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Abstract 

 

This thesis uses climate forecasts conducted by the Climate Prediction Center to analyze 

the economic effects on the agriculture sector in the Western United States. We use a 

variety of different skill scores alongside a water consumptive use model developed for 

the Lower Colorado River irrigation area. Using various skill scores to evaluate the 

effectiveness of a given climate forecast, we attempt to model the factors that affect skill 

scores. Our results show climate forecast skill has not uniformly improved in the last 

twelve years. We also discovered forecast skill did not differ between climate divisions 

when forecasting precipitation; however it did when forecasting temperature. We then 

use our results along with an agriculture water use model to simulate possible decisions 

urban water managers must make on water purchases and the economic ramifications of 

their decisions. We found regardless of planning method, managers cannot rely 

completely upon current climate forecasts.  
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Chapter 1: Introduction 

The ability to have more accurate predictions of future weather and climate 

patterns has always been a goal of the agriculture and energy sectors. Climate forecasting 

is a method of predicting shifts in weather patterns months to years into the future. 

Instead of saying it will rain or be hot tomorrow, climate forecasts aim to predict the 

weather some months in advance, on a long term scale. Accurate forecasts would be very 

useful to farmers, who need to know how much water will be needed for irrigating. They 

would also be important for decision makers in the energy sector, as previous research 

has shown a direct link between climate variables and demand for electricity (Tanimoto, 

2008). In the past, it was not feasible to predict the climate more than three months in 

advance (Barnston and Van Den Dool, 1994). Scientists did not have the tools or 

knowledge to understand long term weather patterns. Instead predictions were typically 

based on past weather patterns. A simple analysis of historical weather and current 

conditions were used to predict situations months in advance. At the time this was an 

acceptable practice. However, these methods are not suited to shifting regional climate 

and more drastic changes in climate recently. 

Climate change research has become a hot topic over the last fifteen years. With 

keener awareness of global warming and the El Nino/La Nina phenomenon researchers 

have begun to develop models to analyze and predict the possible upcoming climate. 

With all of the focus on climate, new innovations and methods have been developed by 

scientists, allowing us to analyze and predict these patterns. The science of climate 

forecasting took on an entire new role beginning in mid-December of 1994 as the 
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National Weather Service (NWS) and Climate Prediction Center (CPC) began issuing 

more climate forecasts. They began issuing 3 month forecasts, with different lead times 

varying from 1 month to 12.5 (13) months (Livezey, 2008). The ability to conduct these 

forecasts with such large lead times was accredited to the El Nino Southern Oscillations 

(ENSO) phenomenon, as well as advances in computer capabilities and data mining 

procedures (Van Den Dool, 2007).  It was thought that skillful forecasts could be made 6 

to 9 months in advance, a feat not possible in previous decades. 

A current issue with climate forecasts is their overall usefulness. Many decision 

makers see them as unreliable, while others see them as useful, but only in certain 

situations (Mjelde and Fuller, 2000). However, another problem with forecasts in today‟s 

time is how they are misinterpreted by decision makers. A water manager for instance 

could take a climate forecast to be a definite prediction thinking of them as weather 

forecasts which are made days or weeks in advance. The problem with this is that climate 

forecasts are given as probability distributions, where one set of future conditions is 

simply „more likely‟ than others. This does not guarantee a certain outcome, and 

decisions must be made with knowledge of forecast uncertainty. The climate forecasts we 

are analyzing are provided with three separate categories and probabilities. Above, 

normal and below are the three forecast categories, and each one is assigned a probability 

between 0 and 1. These three probabilities will sum to 1, and whichever is the most likely 

will be given the highest probability. If none of the three are most likely, this is referred 

to as a „climatology‟ forecast, or one of „equal chances‟.  
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This thesis uses climate forecasts performed by the CPC to analyze the potential 

economic effects of forecasts on an urban water manager. Using a variety of different 

skill scores alongside a water diversions model developed for the Colorado River 

irrigation area, the economic consequences associated with forecast skill and 

interpretationcan be determined. We first determine four descriptive skill scores; the 

Ranked Probability Score (RPS), the Brier skill score (BS), the False alarm rate (FR), and 

the Surprise rate (SR) (Pagano, 2001). Using these four scores to evaluate the 

effectiveness of a given climate forecast, we analyze the factors that affect skill scores 

using a fixed effects regression model. Such factors include location (climate division), 

the Oceanic Nino Index (ONI), lead time (from 1 to 13 months) and forecast season 

(three month seasonal blocks from January through December). We use this model along 

with our Colorado River water diversions model to simulate possible decisions water 

managers must make on water purchases. These decision makers receive forecast 

information and make decisions on how much water will be needed in the future. 

Our results show the ONI only affects forecast skill when extreme values are 

observed. Extreme values are associated El Nino and La Nina climate periods. These 

periods typically exhibit better forecast skill. When the ONI does not reach extreme 

values, it is typically insignificant in forecast skill. We found that the ONI plays a larger 

role in temperature forecasts than in precipitation. However, it can still play a large role 

in both. The interpretation is basically that climate forecasters find the El Nino and La 

Nina weather phenomenon present better climate conditions in terms of prediction. We 

also found that both the lead time and issue year independent variables are typically 
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insignificant or have a negative effect on overall forecast skill. Our interpretation is that 

forecast methods have not yet developed well enough to predict temperature and 

precipitation more accurately six to twelve months in advance.  

We also use a simulation model to analyze possible choices made by urban water 

managers based on different planning methods. Using a Lower Colorado River 

Agriculture water consumption model developed at The University of Arizona (described 

in detail in chapter 3), along with various planning methods, we predict the amount of 

water consumption by a particular irrigation district in a given season, under specific 

temperature and precipitation conditions. Using these values we then find the amount an 

urban water manager may need to acquire and the varying potential costs. These values 

indicate the effects for a water manager of their reliance on forecasts.    

Our simulation results show that lead time does not uniformly affect forecast skill. 

Our results do not show any constant structural connection between lead time and 

correctly predicting water diversions. Instead, it appears in one season the one-month 

lead may be more consistently accurate and the next season a seven-month lead most 

accurate. We also conclude from our simulation that higher forecast skill at more 

advanced lead times could potentially save millions of dollars for water resource decision 

makers. It is clear that, if attainable, the ability to acquire water during hot dry periods 

with more advance notice and at a lower price could save water managers millions of 

dollars over the course of the water supply year. Our simulations show there is not 

currently a most consistently accurate lead time to use in making decisions that are 

affected by future temperature and precipitation.  
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This thesis is organized as follows: Chapter 2 contains a literature review; 

analyzing past research done in the field of the economics of climate forecasts. Chapter 3 

explains the development of a Lower Colorado River Agriculture water consumption 

model that was developed at The University of Arizona. Chapter 4 then describes the data 

collection process and methodology used to create our climate forecast database. This 

chapter also contains the summary statistics of the dataset, to give a better idea of the 

type of data being analyzed and its key characteristics. Chapter 5 contains the information 

on the econometric modeling. This chapter details the different models being used, as 

well as any parameter or data testing that has been done. Chapter 6 presents the results of 

the econometric models. Chapter 7 shows the process and results of the agriculture water 

use simulation model. Finally, chapter 8 concludes the paper and makes 

recommendations for future work. 
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Chapter 2: Literature Review 

This chapter reviews literature that analyzes, both quantitatively and qualitatively, 

the effects of climate change. Initially, I reviewed general research on climate change and 

how forecasts are made and evaluated. Then the focus moves to what hydrologists and 

economists have done. Typically, climate forecasts are analyzed quantitatively, citing 

more theory than actual mathematical research, although some authors including Katz, 

Teisberg, and Adams attempt to quantify the value of climate forecasts to various sectors 

of the economy. Generally, results show a substantial increase in potential profits to 

different economic sectors with an improvement in climate change forecasts  

Section 2.1 reviews basic climate forecast research. These papers discuss the 

history of climate forecasts with no special regard to any economic sector, but instead 

only analyze the usefulness of forecasts in general. Section 2.2 describes the Oceanic 

Nino Index (ONI) and the El Nino Southern Oscillations Index (ENSO). These two 

phenomena are a key factor in climate forecasts because they directly impact the weather 

situations throughout the United States. It is important to understand the research on these 

weather patterns in order to comprehend what techniques other researchers have used 

when dealing with climate change. Section 2.3 contains research for the hydrology and 

water supply sector. This research is focused on reservoir performance and stream flow 

predictions based on climate forecasts.  

Section 2.4 discusses the research performed in regards to the energy sector. The 

authors analyze how the energy supply and demand markets could be affected based on 

different climate forecasts. Section 2.5 reviews research performed in regards to the 
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agricultural sector. The majority of this research shows how farmers and water managers 

use climate forecasts to plan for crop planting and water orders. Section 2.6 shows what 

case studies have been performed regarding different aspects of climate change forecasts. 

These case studies vary from analyzing the usability of forecasts to determine how useful 

they are in practice to water managers, while others determine the effects of an incorrect 

forecast.  Case studies allow researchers the opportunity to view actual data and test 

different scenarios. Finally, section 2.7 describes my contribution to the research field. 

Literature regarding forecast skill is also discussed in chapter 4, where we describe 

various methods of determining the skill of a climate forecast.  

2.1 Climate Forecast Research and Background 

Climate change and climate forecasting have become popular research subjects since 

the El Nino/La Nina developments in the mid 1990‟s. Many economists and hydrologists 

have studied different patterns and forecasting methods to best predict different possible 

outcomes based on these weather phenomena. Initial research focused on how climate 

forecasts were conducted and their usefulness in this United States. Pagano and Garen 

(2004b) found that although climate forecasts did produce benefits to water managers 

(including farmers, city planners, and energy managers), although hazards were also 

present. These hazards stemmed from forecasts being incorrect.  

Hill and Mjelde (2002) previously analyzed much of the research done on climate 

forecasting, going through different phases of seasonal forecasting and evaluating the 
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literature that has been provided.  They discuss what actually makes a climate forecast 

valuable, citing four specific reasons: 

 The decision set‟s structure, what the decision maker will do with the information. 

 The decision environment‟s structure, the decision maker‟s technology, and resources. 

 The decision makers initial beliefs about the distribution of certain inputs.  

 The information systems characteristics.  

All of these characteristics must be observed while the decision maker has a 

flexible enough operation to make optimal management decisions. The authors also 

discuss the different types of valuations seen in papers, including field/farm level 

valuations and aggregate level studies.  Field level involves looking at a single farm or 

group of farms, while aggregate studies attempt to extrapolate the information in order to 

speak for a much larger population. Finally, they conclude climate forecasts are at their 

beginning point with a lot being known but even more left to be figured out. They stress 

the need for valuing climate forecasts to become an interdisciplinary effort and analyze 

the situation from many different angles.  

Katz (2002) analyzed the uncertainty of climate change and the possible 

techniques in modeling it. Four types of uncertainty are addressed: measurement error, 

variability, model structure, and scaling/aggregation. Measurement error is simply that, 

errors made in basic measurements when recording. Variability deals with the 

unpredictability of weather including temperature and precipitation. Model structure 
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discusses the type of model used to analyze these weather patterns whether it is linear or 

non-linear. Scaling error involves differences between the spatial and temporal scale.  

