douglas and the Cobb-Douglas with plateau
functions yield low estimates. Further information about NS-estimates by crops and
functions is available in Appendix D, including a simultaneous test of the average

differences between functions.

Table 5.10 Estimated Total Available Mineralized Nitrogen, Kg/Ha
Total Sample of Field Trials

Spring Barley, 36 Trials Winter Wheat, 40 Trials
Function NS =NI1+N2 Function NS =NI1 +N2

LRP-Liebig 164 LRP-Liebig 134
Quadratic 93 Quadratic 91
Quad./Plateau 2 91 Quad./Plateau 2 87
Quad./Plateau 1 84 Quad./Plateau 1 82
Cubic 73 Cubic 72
Mitsch./Plateau 55 Mitsch./Plateau 57
Mitscherlich 55 Mitscherlich 57
Square Root 33 Cobb-D./Plateau 31
Cobb-D./Plateau 30 Square Root 29
Cobb-Douglas 12 Cobb-Douglas 13

Note: Estimates reflect total availability of mineralized soil nitrogen as a sum of available nitrogen
at beginning of growing season and further mineralization during the growth season.
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Mineralization during the growing season is shown in Table 5.11 in comparison
with the estimated total availability of mineralized soil nitrogen for the trials where N1
information is available. The NS averages for winter wheat are only slightly lower than in
Table 5.10 when disregarding the LRP-Liebig. In contrast, estimates based on the 10
spring barley trials are considerably higher than average for all barley trials in Table 5.10
and also higher than the estimates for wheat trials. This difference may be caused by
special circumstances related to spring barley trials from the last part of the analyzed
period. The Cobb-Douglas model shows negative average mineralization during the
growing season (N2) for both barley and wheat trials. Also the results of the square root
and the Cobb-Douglas with plateau models are low and even negative in wheat trials. The
LRP-Liebig suggests very high estimates of nitrogen mineralization during the growing

season. Recall that the LRP-Liebig scored relatively low for statistical fit of the observed

Table 5.11 Estimated Mineralization during Growing Season, Kg N/Ha
Trials with N1 Information

Spring Barley, 10 Trials Winter Wheat, 30 Trials

Function NS N2 Function NS N2
LRP-Liebig 191 155 LRP-Liebig 121 92
Quad./Plateau 2 121 85 Quadratic 85 55
Quadratic 110 73 Quad./Plateau 2 80 50
Quad./Plateau 1 103 67 Quad./Plateau 1 76 46
Cubic 85 47 Cubic 66 37
Mitsch./Plateau 83 47 Mitsch./Plateau 52 22
Mitscherlich 74 38 Mitscherlich 52 22
Cobb-D./Plateau 55 19 Cobb-D./Plateau 27 -3
Square Root 43 7 Square Root 26 -4
Cobb-Douglas 22 -14 Cobb-Douglas 10 -19

Note: Estimates reflect total availability of mineralized soil nitrogen and mineralization during the
growing seasoi.
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trial data. The two Mitscherlich functions yield almost identical results, which are
relatively low compared with the quadratic functions and the cubic function.

Which functions are more reliable when it comes to determining the extent of soil
nitrogen uptake can only be assessed through more extensive studies of physiological
theories and scientific response experiments. For comparison, recall that Jarvis et al.
(1996) reported from Scottish experiments an uptake of soil nitrogen in spring barley of
57 kg per ha. Combining Danish Farmers’” Union’s (1997) estimate of total nitrogen
content in the soil and Olesen’s (1999) estimate of annual mineralization rate yields 100
— 150 kg per ha, part of which will leach during the winter season. For the analysis of
climatic influence on mineralization in Chapter 6 the number of calculation alternatives
was narrowed down based in part on the ability of the various functions to provide

reasonable estimates of N2.

5.2 Summary

No single functional form is clearly superior to the others when comparing
goodness of statistical fit. Functions with quadratic growth specification have the highest
number of first and second placements in a ranking of all functions based on MSE. The
square root, the cubic, and the Mitscherlich functions are close behind the quadratic
specifications. The average MSE values for curvilinear plateau models and polynomials
are not significantly different when fitted to all 84 field trial data sets. The Cobb-Douglas
and the LRP-Liebig are at the low end of the ranking scale. A strictly linear growth

pattern, which was included for comparison, is inferior to the other functional forms.
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Besides the statistical fit to observed data, the functions were also evaluated on
the basis of how well they complied with agronomic theory and knowledge. The
quadratic function consistently displayed decreasing MPP and it generally exhibited
reasonable values for yield and profit maximizing nitrogen levels. It also displayed good
ability to estimate mineralization of soil nitrogen based on its negative nitrogen-axis
intercept. However, its symmetric shape with a peak does not comply well with a general
expectation of relatively stable yield after maximum is reached — at least over a certain
nitrogen domain. This causes the values of Ymax, Nmax and Npy to be on the high side.
Despite its flexibility and good statistical fit the cubic function performed poorly in a
number of cases, where no — or at best, unrealistic — yield and profit maximizing nitrogen
application were established. Further, in a number of cases the negative nitrogen-axis
intercept was unrealistically low or non-existing.