Three techniques for applying uncertainty analysis are also discussed: sensitivity 

analysis, scenario analysis, and Monte Carlo simulations. A sensitivity analysis allows us 

to change the relative input and see the effect on a certain outcome. However, it does not 

address the possible uncertainty of the given input. A scenario analysis models output 

based on trial values for input, but it does not aid in determining uncertainty. Finally, the 

Monte Carlo simulations treat outputs as a distribution and a function of different input 

distributions. This method does not account for model uncertainty, but it does take a 

probabilistic approach which is helpful. After testing these different approaches on 

different climate models, Katz concludes the most effective method of dealing with 

uncertainty is the probabilistic approach of Monte Carlo simulations. However, he warns 

against treating uncertainty as “something to be dealt with later,” and states these 

methods must be used while developing a model instead of afterwards.  

Meza and Hansen (2008) performed a review of ex-ante assessments analyzing 

the economic value of seasonal climate forecasts for agriculture. They discovered past 

research found climate variability imposes problems on decision makers chiefly through 

two different mechanisms. The first is climate variability and the second is uncertainty. 

Basically, the climate variability forces decision makers to make choices based in the 

future when not a lot of information is present. Taking certain climate situations as 

probabilities can lead to incorrect decision making for risk-averse and risk-neutral 

farmers. The second problematic mechanism is the uncertainty associated with climate 
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forecasts. This uncertainty forces decision makers to interpret certain impacts of a 

forecast, which can either be correct or incorrect and can lead to incorrect planning 

systems. 

 The methodology behind this study involved a lot of social science techniques 

including surveys and participatory research. The authors analyzed a series of papers 

regarding climate change and agriculture and combined all of this data to form overall 

conclusions about the value of forecasting. While there is no specific model used in this 

approach, it does take into account differing opinions of other published papers. 

Conclusions show useful seasonal climate forecasts have positive benefits to the 

agriculture sector, however, in a modest fashion to the majority of farming communities. 

The particularly high rain fed forest regions where climate variability is at its highest is 

where seasonal forecasts are of the greatest use.  The authors suggest the focus should 

simply be on improving the forecasting systems in a couple simple ways:  

 Focus the forecasting on those regions with the highest climate variability and those with 

high agricultural value.  

 Combine the qualitative social science methods with a bio-economic modeling approach.  

 Incorporate crop types more heavily in prediction, including possible crop production 

numbers.  

 Broaden the measures of forecast value to include environmental benefits and 

development. 
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 2.2 Oceanic Nino Index and El Nino Southern Oscillations Index 

The Oceanic Nino Index (ONI) is a measure of the departure from normal sea 

surface temperature in the east-central Pacific Ocean. The Climate Prediction Center 

(CPC) (2010) released a paper focused mainly on the ONI. They defined the ONI as a 

three month running mean in the Nino 3.4 region. It is used as a measure to compare 

current events to historical ones and label El Nino and La Nina periods. Based on the 

ONI: 

El Nino: Positive ONI greater than, equal to +.5 degrees Celsius.  

La Nina: Negative ONI less than, equal to -.5 degrees Celsius. 

In order for either event to be classified as an official El Nino/La Nina, these 

characteristics must hold for a period of five consecutive three month seasons. There 

have been 17 El Nino episodes and 13 La Nina episodes since 1949 based on this 

criterion. The CPC summarizes that El Nino is present across the Pacific Ocean and will 

be at least through 2010.  

El Niño refers to the above-average sea-surface temperatures that periodically 

develop across the Pacific. It is sometimes referred to as a Pacific warm episode. The 

Southern Oscillation describes large fluctuations in air pressure between the western and 

eastern tropical Pacific. The Southern Oscillation Index (SOI) is designed to measure the 

strength and phase of these fluctuations. During El Niño episodes, the SOI has a large 

negative value due to lower-than-average air pressure. Combining these two measures, 

the ONI and SOI, we arrive at the El Nino Southern Oscillations index (ENSO). El Nino 

periods typically occur every five years, with the strongest periods being between 
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December and April. This is because sea surface temperatures are typically warmer 

during this time of the year (Climate Prediction Center, 2010). Scientists use the ENSO 

index to detect abnormal climate patterns and adjust accordingly when making climate 

forecasts.  

Livezey (2008) tested the effects ENSO periods had on climate forecasts 

throughout the United States. Using one year‟s worth of data on precipitation and 

temperature forecasts on all 102 climate divisions, Livezey analyzed the change in skill 

scores over ten different seasonal periods based on the presence of ENSO cycles and 

varying lead times. He found, in terms of precipitation, ENSO is the only source of skill 

in climate forecasts. He also found when dealing with temperature, ENSO is a strong 

positive factor in forecast skill and even without the presence of ENSO skill is strong in 

the southwestern United States. Finally, Livezey found that skill does not vary across 

different lead times, with the exception of strong ENSO periods during winter seasons.   

2.3 Hydrology and Water Supply Research 

Pagano and Garen (2004a) analyzed western United States water supply outlooks 

based on climate forecasts. They compared two different forecasting techniques: the 

Natural Resources Conservation Service used a statistical regression to forecast, and the 

National Weather Service used a simulation of stream-flows program. Comparing the 

outlook of these two forecasts to actual water supply figures, the authors found the NRCS 

forecast was preferred. A more general finding was that forecasting skill has improved 
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for the January-March time period. They also found it is feasible with our forecasting 

techniques to conduct pre January forecasts. 

Ivanov and Vivoni (2004) conducted a study of surface and rainfall data and used 

it to analyze its effect on current hydrology modeling efforts. Using a triangular network 

hydrological model, they analyzed stream flow predictions versus actual observations and 

modeled land surface water data as well as energy states and fluxes. This technique 

enabled analysis of the potential for utilizing fully distributed models. The authors found 

if stream flow predictions can be more accurate, it lends more reason to use and trust the 

current hydrological models.  

Christensen and Wood (2004) studied the effect of climate change on the 

hydrology of the Colorado River water basin. They compared simulated hydrological and 

water resources scenarios derived from downscaled climate simulations of the United 

States Department of Energy versus observed historical climate. The authors analyzed 

temperature and precipitation as potential climate variables that would affect water 

resources. Using a water management model with simulated stream flows and possible 

climate change scenarios, they found that stream flows associated with control and future 

climate would significantly degrade the performance of the water resource system. 

Finally, the authors concluded the high sensitivity of the reservoir system performance 

was a reflection of the system that requires slightly less than the long term inflow 

prediction.  
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2.4 Energy Sector 

Research has been performed analyzing climate forecasts and how they play a 

role in the energy sector. Weiss was one of the first to analyze the effects climate could 

have on the energy sector (Weiss, 1982). He found temperature and precipitation had a 

resounding effect on natural gas and residential electric markets. The focus was on the 

process in which decision makers go through when using climate information. The 

problem Weiss found was seasonal forecasts had a very limited use in managing energy 

supply, only because decisions were based very short term (hours to day forecast, not 

monthly.) However, this research was performed in 1982 when forecasts were still very 

basic. Weiss concluded forecasts can encourage energy efficiency, help consumers plan 

for energy emergencies, and help low income households deal with increasingly high 

energy bills. Some years later, Teisberg and Weiher (2005) followed up on Weiss‟s 

research by analyzing the possible savings accurate climate forecasts can have on 

electricity generators. They looked at two years of energy information and compared the 

savings to energy generators between a persistent, perfect, and estimated forecast. The 

estimated forecast was the least useful while the persistent forecast was better. Obviously, 

the perfect forecast was the best, and it was estimated a perfect 24 hour forecast could 

save producers approximately $166 million per year in lost energy demand. A perfect 

forecast is of course un-attainable, but it shows the potential value of more accurate 

forecasts to the energy sectors.  

Tanimoto (2008) continued research in the energy sector, focusing on the 

Southwest United States. He attempted to create models that would forecast short and 
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medium term electricity load and analyze the factors (specifically climate) that affected 

demand. Tanimoto found temperature to be a very significant determinant of energy 

demand in both the short and medium time frames. He also suggests that future research 

should focus more on climate forecasts, due to the previous nature of the National 

Weather Service forecasts and their shortcoming. The most notable of these problems 

being that forecasts were not given enough in advance for them to be particularly useful 

to energy managers.  

2.5 Agriculture Sector  

Much like the energy sector, climate forecasts can potentially provide large 

benefits to the agriculture sector, therefore, much research has been conducted in this 

field. Adams and Bryant (1998) researched the value of climate predictions to the United 

States agriculture sector and found perfect climate information would be worth 

approximately $323 million per year. Adams compared the climatology forecast (equal 

chances for all forecast categories) to a perfect forecast. Adams found a perfect forecast 

would allow agriculture users to make perfect decisions and maximize profits.  

Jones and Hansen (2000) analyzed the potential benefits of climate forecasting 

with respect to the agriculture sector. They focused on the Southeastern United States, 

mainly Georgia, during his study. Using historic weather data including temperature and 

precipitation, they calculated the benefits of knowing the exact temperature and amount 

of precipitation in terms of decision making. The conclusions were that perfect 

knowledge leads to a sizeable increase on overall potential profits. The largest problem 
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the authors found dealt with the uncertainty of temperature and precipitation values, 

which cause incorrect decisions based on forecasts.  

Mjelde and Fuller (2000) compared the value of Southern Oscillation Index-based 

climate forecast methods for Canadian and United States wheat producers. They analyzed 

thirteen different producers throughout Canada and the United States. The study 

compared two different forecast methods: a three phase and a five phase method. The 

three phase method was the ENSO prediction consisting of below, neutral, and above 

predictions. The five phase method consisted of consistently negative, consistently 

positive, rapidly falling, rapidly rising, and consistently zero predictions. The authors also 

used a perfect forecast as the control for the experiment. The economic decision model 

was based off of the best of the three, five, and perfect forecast methods. They found five 

of the thirteen producers preferred the three phase method, seven of the thirteen preferred 

the five phase method, and one producer preferred no forecast at all. When calculating 

the economic benefits of each of the methods, the authors found, in terms of the seven 

producers who prefer it, the five phase method approach is approximately seventy times 

more valuable than the three phase approach. On the other hand, according to the five 

producers who prefer it, the three phase approach is approximately twice as valuable as 

the five phase method. With these results, they conclude a single forecast will not suffice 

for all producers and different forecasts will need to be calculated depending on different 

regions.  

Hansen (2002) laid the groundwork for how climate forecast can be used by the 

agricultural sector. He set out a list of conditions that must be followed for climate 
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information to be used. Some of these conditions included having accurate climate 

information, decision makers must utilize forecasts, proper institutions must be 

established, and finally, communication between researchers and decision makers must 

be established. With these conditions being satisfied, Hansen found only then would 

managers be able to maximize the use of climate forecasts.  

Katz and Letson (2009) analyzed the value of ENSO information to typical 

farmers. Using analysis that compares the expected value of a decision made with 

accurate climate prediction with that of a decision made with no climate information. The 

area they focused on is a region near Pergamino, Argentina. The authors use expected 

utility and prospect theory to decide what would be the “optimal” choice for farmers. 

Empirically, they use crop simulation models to show what amounts of crops are going to 

be used in the study. A stochastic whole-farm crop and management choice model was 

used to capture the role of climate forecasts and estimate their value.  

Katz and Letson also attempt to analyze different assumptions about different 

types of farm operations. For example, they look at land tenure (ownership versus short-

term leases). They concludes that the two situations analyzed, land tenure versus 

objective functions (expected utility or prospect theory), and are inversely related. 

Depending on the risk preference of the farmer, he can use the information “offensively” 

and attempt to profit more from the climate predictions. Another possibility is he can act 

“defensively” and attempt to minimize possible losses. Using all of this information, the 

authors estimate roughly the improved ENSO information would increase a farmers net 

worth by twenty-five to thirty percent. However that is all the quantitative information he 
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gives. In terms of discussion the authors point out that land tenure type must be taken into 

account, as well as risk preferences, goals of the farmer, and crop types. Finally, they 

close with the thought that improved ENSO will be a benefit to agriculture, but only if 

the decision maker can incorporate all of these things into his analysis and make an 

“optimal” decision. 

2.6 Case Studies 

Case studies are a popular method of analyzing climate forecasts. It gives the 

researchers the opportunity to look at actual data and test different scenarios. Hammer 

and Holzworth (1996) conducted a study in Australia in a region with very high climate 

variability. The problems the region faced included choice of planting time, varietal 

development pattern, and fertilizer strategy. The authors found the solution to all of these 

problems was a proper seasonal forecast. Using what they called a forecast with 

„moderate‟ skill (no definition is given), forecasting is sufficient to justify use in tactical 

management of crops. The authors do suggest that future research work should focus on 

analyzing sensitivity to location, antecedent conditions, and price structure. 

Hamlet and Lettenmaier (2000) focused on the Pacific Northwest and mainly 

analyzed the Columbia River Basin. Using six different forecast scenarios, climate 

forecasts were obtained and used in modeling of Pacific Northwest possible stream-

flows. Two possible methods of forecasting are looked at: the first being the simple 

meteorological method analyzing past observed climate data and then comparing it to a 

similar situation in present day. The other involves using regional nested data to develop 
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a more sophisticated model dependent on the specific area being analyzed. The authors 

show the ability to forecast winter ENSO in one of the three categories previously 

described (above, neutral, and below) is feasible with a lead time of roughly six months. 

Using these six month forecasts, accurate summer stream-flow forecasts can be achieved 

as well. They conclude that with current technology, short term climate prediction should 

be dealt with using the meteorological model while long term issues can currently be 

analyzed with the nested model. Currently, the global climate models being used are 

adequate for regional use, however, for how long is uncertain. As each region continues 

to change more severely with climate change, these global models become inadequate.  

Hamlet and Huppert (2002) performed a case study analyzing the Columbia River 

and the economic value of long lead forecasts in terms of hydropower. They took six 

month lead forecasts and used them to predict energy release cycles and demands. In 

order to predict stream flow amounts, a reservoir simulation model was used. The authors 

found a high stream flow led to spot market energy sales as well as increases in non-firm 

energy production. They conclude the use of long-lead forecasts resulted in an increase in 

hydropower revenue.  

Ni and Cavazos (2002) studied the history of seasonal precipitation over the last 

century in Arizona and New Mexico. Using a thousand year reconstruction of 

precipitation cycles, they constructed linear regression models to „predict,‟ or analyze, 

precipitation patterns. The authors found the model performed better in dryer years, 

although without knowing what explanatory variables went into the model, it is hard to 
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say how accurate the parameters are, especially with just a linear model. Finally, they 

also found dryer years had a larger impact on forecast error than the wetter years.  

Pagano and Hartmann (2001b) looked at the Arizona water supply during the 

1997-98 El Nino season. They interviewed different agencies about their experiences and 

usage with climate forecast. The authors found seasonal precipitation and temperature is 

being under-utilized. Pagano and Hartmann concluded there is a need for a stronger 

relationship between forecasters and water managers, most likely in the form of monthly 

or yearly forums between these groups.  They also note an implementation of policies 

that allow a certain amount of flexibility when using forecasts would immediately 

encourage water managers to pay more attention to forecasts.  

Pagano and Hartmann (2002) continued their previous research (2001) 

interviewing agencies and studying the El Nino episode of 1997-98. They found the 

agencies used the climate forecasts as „warnings‟ of extreme events instead of a modeling 

tool. Some agencies claimed to be insensitive to climate variability citing a lack of short 

term flexibility or possible legal barriers. The authors conclude in order for climate 

information to be useful to actual users of the forecasts, accuracy was a key factor. The 

more accurate the forecasts, the more reliable and useful they are to decision makers. Yao 

and Georgakakos (2001) performed a case study on Folsom Lake. Their study analyzed 

the response of the area to historic climate variability. By testing the sensitivity of the 

reservoir to different forecast schemes, they conclude more reliable inflow forecasts 

immensely benefit reservoir performance.  
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The misinterpretation of forecasts is also a key component not quantitatively 

analyzed. Hulme (2009) performed a case study in Victoria, Australia, in which decision 

makers used a climate forecast to develop a water model for the next fifteen years. In this 

example, the climate changed dramatically and the state was left in a critical condition. 

Hulme suggests climate forecasts be used to predict what cannot happen, or at the very 

most, predict what is the worst that can happen. Instead of using forecasts to model 

probable events, use them to look at improbable events.  

2.7  Contribution  

In the research conducted to date, no one has made a direct link between forecast 

skill and the economic aspects of potential improvements in water management that 

forecasts may facilitate.  This linkage between forecast skill and water-related economic 

benefits is addressed here. This thesis presents a direct link between the skill level of a 

forecast and the corresponding economic value of forecast skill in water management 

decisions. The thesis uses econometric techniques to model skill of forecasts based on 

lead times, as well as a model that simulates water demand for the lower Colorado River, 

to identify and analyze economic values related to forecast skill.  
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3. Lower Colorado River Agriculture Water Use Model 

A model used in this paper is our Colorado River agriculture water consumptive 

use model. For the remained of the thesis, we will refer to this model as the agriculture 

water use model.  This model was developed to predict the amount of water a specific 

irrigation district will consume in any given month based on a variety of climate and 

planting factors.  

3.1 Background and Data 

The Colorado River is a major source of water to the southwestern part of the 

United States providing irrigation and drinking water for California, Nevada, and 

Arizona. A number of dams have been built to divert water from the river to cities and 

irrigation districts. Irrigation districts order monthly water diversions from these dams. 

Over 100 Irrigation Districts use water taken from the Colorado River and these farms 

fall into different irrigation districts. Many times a farm will order too much water, and 

the leftover water must be re-diverted back to the river much further downstream. 

Similarly, farms often time underestimate the amount of water needed in a given month, 

and therefore, order too little water. This leads to a fall in crop production and an 

eventual loss in profit to the farm.  The Bureau of Reclamation (BOR) reports the amount 

of water diversions ordered by a certain irrigation district. Using this value, the BOR then 

calculates how much of the water was used by other sources, as well as how much water 

was returned downstream. The difference between overall water diversions and the 

amount used by other sources and also what was returned downstream is the consumptive 
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use by an irrigation district. An example of this accounting method is presented in 

Appendix A.  Our model shows the amount of water consumed by an irrigation district as 

a function of acres planted, crop shares, precipitation, and temperature. Fourteen 

irrigation districts were used in the composition of this model. The fourteen chosen were 

based on their proximity to the river and the amount of water used from the river. They 

were also chosen in accordance with their history of accurately reporting crop data. Each 

of the districts has data going back to at least 1995, and not simply total acreage, but data 

on which type of crop is being planted. Of these fourteen districts, eleven are located in 

Arizona while three are California based. While some of them span both states, these are 

categorized based on which state the majority of their crops are grown. A list of the 

irrigation districts can be found in Table 3.1.  

The variables used in this model represent the basic factors that affect how much 

water is used monthly by irrigation districts. The key dependent variable analyzed is 

amount of monthly water consumptive use, as reported by the Bureau of Reclamation; the 

amount of water consumed by districts each month. This acts as our dependent variable 

in the model. The unit of measure of water consumption is acre-feet per month, and an 

acre-foot is equivalent to 326,000 gallons of water. The amount of acre-feet used varies 

widely in regards to the size of the district. The largest district being Imperial Irrigation 

District with 377,934 acre-feet in July of 1998 and the smallest being Cocopah Irrigation 

District with18 acre-feet in April of 1996. The explanatory variables were chosen based 

on factors which are hypothesized to affect agricultural water consumption. The largest 

factor is clearly the number of acres planted by the district. It is expected that the larger 
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the area of production the more water consumed. The data on total acreage planted came 

in two forms. Some districts reported only monthly totals of acreage while others only 

reported their yearly totals. In the case of monthly totals given, those were summed 

throughout the year and then inputted directly into the data set. The yearly totals were 

used without modification. There is a wide range of total acres planted across the 

districts. One of the variables used in this study is the share of different crop groups; 

cotton, grains, corn, forage, tree, fruits/vegetables (Fruit and vegetable are grouped 

together), and „other‟. The share of a certain crop group can be zero representing a 

district that planted none of the specified crops. These values were inputted into the data 

set in the same manner as total acreage with equal weight given to each month to 

represent a total amount per year. All of this data: water consumption, total acreage, and 

crop shares, were taken from the Bureau of Reclamation annual reports on the lower 

Colorado River (Lower Colorado River Water Accounting, 2010). 

To account for the change in time when comparing monthly water consumptive 

use to yearly acreage planted, monthly dummy variables were employed. Since different 

crop types are planted at different times throughout the year, these monthly variables can 

help to identify which crops are in the ground when different amounts of water are being 

used. These monthly variables, in conjunction with the different shares of crops, can 

enable us to see which crop groups are the most water dependent and can be accounted 

for when calculating total water consumptive use. The water price data was provided by 

the Imperial Irrigation District news archives. Of all the fourteen districts in this study, 

only Imperial Irrigation District charges a significant marginal cost per acre-foot of water 
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used. The logarithm of price is taken so a percent change can be analyzed as marginal 

cost is changing. The marginal cost charged for Imperial Irrigation District is shown in 

the chart below. 

Table 3.2 Marginal Cost of Water 

Year Ln(Marginal Cost)  

1995 $2.76 

1996 $2.56 

1997 $2.58 

1998 $2.64 

1999 $2.66 

2000 $2.68 

2001 $2.68 

2002 $2.70 

2003 $2.71 

The other thirteen districts charge a marginal cost per irrigated acre, but only if the farm 

reaches a certain level of consumption. However, growers in these districts do not exceed 

this cap. Imperial Irrigation District growers do exceed the cap in their district on a 

monthly basis. The consumption cap per acre is set by a board of directors comprised of 

members from each irrigation district. Since Imperial Irrigation District growers do pay a 

per unit marginal cost for water, that cost has been included in this model. 

The other explanatory variables used were climate variables: temperature, 

precipitation, and price. Temperature and precipitation are used to capture the effect 

variations in current regional climate change potentially have on the amount of water 

being consumed. These values were taken from the Arizona Meteorological Network 

(AzMet) and the California Irrigation Management Information System (Cimis). Both of 

these sources use weather stations placed in different locations throughout the state to 

monitor different weather variables. AzMet provided weather data for eleven of the 

irrigation districts, all based in Arizona, while CIMIS provided data for the three 
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California Irrigation districts. The temperature and precipitation data were recorded daily. 

The monthly average of temperature was employed in the model, as is the total amount of 

precipitation in a month.  