The square root model in many cases displayed unrealistically high Niax and Noy
estimates. Likewise, its mineralization estimates were often so low that the N2 estimates
became negative. The same inadequacy was displayed by the Cobb-Douglas function.
The Cobb-Douglas function’s poor performance was underlined by its generally poor
statistical fit and the fact that it exhibits infinite growth so that, by definition, it can
display no maximum yield. The Cobb-Douglas with plateau function behaves better.
However, its estimation of nitrogen mineralization appears low. The Mitscherlich
function was generally well behaved. Its yield asymptote and its Nyax and Nop estimates
were found within a reasonable range in most cases, although on the high side.

Mineralization estimates resulted in negative N2 values in a few cases. The plateau
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version of the Mitscherlich model added no new information and did not improve the
overall performance of the Mitscherlich function. The plateau versions of the quadratic
models yielded slightly lower Niax and Ny, values than the quadratic function itself. All
things considered they were generally found well behaved and in good concert with
knowledge about growth patterns. The quadratic with possible plateau onset before the
parabola maximum was fitted with some uncertainty because of the low number of
observations in its growth domain. There was found no evidence to sustain a linear
growth pattern in general. This together with a poor statistical fit to observed data
resulted in a low evaluation of the LRP-Liebig model’s general performance.

On balance, the quadratic plateau model had many attractive features among all
the tested functional forms. The function’s statistical fit, the adequacy of its general
behavior in relation to hypothesized response patterns, and the estimates of Niax, Nopt and

N2 were all taken into account.
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Chapter 6

Influence of Climatic Variation on Mineralization

Chapter 5 gave indications about which functional forms best describe the
relationship between cereal yield and applied nitrogen. The curve fitting to trial data also
enabled estimation of nitrogen supply from soil resources at each trial site. In this chapter
these estimates are combined with information about climatic conditions at the trial sites,
which is available beginning in 1993. The aim is to examine the influence of climate

variations on N2, that is mineralization during the growing season.

6.1 The Nature of Climate Effects

Chapter 2 established that among other factors soil temperature and soil moisture
conditions influence the amount of nitrogen made available through mineralization.
Climate also influences yield for a given amount of nitrogen. The photosynthetic process
of building organic material in plants hinges on the amount of solar radiation. And
temperature is known to influence the speed or efficiency of chemical processes that take
place inside the plants. Burt (1995) showed that water supply interacts with nitrogen in
determination of yield but in general, little information is available about the functional
forms and estimated coefficients that describe the relationship between climate factors on
one side and mineralization and yield on the other. This is partly due to a lack of coherent
and relevant empirical observations about these matters. This study is concerned only

with an evaluation of climatic influence on the extent of mineralization.
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Figure 6.1 shows schematically how changes in mineralization caused by
climatic fluctuations can influence the revealed relationship between yield and NF
(applied fertilizer). The “true” response function based on NT (total nitrogen supply) is
represented by the curve in its entirety in the three panels. Depending on the extent of
mineralization — normal, high, or low — the estimated yield/NF relationship as revealed
by the solid-line curve segment is located in different NT domains. The shape of the
general yield/nitrogen curve is unchanged because plant available nitrogen from different
sources has the same value. However, mineralization fluctuation causes a similar change
in the actual need for fertilizer nitrogen to ensure economic optimum. Extreme situations
such as exhibited in the graphic example can obviously affect the possibilities of
estimating the “true” yield/NT relationship based on yield/NF observations.

In the examined trials climate induced fluctuations are believed to be less
dramatic, and the observed yield/NF segment — even with different locations in the total
N-supply domain — is more likely to produce appropriate and consistent estimates of the
yield/NT function. The extent to which mineralization could be predicted based on
variation of climate indicators was analyzed. It was assumed that climatic influence on
the general shape of the productivity function would not affect the estimation of N2. It
remains to be examined whether this assumption is valid. The present study therefore can
only be regarded as a first step toward a more comprehensive analysis of climatic
influence on yield. The examination was also a means of evaluating whether available

climate data adequately reflect relevant climate factors.



Figure 6.1 Response Curves and Mineralization Fluctuations
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