 In order to better understand some of the parameters, certain transformations were 

applied to the data. Since the size of the districts varies so much from Imperial Irrigation 

District (500,000 acres/year) to the Cocopah Irrigation District (1300 acres/year), 

percentage changes are more applicable than net changes. A 1000 acre change means 

much less to Imperial than it does to Cocopah, but a 10% change in acres is significant 

throughout all the districts. Therefore, to enable us to look at the percentage changes, we 

apply a logarithmic transformation to certain variables such as water consumptive use, 

total acreage, temperature, and price. This transformation allows us to analyze a 

percentage change in acreage planted, temperature, or price and see the overall 

percentage change in water consumption. The temperature value was lagged two months 

in the model developed. In order to analyze the effect of temperature, the previous 

monthly temperatures are expected to affect water consumption more heavily than the 

current monthly average temperature. This is because of the need to schedule water 

deliveries in advance. The lagged temperature variable may also capture cumulative 

changes in soil temperature and moisture that will affect crop water needs. The model 

also includes an interaction variable between the lagged temperature and precipitation, 

which was formed to incorporate the effect on water diversions of extreme climate 

scenarios. The other variables were not transformed because many had zero values so 

taking the log would be undefined. Hence, we can only analyze a net change in these 
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explanatory variables and see the corresponding percentage change in water diversions. 

These variables include all of the monthly dummy variables. The share of certain crop 

types were not transformed either because some shares are zero when a grower does not 

plant a certain type of crop. Finally, the precipitation value was not transformed because 

it is commonly a zero value for certain Irrigation Districts. The summary statistics for our 

dataset can be found in table 3.3, while a list of the variables, definitions, and expected 

signs can be found in table 3.4.  

3.2 Data Testing 

In order to detect specific econometric characteristics in the data, certain tests 

must be performed. The dataset takes the form of panel data, which refers to a dataset that 

contains both time series and cross section elements. In our case, there is a time series 

element within each cross section unit. The cross sectional units are the fourteen 

irrigation districts. Each irrigation district also has a time series element, which are the 

separate months that data is collected. Since the dataset is constructed in the form of 

panel data, there are three possible sources of misspecification. These are 

contemporaneous correlation, autocorrelation, and heteroscedasticity, all of which must 

be accounted for.  

Our first test performed will be for contemporaneous correlation. This 

specification tests whether the errors between separate panels (irrigation districts) are 

correlated with one another. Our hypothesis will be that the errors are correlated. We will 

use a Breusch-Pagan Lagrange multiplier test statistic that is distributed as a Chi-squared.  
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The second test performed was a test for autocorrelation to account for the possibility of 

there being a time correlation between different monthly or yearly periods. A Durbin 

Watson statistic was generated. Our hypothesis is that there is no autocorrelation present. 

The last test performed was for heteroscedasticity. In the case of cross sectional data, it is 

possible that the variances of the estimates may not be constant. In order to run ordinary 

least squares, constant variance is assumed. If the variance is not constant, this leads to an 

estimator which is still unbiased and consistent; however the standard errors are 

incorrect. This can lead to a misinterpretation of the significance of parameter estimates. 

In order to test for heteroscedasticity, we will use a Lagrange multiplier test that is 

distributed as a Chi-squared. Our hypothesis will be that the data is homoscedastic 

(heteroscedasticity is not present). The distributions and test statistics for these 

specification tests were taken from Greene (2008).  

In order to test for all three possible sources of misspecification, the statistical 

software program „SHAZAM‟ was used. This program enables us to test for all three 

errors at the same time, eliminating any source of bias when determining testing order. 

The program uses the tests we have listed above. The table below shows the results and 

corresponding test statistics calculated by SHAZAM for each of the tests described 

above.  
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Table 3.5 Test Statistics 

 

Potential  

Problem 

Test Degrees  

of 

Freedom 

Test Stat Correction 

Needed? 

Contemporaneous 

Correlation 

Breusch-Pagan 91 X^2 =880  Yes 

Autocorrelation Durbin Watson 1,512 X 23 DW =2.082  Yes 

Heteroscedasticity Lagrange 

Multiplier  

13 X^2= 1402.5 Yes 

 

To summarize the findings of the three tests, all three sources of misspecification are 

present in the data and must be accounted for.  

3.3 Model  

Since we found misspecification errors in our dataset they must be corrected for.  

In order to correct for these errors the „SHAZAM‟ statistical package was used. This 

package enables us to automatically correct for the potential econometric errors 

associated with the data. Using an OLS procedure that has accounted for 

contemporaneous correlation, autocorrelation, and heteroscedasticity, we arrive at our 

augmented model.  The parameter estimates and standard errors are shown in Table 3.5. 

The R-squared value for the model is a very good, 0.9312, implying the explanatory 

variables are rather accurately predicting water consumptive use. As the table shows, all 

of the variables proved to be significant factors in determining water consumptive use 

with the exception of the share of forage, share of cotton, and the share of „other‟. The 

lack of significance with the crop groupings forage, cotton, and “other” are not 

problematic either since these crop groups are not relatively large water users.  
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We also tested another model in which none of the independent variables were 

transformed. Our goal with this model was to determine what improvement in our 

original model was due to the presence of logarithmic transformations. This model 

removed transformations from the dependent variable; water consumptive use, as well as 

our previously transformed independent variables which included temperature, price, and 

acres planted. We found this model to have an R-squared of 0.801. This implies that the 

logarithmic transformations do enhance our model, although both models still perform 

quite well. The ability to compare our model to other models also required us to perform 

a regression analysis using the same dependent variable in both models. Since the Bureau 

of Reclamation has developed its own method of analyzing the amount of water 

consumptive use for each irrigation district, we needed a model that did not transform 

water diversions so we had the ability to compare across the two models of agricultural 

water use.  

3.3 Evapotranspiration Model 

The Bureau of Reclamation (BOR) has developed its own method of determining 

water usage by various Irrigation Districts. The BOR calculates evapotranspiration (ET) 

as a measure of water used each month. Evapotranspiration is defined as water lost from 

both transpiration from plant leaves and evaporation from soil and wet leaves also known 

as crop water use or consumptive use. ET calculations are not forecasts, but are an 

accounting method the Bureau of Reclamation Uses to estimate water use by crop in the 

lower Colorado River Basin. The crop ET can be estimated by calculating the reference 

http://irrigation.wsu.edu/Secondary_Pages/Irr_Resources/Res_Glossary.php#transpiration
http://irrigation.wsu.edu/Secondary_Pages/Irr_Resources/Res_Glossary.php#evaporation
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ET for a particular reference crop from weather data and multiplying by a crop 

coefficient. The reference ET is calculated using an equation developed by the American 

Society of Civil Engineers (ASCE). This equation varies from crop to crop, however, the 

general equation takes into account crop type, soil properties, temperature, and 

precipitation values (Bureau of Reclamation, 2010). Using the reference ET values along 

with crop data, the crop ET is calculated. Finally, using the different crop ETs along with 

knowledge of planting decisions, a monthly ET is calculated by the Bureau of 

Reclamation for each Irrigation District. This monthly ET is representative of how much 

water an Irrigation District is thought to use each month for agriculture use.  

The BOR‟s method of calculating monthly ET values attempts to model the same 

dependent variable, water consumptive use, as our agriculture water use model. 

Therefore, a comparison is needed to ensure our agriculture water use model performs at 

least as well as the ET model if not better. In order to do this, ET values were gathered 

from the BOR for ten of the fourteen irrigation districts analyzed in our Colorado River 

model. (Data on four of the irrigation districts were not available for all of the years, and 

therefore, were omitted from the study). An ordinary least squares regression was run 

with the natural log of water consumptive use as the dependent variable and the natural 

log of monthly ET values as the independent variable. The natural log was used so we 

were able to compare the BOR model and our agriculture water use model. The R-

squared value for this regression was 0.923. In order to further investigate the connection 

between water consumptive use and ET other regressions were ran using variations of the 

original model. The next model we ran also included dummy variable for the Irrigation 

http://irrigation.wsu.edu/Secondary_Pages/Irr_Resources/Res_Glossary.php#cropcoefficient
http://irrigation.wsu.edu/Secondary_Pages/Irr_Resources/Res_Glossary.php#cropcoefficient
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Districts to determine if the model was more accurate when dealing with certain districts. 

This model had the form of Log of water diversions as a function of Log of ET and 

dummy variables for the irrigation districts with an intercept included. The R^2 of this 

model was .927. The final model run removed the logarithmic transformations from both 

water consumptive use and ET but maintained the dummy variables for each of the 

irrigation districts. This model had an R^2 of .956.A comparison can only be made 

between models in which the dependent variable is in the same form. In our analysis two 

comparisons can be made, the first in which there is a logarithmic transformation is 

applied (models 1 and 2 below). The second comparison is between models 3 and 4, in 

which the water consumptive use variable is not transformed.  

 

Table 3.6 Comparison of Water Consumptive Models 

Model N R^2 Value 

Agriculture water use model 1,080 0.931 

Log(Diversions) = Log(ET) + Irrigation District Dummy 

Variables 

1,080 0.927 

Agriculture water use model without logarithmic 

transformations 

1,080 0.801 

Diversions = ET + Irrigation District Dummy Variables 1,080 0.956 
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Comparing these results with our Agriculture water use model we find our model 

performs slightly better in predicting water diversions than the ET models with a 

logarithmic transformation. However, our model performs slightly worse than the model 

where no logarithmic transformation was applied to ET or water diversions. These R-

squared values may be slightly skewed because the Agriculture water use model contains 

more observations than the BOR ET model. However, at the worst, our model performs 

comparable to the BOR model and can be used with confidence.  

3.4 Model Implications 

This model yields a critical tool for later simulating a water manager‟s decision 

based on climate forecasts (see Chapter 7). By substituting forecasted values for 

precipitation and temperature into this water consumptive use model, we use the model 

presented here to calculate the amount of water most likely used by irrigation districts. 

Using this information enables us to decide what course of action will be taken by city 

water managers when deciding on diversion amounts. This model will be used later in the 

thesis to simulate decision by city managers and determine the economic effects of both 

high and low skilled forecasts. 
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4. Climate Forecast Data  

 Climate forecasting is thought to have extraordinary benefits to the agriculture 

sector, a sector that is vulnerable to changes in temperature and precipitation. If future 

climate can be predicted with relatively good accuracy, the agriculture sector can see the 

benefits in the form of correct planting decisions and water orders. Forecasting contains 

many different elements. The elements we are interested in are the forecasting of seasonal 

temperature and precipitation as it relates to various climate divisions.  

4.1 Climate Forecasts 

 The United States has been separated into 102 climate mega divisions. These 

divisions are based on groups of weather stations varying in a similar manner from year 

to year and are thought to reflect similar regional climate processes. Using data from the 

Climate Prediction Center, we have data on 102 separate climate divisions over twelve 

years. Our study focuses on the Western United States and the effect climate forecasts 

will have on this geographical sector. A list of the twenty-seven climate divisions 

analyzed can be found in Table 4.1.  A map showing the different climate divisions is 

shown below (the area outlined in black show the climate divisions included.)  
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Figure 4.1 Climate Divisions Map  

 

*Map is from Climate Prediction Center, www. cpc.noaa.gov 

Each separate data point is given with respect to one climate forecast. Each forecast is 

made predicting either temperature or precipitation and is made with differing lead times. 

The lead time describes the difference between when a forecast is issued and when it is 

issued for. For example, if a forecast is made in April 2003, and it is for May 2003, then 

it would be a one month lead time. If a forecast is made in April 2003, and it is for May 

2004, then it would have a 13 month lead time. The forecasts being analyzed have 

different lead times ranging from 1 to 13 months. The final descriptive variables included 

in our dataset are seasons. In terms of climate variability, seasons are described as a three 

month block. Blocks begin with January-February-March as the first season and end with 
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December-January-February as the twelfth season. Seasons are used instead of months to 

represent the longer time perspectives inherit in climate forecasts. Forecasts have 

historically been aimed at seasons instead of months because the variability month to 

month is much higher than from season to season. Therefore, we follow the nature of past 

climatology research and continue to use seasons in our analysis. 

4.2 Skill Scores 

Skill scores are a method researchers have developed to test the accuracy of 

different types of forecasts. There are a multitude of different skill scores (Pagano, 

2001a). These skill scores are imperfect as there are infinite ways to classify forecast 

skill. However, the skill scores have become accepted as a national measure of the 

accuracy of climate forecasts. They are used by the Climate Prediction Center, as well as 

many Universities dedicated to researching climate change. The method forecasts are 

used by decision makers differ from case to case and not all forecasts are the same, 

therefore, different forms of skill scores are needed. Some scores measure how well a 

forecast captures the event (surprise rate, and false alarm rate are prime examples). Frank 

Woodcock (1976) was one of the first to layout an evaluation method for forecasts. He 

analyzed only yes/no forecasts and provided groundwork for evaluation methods that the 

surprise and false alarm rates we are using stem from. Other forecasts attempt a 

probabilistic method of how likely an event is and to what degree (i.e. likelihood it will 

rain and how much). The Brier and Ranked Probability skill scores judge these types of 

forecasts performance. The Brier score was developed by Brier (1950) while the Ranked 
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Probability score was suggested by Epstein (1969).  These skill scores were not 

developed by Tom Pagano. However, he was a major contributor towards describing and 

evaluating them. These scores have been used by climatologist in recent years to evaluate 

the accuracy of climate forecasts.  

The forecasts we are analyzing use a probabilistic method and forecast for one of 

three categories:  Above, normal, or below. A percent weight is given to each of the 

categories based upon which is most likely to occur. For example, if it is most likely to 

rain more next month but highly unlikely it will rain less; the forecast would be presented 

in the following fashion: .15 chance of below, .35 chance of normal, and .5 chance of 

above. The forecasts probabilities will always sum to one. The table below shows an 

example of how the CPC seasonal forecasts are provided on their website.  

Table 4.2 Climate Forecast Example 

Climate 

Division 

Target 

Year 

Climate 

Variable 

Forecast 

Category 

Lower 

Boundary 

Upper 

Boundary 

% prob 

Lower 

% prob 

Normal 

% prob 

Above 

94 1999 1 3 79.9 85.5 .25 .35 .40 

95 2002 1 2 78.5 83.1 .333 .334 .333 

97 2001 2 1 .05 1.02 .398 .342 .26 

98 2000 2 0 0 0.89 .333 .333 .334 

 

This table shows the format in which forecasts are provided by the CPC. The 

climate variable refers to either precipitation or temperature, in which temperature is 

coded with a 1 and precipitation with a 2. The forecast category represents the type of 

forecast being given. A zero represents equal chances, in which there is no skill involved. 



47 

One represents a higher probability that the outcome will below, two estimates the 

outcome will be normal, and three expects an outcome of above. The lower and upper 

boundaries represent the range in which the possible forecast values can fall. If a forecast 

is expected to be „below‟, then it is expected to fall beneath the lower boundary. If a 

forecast is estimated to be „above‟ then the observation value is thought to be above the 

upper boundary. Finally, a forecast with a „normal‟ expectancy is expected to fall in 

between the upper and lower boundary. The probability percent represents how likely the 

forecast is. These forecasts are given as probabilities, and are not expected to be taken as 

exact. Obviously a higher probability of an outcome represents a higher likelihood of that 

event occurring. Understanding that, the skill scores we are using associated with these 

forecasts are as follows: 

Brier: The mean squared error of the probability forecasts. It sums up the probability of 

the forecast less the observed outcome. Basically, if there is a .6 chance of above and 

above occurs, the Brier Score would be; 

BS = (0.6-1) ^2 = 0.16. 

Ranked Probability: This score is similar to the Brier score except it takes into account all 

of the probabilities of each category. For example, if there is a forecast of .2 below, .23 

normal, and .57 for above, and above is observed, the Ranked Probability Score would 

be; 

RPS = (.2-0) ^2 + (.43 -0) ^2 + (1-1) ^2= 0.1 
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Typically, these skill scores by themselves do not mean much, so researchers will usually 

compare them to a baseline climatology skill and convert them into skill scores. The 

climatology skill is given as an equal chances prediction in which all three categories: 

above, normal, and below have the same likelihood (.3333) chance of occurring. The skill 

score is then calculated by dividing the probabilistic forecast derived above by the 

climatology forecast and subtracting it from 1. For example, looking at the RPS above, 

the climatology score would be: 

RPSC = (.33-0) ^2 + (.66-0) ^2 + (1-1) ^2= 0.55. 

Then in order to calculate the skill score we have 1- 0.1/0.55 = 0.818, a perfect skill score 

will be equal to 1.  

The second group of skill scores is usually applied to a specific group of forecasts 

(in our case one skill score applies to one season). When evaluating these, the score 

depends on the observed outcome and whether it is classified as „above‟, „normal‟, or 

„below‟. Therefore, there will be three skill scores associated with each category (surprise 

rate, false alarm rate.) One represents the observed „above‟ outcomes, then the observed 

„normal‟, and finally the observed „below‟. The equations for these descriptive skill 

scores are as follows:  

Surprise rate: One - probability of detection. How often was an event not forecasted? 

False alarm: Of all the times an event was forecasted to either occur or not occur. How 

often did the opposite happen?  
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As stated previously, all of these score equation and descriptions, brier, ranked 

probability, surprise rate, and false alarm rate, were taken from Pagano (2001). These 

scores were not invented, but described and analyzed by Pagano.  

 In order to calculate these skill scores we must first describe how to tell if they are 

„correct‟ or not. The forecasts are given in a probabilistic fashion with probabilities 

assigned to each of three categories. These categories are also related to an upper and 

lower boundary on observation values. If the true observation value falls below the lower 

boundary then the observed outcome is classified as „below‟. If the true observation falls 

above the lower boundary and below the upper boundary then the observed is classified 

as „normal‟. Finally, if the true observation value is higher than the upper boundary the 

observed is classified as „above‟. These lower and upper boundary values are determined 

by the CPC based on a fixed thirty year mean of historical data. These values are updated 

once every ten years and a new thirty year mean is calculated (Hartmann, 2010). 

Due to the nature of the Ranked Probability and Brier Skill scores each separate 

forecast can be given a skill score. With a specific climate division, lead time, and 

observation (temperature or precipitation value) a corresponding skill score can be 

assigned. Therefore, for each seasonal data set in which we have 4,212 forecasts we also 

have 4,212 skill scores. However, when analyzing the surprise and false alarm rates the 

same characteristics do not hold true. These skill scores describe how often an event is 

captured and not how accurate a forecast is. Therefore, when dealing with these scores, 

we must analyze them over a period of time and look at the sums of correct forecasts 

versus incorrect ones.  Our decided method is to analyze the scores on a season to season 
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basis. We calculate the surprise and false alarm rates over the course of a season and 

compare which season‟s forecasts perform the best.  

All of the skill scores were coded and calculated in SAS using equations taken 

from Pagano. To ensure accuracy, these calculated skill scores were randomly checked 

against the Forecast Evaluation Tool, which is a website provided by NASA, NOAA, 

CLIMAS, as well as other parties, that analyzes climate forecast skill. This website uses 

climate data to calculate various skill scores and report them in a similar fashion as we do 

to. Therefore, to ensure our forecast skill score coding was correct, comparisons were 

made between the two methods.  

4.3 Data Cleaning 

Our original database contained information for twelve years over all 102 climate 

divisions in the United States. However, our research focused on the agriculture sector 

and how climate variability would affect decision makers mainly in the Western United 

States. With this in mind, there is a need to manipulate the dataset to be more 

representative of our area of interest. The first change needed is to condense the climate 

divisions being analyzed to only represent those located in the Western United States. 

Therefore, only twenty-seven climate divisions are included in our study. Also, since 

seasonality is a large factor affecting climate forecasts, we need to look at the data as it is 

separated by seasons. Therefore, I have separated the dataset into twelve different subsets 

with each one representing a separate season. With all of this cleaning, each dataset 

(representing a single season and single climate variable, and either temperature or 
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precipitation) contains approximately 4,212 observations. Each of these observations 

represents a separate lead time and issue month with respect to a certain climate forecast.  

4.4 Summary Statistics 

These summary statistics show the background of the entire data set constructed. Table 

4.2 table shows the descriptive statistics in regards to temperature while the table 4.3 

describes the precipitation data set. These statistics are representative of all twelve 

seasons for each climate variable. Lead time describes the monthly difference between 

when a forecast is issued and its intended season. ONI is an index developed to describe 

sea surface temperature in the Pacific and is an indicator of the El Nino and La Nina 

phenomenon. Lower and upper boundaries indicate the approximate bounds that the 

temperature or precipitation values can be. If a forecast is given as above, then it is 

assumed to be above the „upper boundary‟. These statistics are shown to describe how 

low and high forecasts are typically given. The observation value is the actual 

temperature or precipitation value observed during the season. Finally the ranked 

probability and brier score are different measures of forecast accuracy. Both range from 

negative infinity to one, with zero representing no skill and 1 representing perfect skill.  
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Table 4.3 Precipitation Summary Statistics: 

Variable Name *N Minimum Mean Maximum 

Lead Time 50,544 1 7 13 

ONI 50,544 -1.6 0.07 2.5 

Lower Boundary (Inches) 50,544 0.09 2.97 17.57 

Upper Boundary (Inches) 50,544 0.25 4.33 24.6 

Observation Value (Inches) 50,544 0 3.73 39.23 

Ranked Probability Score 50,544 -1.514 -0.01 0.94 

Brier Score 50,544 -1.106 -0.0003 0.93 

 *50,544 is represented by each of the 12 seasons containing 4,212 observations 

Table 4.4 Temperature Summary Statistics: 

Variable Name *N Minimum Mean Maximum 

Lead Time 50,544 1 7 13 

ONI 50,544 -1.6 0.07 2.5 

Lower Boundary 

(Fahrenheit) 

50,544 17.7 51.44 84.97 

Upper Boundary 

(Fahrenheit) 

50,544 20.33 52.99 86.05 

Observation Value 

(Fahrenheit) 

50,544 15.39 53.45 88.97 

Ranked Probability Score 50,544 -1.65 -0.21 0.79 

Brier Score 50,544 -1.01 -0.16 0.74 

 *50,544 is represented by each of the 12 seasons containing 4,212 observations 
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Table 4.5 Temperature and Precipitation Histogram 

Temperature Brier Score Distribution  
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Precipitation Brier Score Distribution  
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The histograms above can give us a general idea of the distribution of our chosen 

skill scores. These graphs show us that the majority of the skills are around the zero 

value, indicating „no skill‟. However, the ranked probability score for temperature has a 

very wide distribution which tells us that there is a variety of skill associated with 

forecasting temperature. Some of the skill is highly positive indicating „high skill‟ while a 

fair amount is negative indicating „low skill‟. The other histograms all show us the same 

general distribution in which there are outliers of positive and negative skill, but the 

majority of the forecasts are located around „no skill‟. A „no skill‟ forecast can be 

interpreted as a forecast where an equal chances (of „above‟, „normal‟, and „below‟) 

forecast was just as good.  

  



56 

5. Econometrics and Variable Description 

5.1 Ranked Probability and Brier Skill Scores Model  

The Ranked Probability and Brier Skill scores were first analyzed using a basic 

Ordinary Least Squares (OLS) model. This model showed questionable results due to the 

presence of numerous dummy variables, categorical variables, and count variables. The 

OLS model was run for all twelve seasons on both the temperature and precipitation data 

sets. The results were ambiguous when analyzing sign and significance of lead time and 

issue year. No pattern was recognized from one season to another or between temperature 

and precipitation forecasts. Although the OLS results are useful in determining properties 

of the data set, its estimates are not consistent enough to use in our simulation models 

since parameters are often insignificant and change sign far too often. One reason behind 

this phenomenon is the characteristics of the data set. Our regression models do not 

contain any continuous variables, for we use categorical variables. Dummy variables 

were included for each climate division (27). Lead time and issue year are count variables 

with limited range. Due to these properties, a more sophisticated model is needed.  

The most popular panel regression models are the fixed and random effects 

models. These models correct for the possible presence of autocorrelation and 

heteroscedasticity. A fixed effects model was chosen, as opposed to a random effects 

model, based on the nature of climate divisions. A fixed effects model assumes a direct 

link between each of the cross sectional variables, which in this case are the climate 

divisions. The climate divisions we are analyzing are all based in the Western United 
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States and have the same base characteristics in terms of climate forecasts. A fixed 

effects model does recognize there are differences in each of the cross sectional units and 

creates a „dummy variable‟ for each before analyzing the effects the independent 

variables have on the dependent variable. This method accounts for the differences 

between each climate division without the assumption they are not similar in any known 

way.  A random effects model assumes the cross sectional units follow an unknown 

distribution. In our specific case, this is not likely as each climate division behaves 

similarly to one another.  

5.2 Variable Description and Expected Signs  

The following variable descriptions are also located in Table 5.1.  

Ranked Probability Score: The Ranked Probability Skill Score (RPS) measures the 

improvement of the multi-category (3) probabilistic forecast relative to an equal chance 

forecast. It ranges from negative infinity to one where zero represents no skill and one 

represents perfect skill. Negative values represent „bad‟ skill while positives represent 

„good‟ skill in reference to a no skill forecast. RPS is one of the two dependent variables.  

Brier Score: The Brier Skill Score (BS) measures the improvement of the dichotomous 

probabilistic (2) forecast relative to an equal chance forecast. It ranges from negative 

infinity to one where zero represents no skill and one represents perfect skill. Negative 

values represent „bad‟ skill while positives represent „good‟ skill in reference to a no skill 

forecast. BS is one of the two dependent variables.   
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Lead Time: The lead time variable depicts the amount of time between when a forecast 

is given and what time period the forecast represents. For example, if a forecast is given 

in March 2003 and is for April 2003, the lead time would be one. If a forecast is given in 

March 2003 and is for April 2004, the lead time would be thirteen. The range of lead 

times varies from one to thirteen months and only given for odd months (1, 3, 5, 7, 9, 11, 

and 13). We expect the lead time variable to be negatively correlated with skill score, and 

as lead time increases, the skill of the forecast should decrease.  

Oceanic Nino Index: The Oceanic Nino Index (ONI) variable is a measure of the 

departure from normal sea surface temperature in the east-central Pacific Ocean. It 

represents the presence of extreme climate scenarios depicted as El Nino or La Nina. The 

range of the ONI is from -1.6 to 2.5 with large negative numbers representing La Nina 

periods and large positive numbers citing El Nino periods. These phenomenons are 

thought to have a positive effect on climate forecasts. However, as Livezey (2008) found, 

the effect of ONI on skill scores is expected to be larger on temperature than it is on 

precipitation. The ONI is a variable where sign expectation is not as clear as with other 

variables. Since weather phenomenon such as El Nino and La Nina behave as 

fluctuations observed only at the extremes of the ONI; therefore the parameter estimates 

will fluctuate as well.  

Issue Year: The issue year variable represents the year the forecast was made. It serves 

as a time depiction in our regression model signifying if forecasts have improved over the 

last twelve years. The issue year spans twelve years and ranges from 1997 to 2008. Our 
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expectations are this variable will be positively correlated with skill score due to 

anticipated increases in climatology knowledge and ability with forecasting.  
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6. Forecast Skill Results 

 Our results are presented in a way that first analyzes the usefulness of forecasts 

and then the factors that affect forecasts. In order to decide how useful forecasts are we 

will use our surprise and false alarm rates calculations. These results describe whether a 

forecast is correct or incorrect. The next section describes our regression results 

analyzing the factors that affect the Ranked Probability and Brier Skill scores. Our model 

analyzes and describes the effects of the ONI, lead time, and issue year. Finally we 

discuss the implications of location. We use our results to infer how climate divisions 

differ, if at all.  

6.1 Surprise Rate and False Alarm Rate 

 The surprise and false alarm rates were calculated on a season to season basis. In 

the tables the seasons are represented numerically. The table below shows which Roman 

numeral corresponds to which season. 

Table 6.1 Seasons

January-March I 

February-April II 

March-May III 

April-June IV 

May-July V 

June-August VI 

July-September VII 

August-October VIII 

September-November IX 

October-December X 

November-January XI 

December-February XII 
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The climate forecasts we are analyzing, provided by the Center for Climate 

Prediction (CPC), are given with three separate categories and probabilities. Above, 

normal and below are the three forecast categories, and each one is assigned a probability 

between 0 and 1. These three probabilities will sum to 1, and whichever of the three 

categories is deemed the most likely is be given the highest probability. “Above” refers to 

higher temperature or amount of precipitation than historically (historically refers to a 30 

year average). “Normal” is used to describe what is considered the historic norm, while 

“below” is defined as colder or less wet than the historic mean. In the tables on the 

upcoming pages, the skill scores are classified in above, normal, and below whenever the 

observed outcome is above, normal, and below. The corresponding skill scores are 

calculated after the actual observed temperature or precipitation is known and can be 

compared to the forecast.  

Using the results for surprise and false alarm rates, we will be able to measure the 

skill of forecast in terms of accuracy. The surprise rate describes how often an event 

occurs but was not forecasted. The false alarm rate describes how often an event was 

forecasted to occur but did not occur. Basically, the false alarm rate tells us how often a 

forecast predicted an „event‟ (above, below) was going to happen and instead something 

else occurred. In terms of water management, both of these scores tell us how often 

managers might need to change previous actions they took based on a forecast in order to 

adapt to incorrect forecasts. The precipitation and temperature skill scores can be seen in 

Tables 6.2 and 6.3 (pages 97 and 98). These tables show skill scores that are broken 

down based on which condition actually occurred. For instance, table 6.2 tells us that 
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when „above‟ occurs for precipitation in season I, the surprise rate is 0.846 and the false 

alarm rate is 0.561. These skill scores are calculated using all of the observations in a 

given season; a skill score is not available on a forecast to forecast basis.  

In order to analyze these scores, we have calculated the percentage of seasons in 

which the surprise or false alarm rate is above 50%. In other words, how many seasons is 

it more common to get an incorrect forecast than it is to receive a correct one? The table 

below shows the percentage of seasons where the surprise or false alarm rate is above 

50%.  

Table 6.4 Summary of Surprise and False Alarm Rates 

 Precipitation Temperature 

Surprise Rate Above 41.7% 100% 

Surprise Rate Normal 83.3% 0% 

Surprise Rate Below 83.3% 100% 

False Alarm Rate Above 41.7% 83.3% 

False Alarm Rate Normal 41.7% 100% 

False Alarm Rate Below 91.7% 58.3% 

 

We will discuss these results in two sections. The first section will analyze 

precipitation and the second will deal with temperature results. In terms of precipitation, 

these results show the forecasts do a relatively good job of predicting above and normal, 

especially when it concerns not incorrectly predicting an outcome (false alarm rate). 

However, forecasts do a very poor job when analyzing „below‟ forecasts and constantly 
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predict the incorrect outcome which could lead to water managers having to scramble for 

water. Again, “above” refers to an outcome in which the precipitation or temperature is 

higher than the historic norm. “Normal” forecasts refer to an observed outcome that is 

consistent with previous years, while „below‟ observes outcomes that are dryer or colder 

than typically seen. When analyzing the temperature results, we find forecasts are 

typically incorrect throughout all seasons with the exception of predicting normal 

outcomes. The 0% surprise rate with a normal forecast indicates forecasts rarely tell us it 

will be above or below when in fact normal conditions occur. However, very often 

forecasts will point to normal as most probable when in fact it will not be (this is 

indicated by the false alarm rate = 100% in the above table). These results show us that 

although climate forecasts can be used effectively by water managers, they cannot be the 

only planning method. Since forecasts can very often be incorrect, contingency plans 

must be in place for when the forecasts are misleading.  

Another way to look at these skill scores is to analyze which seasons the forecasts 

are most accurate. The table below shows overall accuracy of the forecasts per season. 

Accuracy is determined by analyzing all six skill scores (Surprise and False alarm rates 

for „above‟, „normal‟, and „below‟) and calculating the percentages of the scores that are 

below 50%. Below 50% indicates that more than half of the forecasts are incorrect. We 

can conclude that overall the forecasts are not as accurate as would be desirable.  
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Table 6.5 Accurate Forecasts by Season 

Season I II III IV V VI 

%  Accurate 8.3% 41.7% 50% 33.4% 25% 33.4% 

Season VII VIII IX X XI XII 

%  Accurate 33.4% 25% 41.7% 33.4% 25% 16.7% 

 

These results show us the forecast season in which accuracy is highest is „March, 

April, May‟ where the surprise and false alarm rates are typically lowest. February-

March-April and September-October-November are two seasons in which forecast skill is 

also typically higher. This is key for water managers for two reasons: the first being that 

key decisions can be made using forecasts for these seasons with more confidence then 

with forecasts for other seasons. The second reasoning is that a lot of crop mix decisions 

occur around these three particular seasons (March-April-May, February-March-April, 

and September-October-November), and therefore it is important that temperature and 

precipitation forecasts are accurate during these seasons. The worst season for forecasting 

is January, February, and March where the surprise and false alarm rates are at their 

highest. The other seasons show accurate forecasts between 17% and 42% of the time. 

This fact speaks to climate forecasting and the need for improvements before water 

managers can use them on a consistent basis.  
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Table 6.6 Accurate Forecasts by Lead Time 

Lead Time 

(Months) 

1 3 5 7 9 11 13 

%  Accurate 33.4% 36.3% 24.6% 11.4% 9.8% 11.4% 7.8% 

 

Finally, the results in Table 6.6 show the effect lead time has on the number of 

accurate forecasts. Past literature has shown lead times longer than a seven month lead 

time will typically lead to an incorrect forecast. It has also been shown that lead time is 

not a significant determinant of forecast skill. The results here would oppose those 

findings, showing there is a significant difference between a thirteen and a one month 

lead time. However, our results show that the majority of forecasts are incorrect, and 

therefore, we can conclude our results confirm that any lead time longer than seven 

months typically leads to an incorrect forecast. We can also conclude that while lead time 

may not be a significant determinant of skill score, there are differences between lead 

times.  

6.2 Ranked Probability and Brier Skill Scores 

 In the econometric analysis of skill scores, two main dependent variables are the 

Ranked Probability and Brier skill scores. These scores analyze the accuracy of forecasts 

with respect to the observed outcome. Our table below shows the average scores given a 

particular season and climate variable. These averages allow us to analyze which seasons 

typically have the most forecast skill and which seasons are generally lacking. The 
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Ranked Probability and Brier skill scores range from negative infinity to one, where zero 

represents no skill and one represents perfect skill. Negative values represent „bad‟ skill 

while positives represent „good‟ skill in reference to an equal chances forecast. 

Table 6.7 Seasonal Skill Scores 

Ranked  

Probability 

Season 

I II III IV V VI VII VIII IX X XI XII 

Temperature 0.188 0.251 0.222 0.242 0.171 0.215 0.252 0.254 0.244 0.168 0.195 0.164 

Precipitation -0.017 -0.024 -0.018 -0.012 -0.013 -0.022 -0.008 0.008 0.006 -0.004 -0.006 -0.007 

 

Brier  

Season 

I II III IV V VI VII VIII IX X XI XII 

Temperature -0.099 -0.244 -0.217 -0.146 -0.140 -0.209 -0.164 -0.209 -0.223 -0.081 -0.054 -0.089 

Precipitation -0.007 -0.011 -0.005 -0.002 -0.003 -0.011 0 0.014 0.013 0.004 0.003 0.002 

 

These tables show us the differences between temperature and precipitation skills 

in each season. As we can see, the temperature forecasts are relatively more accurate 

throughout the year when dealing with a probabilistic forecast (Ranked Probability 

score). However, when the forecast is given dichotomously (Brier Score), the forecast 

skill is typically negative. Temperature forecasts appear to be relatively more accurate 

during the late summer seasons, including June-July-August through September-October-
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November. Precipitation forecasts, unlike temperature, never seem to do significantly 

well regardless of season or forecast type. Even in the later months when forecast skill is 

not negative, it is still close to zero indicating no skill.  

The Ranked Probability and Brier skill scores were analyzed using a variety of 

fixed effects regression models. Twelve regressions were run for each climate variable, 

temperature and precipitation. Each regression represents one separate three month 

seasonal block. As part of the fixed effects model, the climate divisions are dummied out 

as the cross sectional units before the regression is run and will be analyzed using another 

method at the end of this chapter. The tables below show the regression results for each 

climate variable data set as well as each independent variable; the Ranked Probability and 

Brier skill scores as a function of lead time, ONI, and issue year.  

Table 6.12 shows the summary statistics for our three independent variables: 

which are the Oceanic Nino Index, lead time, and issue year. Full regressions results for 

all seasons, skill scores, and climate variables can be found in tables 6.8 through 6.11. 

These results are presented to show how often a variable is significant as well as how 

often it follows the expected sign. These tables are calculated analyzing all seasons and 

both the Ranked Probability and Brier skill score regressions. We will discuss individual 

effects on particular skill scores and seasons in the next section of this chapter. 

Precipitation and temperature statistics have been separated to show how skill scores are 

affected depending on which climate variable forecasts are made for. Although 

independent variables may have a positive effect on skill scores for temperature, they 

may negatively affect a forecast on precipitation. 
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Table 6.12 Summary of Regression Results 

Oceanic Nino Index 

 Precipitation Temperature 

% Significant 91.7% 100% 

% Positive 29.2% 91.7% 

 

Lead Time 

 Precipitation Temperature 

% Significant 79.2% 70.8% 

% Negative 62.5% 37.5% 

 

Issue Year 

 Precipitation Temperature 

% Significant 83.3% 100% 

% Positive 58.3% 33.3% 

 

These results allow us to analyze each of the independent variable‟s significant 

effect on climate forecast. We will first discuss the results found regarding the ONI. 

According to our regressions, the ONI is almost always significant when forecasting 

precipitation and it is always significant when forecasting temperature. This basically 

shows us that the climate phenomenon El Nino and La Nina (reflective of the ONI) do, in 

fact, affect climate forecast skill. How they affect climate forecasts can be seen by 

analyzing the sign of this variable. As stated previously, the ONI is a limited continuous 
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variable since it only ranges from -1.6 to 2.5. However, from month to month it fluctuates 

between these values and a continuous period of high or low values signals an El Nino or 

La Nina period. Therefore, the sign of this parameter can be misleading. When its value 

is not at an extreme, the ONI will have little or no effect on forecast skill because there 

are no extreme climate scenarios being observed.  

According to our results, the ONI is positively correlated with forecast skill in 

precipitation in only 29% of the seasons. This can be interpreted in two ways. The first 

being in some seasons the ONI can have a positive effect on forecast skill, but only 

during prolonged periods of high or low ONI. During the seasons in which the ONI is 

fluctuating often or always stays at relatively low values, the forecast skill will not be 

high. The second interpretation is although the ONI is only positively correlated in 29% 

of the seasons, during these seasons it can be highly correlated and have a large effect on 

skill scores. Previous research has shown during ENSO periods, skill is typically higher 

in the western United States. When dealing with temperature, the ONI is almost always 

positive and always significant. These results confirm what Livezey (2008) found during 

his one year limited study, that the ONI is a strong presence in temperature forecasts.  

The results of the regression analysis when dealing with lead time are not exactly 

what we hypothesized. The initial thought was as lead time increases skill should 

decrease, consistently giving the parameter a negative sign. However, we found the lead 

time parameter is negative in terms of precipitation only 62% of the time, and it is 

negative 38% of the time with temperature. Although these results are not what we 

expected, they are still informative. They tell us despite the improvements in technology 
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and forecasting methods, the ability to predict further into the future has not followed 

suit. By looking at how often our lead time parameter is significant, we can develop a 

better picture of lead times overall effect on skill scores. For precipitation, lead time is 

significant 80% of the time, and temperature it is significant only 70%. These values are 

not definitive enough to conclude that lead time is always a factor or that it is never 

important. We can, however, conclude lead time is not a distinct negative factor in terms 

of forecast skill score for precipitation or temperature. Livezey (2008) also had similar 

findings; Livezey concluded that, for precipitation, forecast lead time had no effect on 

forecast skill. He was unable to conclude definitively on lead times effect for temperature 

forecasts.  

The final independent variable analyzed was the year the forecast was issued. 

This parameter was expected to be positive, which would indicate the skill in conducting 

forecasts has improved over the last twelve years. Our results show the issue year 

parameter is significant almost all of the time, with a slight exception in precipitation 

forecasts. However, our results also show the estimate for temperature is usually 

negative, which signifies that temperature forecast skill has declined over time. Although 

the parameter estimate for precipitation is significant and positive more often, it is not at 

a high enough rate to conclude forecast skill is increasing each year. The best conclusion 

we can reach is that over the years forecast skills have improved in some aspects but still 

have room to improve.  
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6.3 Climate Division Effects 

The fixed effects model used to analyze the forecast skill scores created dummy 

variables for each of the cross sectional units in our data set, and in our case, these cross 

sectional units are climate divisions. In order to analyze the effect location has on 

forecast skill score, we must look at the individual effects of each climate division. A full 

list of tables with the individual effect of each climate division with regards to various 

skill scores and climate variables is available in Appendix A. In our analysis, effects are 

recorded for twenty-six climate divisions. The base climate division, that all others are 

compared too, is division #102, Southern New Mexico. The base attributes of this climate 

division are important to ensure other climate divisions can be accurately compared. 

Livezey found the entire western United States had superior skill in climate forecasting 

compared to the rest of the United States, but he also noted the skill in the Southwest was 

typically higher than the rest of the west. Based on this it is assumed Climate Division 

#102 is one of the higher skilled divisions. With these base attributes known, the 

remaining climate divisions can be analyzed.  

We examine a climate division‟s effect on forecast skill throughout all seasons. 

The first important aspect is significance, or how often a climate division is any different 

from our base division. The second factor to be analyzed is whether a climate division 

has a more positive impact on skill score than our base. This would signify forecast 

predictions are more accurate in certain regions than in others. The tables below show the 

percentage of climate division effects that are significant as well as the percent that are 
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positive. These percents are calculated using all three of the skill scores, both climate 

variables, and all twelve seasons.  
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Climate 

Division 

% Significant 

Temp 

% Positive 

Temp 

31 100% 66.7% 

32 83.3% 62.5% 

37 83.3% 70.8% 

46 95.8% 66.7% 

47 75% 70.8% 

48 79.2% 58.3% 

49 83.3% 58.3% 

83 83.3% 54.2% 

84 79.2% 54.2% 

85 83.3% 54.2% 

86 79.2% 58.3% 

87 75% 54.2% 

88 75% 58.3% 

Climate 

Division 

% Significant 

Temp  

% Positive 

Temp 

89 75% 66.7% 

90 87.5% 50% 

91 79.2% 54.2% 

92 87.5% 62.5% 

93 75% 66.7% 

94 75% 50% 

95 83.3% 45.8% 

96 87.5% 37.5% 

97 70.8% 41.7% 

98 95.8% 41.7% 

99 87.5% 58.3% 

100 75% 62.5% 

101 66.7% 66.7% 

 

Table 6.13 Climate Divisions Temperature Forecast Skill Summary Statistics 
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Table 6.14 Summary of Effects 

Temperature Significant Positive Effect Significant Negative Effect 

# of Climate Divisions 20 4 

 

From these tables (6.13 and 6.14) we can see that the climate division effect is very 

strong when forecasting temperature. The fact that all of the climate divisions are 

significantly different than our base climate divisions allows us to conclude that climate 

division is an important component in understanding forecast skill.  When analyzing the 

climate division effects on a state to state basis, compared to our New Mexico base 

climate division the results are typical. Climate divisions located in the same state 

commonly exhibit the same characteristics and have the same marginal effect on forecast 

skill. For example, all three of the Utah climate divisions have a positive affect 54.2 % of 

the time. 

Twenty of the twenty-six climate divisions have a significant positive effect on 

skill scores compared to the base division. The four climate divisions that typically have 

lower skill scores include the Las Vegas region and climate divisions in Arizona. A 

significant negative effect in these four climate divisions allows us to conclude that 

forecast skill the average is slightly weaker in Arizona and Las Vegas compared to 

Southern New Mexico.    
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Climate 

Division 

% Significant 

Precip 

% Positive 

Precip 

31 45.8% 62.5% 

32 37.5% 70.8% 

37 54.2% 62.5% 

46 33.3% 70.8% 

47 33.3% 62.5% 

48 50% 70.8% 

49 41.7% 54.2% 

83 50% 62.5% 

84 50% 66.7% 

85 45.8% 58.3% 

86 45.8% 66.7% 

87 62.5% 58.3% 

88 54.2% 62.5% 

Climate 

Division 

% Significant 

Precip 

% Positive 

Precip 

89 50% 45.8% 

90 50% 70.8% 

91 33.3% 62.5% 

92 41.7% 54.2% 

93 37.5% 58.3% 

94 54.2% 70.8% 

95 45.8% 79.2% 

96 37.5% 70.8% 

97 41.7% 79.2% 

98 45.8% 79.2% 

99 29.2% 62.5% 

100 50% 45.8% 

101 25% 45.8% 

 

Table 6.15 Climate Divisions Precipitation Forecast Skill Summary Statistics 
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Table 6.16 Summary of Effects 

Precipitation Significant Positive Effect Significant Negative Effect 

# of Climate Divisions 8 2 

 

Moving from the effect of climate division on temperature to effects on 

precipitation, tables 6.15 and 6.16 indicate that unlike temperature, precipitation skill 

does not change as much depending on climate division. Only eight of the twenty-six 

climate divisions are significantly different from our New Mexico base division. This is 

most likely due to the generally low amounts of precipitation that are seen in the western 

United States. Since only eight divisions have a positive effect and two have a negative 

effect, the majority of the climate divisions behave very similarly. In terms of climate 

forecasting, unlike temperature, different precipitation forecasts are most likely not 

needed based on geographic region. The two climate divisions that exhibit a significant 

negative effect are the Northern California Coast and Eastern New Mexico divisions. 

Conclusions cannot be accurately drawn because these two divisions do not have many 

characteristics in common. The Northern California Coast is a high precipitation area, 

while Eastern New Mexico is typically dry. These results are consistent with what past 

research, including Livezey and Katz, has found. The interpretation that forecast skill for 

precipitation is typically weak in the western United States holds true with our results. 
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7. Water Diversions Simulation 

 In order to develop some practical insights from both our agricultural water use 

and skill scores regression models, we created a series of simulation models. These 

models use seasonal climate forecasts for temperature and precipitation with differing 

skill levels and insert the forecasted temperature and precipitation into the water 

diversions model in order to understand the potential implications of varying forecast 

skills for decision makers. Our simulation considers the decisions of an urban water 

manager whose water supplies are a lower priority than agricultural water supplies and 

thus affected by the quantity that senior agriculture uses, a common situation in the 

western US.   In order to explore the potential effects of forecast skill and interpretation, 

we create the following representative decision situation. An urban water manager must 

consider whether nearby agriculture is likely to use a larger or smaller amount of water 

than average in the summer season, knowing that urban water supplies are the residual 

(leftover) after agricultural diversions. If the agricultural sector is expected to use more 

than an average amount of water, then the urban water manager must contract to purchase 

additional summer supplies for their upcoming June, July, and August water delivery 

season. The table below shows a simplified hypothetical decision facing an urban water 

manager. 
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Table 7.1 Water Managers Decision Simulation 

 Forecasted Agricultural Water Use 

 Higher than Average Average Lower than Average 

Water Managers 

Action 

Arrange to lease 

water 

No action No action 

In this hypothetical situation, a water manager seeks to estimate the amount of water that 

the agriculture sector will need in the upcoming June-July-August season using seasonal 

forecasts. Using these predictions, if it is expected to need more water than usual, the 

manager must arrange to lease water to counter the smaller amount available for urban 

use. If agriculture is expected to use the same or less water than normal, no action is 

required by the water manager because enough water is expected to be available. The 

average amount of water used by agriculture is calculated by averaging the total amount 

used over the years we have data for (1998-2003).  

Our simulation analyzes the differences in amounts of water ordered based on 

different methods for incorporating climate and weather, ranging from naïve to more 

sophisticated. Using the agriculture water use values we have calculated from our 

simulation model, we simulate how much an urban water manager might need to pay 

depending on a how far in advance the water leases are arranged. These methods range 

from the most naïve to the scientific. Using our diversion amounts we are able to simulate 

the cost to a manager if he must pay the standard price for water versus an emergency 

price.  
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7.1 Choosing the forecasts 

Two different approaches are used when choosing possible temperature and 

precipitation values to use in estimating summer season agriculture use. The first method 

incorporates historic data to predict summer season agriculture use. When climate 

forecasts are not available or viewed as too unreliable, decision makers will often use 

historic weather patterns to make water decisions. The most naïve planning approach we 

model for using climate and weather information is to use last year‟s temperature and 

precipitation information. 

In the second planning method the urban water manager is assumed to calculate a 

three year running mean of the previous years temperature and precipitation. We average 

out the previous three years temperature and precipitations values, and use those as our 

current time periods. These values will only come from the corresponding season we are 

addressing. For example, to simulate a decision made for the June-July-August season in 

2002, we will take the average temperature and precipitation value from the June-July-

August season in 2001, 2000, and 1999. This planning method will be referred to as the 

“three year mean” approach. The final method is used as a control or baseline value. It 

represents perfect foresight. This method is unattainable in actual terms, however very 

useful for our simulations. We use actual temperature and precipitation values from 

specific summer seasons to estimate how much water is used by agriculture. These 

agriculture water use values serve as a baseline (perfect foresight, no uncertainty) 

planning methods.   
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A second set of simulations for agriculture water use allows us to analyze the 

effect of using forecasts with different lead times. We use climate forecasts given with a 

one, seven, and thirteen month lead time. These forecasts are obtained using the two 

climate divisions which contain the specific Lower Colorado River Basin irrigation 

districts being analyzed. Based on the regression analysis reported in chapter 6, lead time 

is not expected to have a significant impact on the amount of water diversions ordered. 

We do not expect to identify an overall preferred lead time when simulating water 

consumptive use.  

The table below shows a summary of possible planning methods that will be used 

in our simulations.  

Table 7.2 Urban Water Manager Planning Methods Simulated 

Planning Method Assumptions 

Perfect 

Foresight 

Actual temperature and precipitation values for the given season 

Previous Year 

Upcoming temperature and precipitation values will be identical to the 

previous years 

3 Year Mean 

Upcoming temperature and precipitation values will be the same as the mean 

of the past 3 years 

1 Month Lead Time 

Temperature and precipitation values taken from forecast with 1 month lead 

time 

7 Month Lead Time 

Temperature and precipitation values taken from  forecast with  7 month lead 

time 

13 Month Lead Time 

Temperature and precipitation values taken from  forecast with  13 month lead 

time 
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7.2 Model  

In order to simulate the decision facing an urban water manager needing to 

predict the upcoming summer, we use our agriculture water use model and the parameters 

we estimated in Table 3.5. When we combine our agriculture water use data and the 

climate forecast dataset, we have a six year overlapping period. From 1998-2003, we 

have data on irrigation districts as well as corresponding climate forecasts. Therefore, 

using these six years, we simulate how much water agriculture would order based on 

historic data and climate forecasting. Four specific irrigation districts have been chosen 

for our simulations. Those four are: Imperial Irrigation District, Palo Verde Irrigation 

District, Wellton Mohawk Irrigation District, and the Colorado River Indian Tribe 

(CRIT) Irrigation District. These four were chosen based on the proximity to the 

Colorado River as well as the size of the irrigation districts. Imperial and Palo Verde are 

located in California, while Wellton Mohawk and CRIT are Arizona irrigation districts.  

The parameter estimates from our agriculture water use model are used along with 

known values for acres planted, crop shares, and price. These values allow us to calculate 

the amount of consumptive water use for each irrigation district based on different 

planning methods. The values for acres planted, price, and crop shares change from 

month to month and season to season but are the same regardless of planning method. 

The only variables changing will be temperature and precipitation. Since our base model 

analyzes the log of consumptive water use, we must also re-transform our dependent 

variable back to the untransformed consumptive water use variable. After all of this, we 
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arrive at our desired calculation; consumptive water use by a specific irrigation district in 

a given season and year based off different planning methods.  

7.3 Results 

 A complete description of the results from our simulations is presented in 

Appendix C. The tables are separated into the four different Irrigation Districts and six 

years used in this experiment, resulting in twenty-four tables in all. Each table shows a 

different planning method for incorporating temperature and precipitation along with the 

potential cost to a water manger based on the difference between the estimated and 

average water use from an irrigation district.  Using these calculations for the quantity of 

water used, prices are applied per each acre foot. We have three possible prices that 

correspond to the time period in which the urban water manager is acquiring additional 

water supplies. The lowest price is set at $90, which reflects a water manager acquiring 

water through a voluntary lease transaction more than seven months in advance. The 

second potential price shows the cost when a decision maker arranges a water lease more 

than one month in advance, but less than seven months in advance. The cost per acre foot 

in this instance is $120.  These figures are an estimate based on recent pilot water leasing 

agreements between the Bureau of Reclamation and an Arizona irrigation district (Bureau 

of Reclamation, 2008 and 2009). The highest potential price paid is $210 per acre foot. 

This price reflects an urgent situation in which the water lease is negotiated only one 

month in advance of need. O‟Donnell (2010) found this price to be an average paid for 

water leases in California. 
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It is important to note when viewing the tables in Appendix C, that according to 

our decision model, if an irrigation district is expected to use the average or less than the 

average amount of water, no water lease needs to be arranged by the urban water manage. 

The table below shows an example of how our simulations were conducted:  

Table 7.3 Simulation Example 

Palo 

Verde 

Average 

Consumptive 

Use 

(Acre/Feet) 

1 Month Lead Time 

Estimated Consumptive Use 

(Acre/Feet) 

Difference 

(Acre/feet) 

Cost @$210 

($) 

1998 116,350 94,214 -22,136 -$4,648,512 

1999 116,350 84,759 -31,591 -$6,634,196 

2000 116,350 75,242 -41,108 -$8,632,745 

2001 116,350 90,063 -26,288 -$5,520,375 

2002 116,350 93,259 -23,091 -$4,849,188 

2003 116,350 91,761 -24,589 -$5,163,732 

 Negative values indicate that no water lease is anticipated 

The average water consumptive use over our six year course for each irrigation 

district was calculated. Then using various planning methods (in this example the method 

is a forecast with a one month lead time) we calculated the expected consumptive water 

use by an irrigation district. The next step was to determine if the estimated water use 
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means an urban water manager must arrange to lease water or do nothing, this is 

determined by subtracting the estimated water use by the average water use. Our example 

shows that the agriculture sector is expected to use less water than average, which means 

water will be available for urban use and the water manager does not need to take action. 

These simulations were done for the six possible planning methods described above for 

all four irrigation districts.  

A summary of the possible decisions a water manager may make based on 

different planning methods and the economic ramifications of those decisions are 

presented below. 

Table 7.3 Simulations Summary 

  
1 Month 

Lead 

7 Month 

Lead 

13 Month 

Lead 

Perfect 

Foresight 
Last Year 

3 Year 

Mean 

Cost 

Average 

Water 

Cons. 

$210/acre 

foot 

$120/acre 

foot 

$90/ acre 

foot 

$120/ acre 

foot 

$120/ acre 

foot 

$120/ acre 

foot 

1998 

CRIT 
75,443 -$6,624,395 -$3,778,516 -$2,828,741 $1,095,798 $3,120,960 $4,200,960 

1999 

Well 
46,535 -$3,418,979 -$,1094,246 -$896,072 $226,6386 $4,647,041 $8,441,700 

2000 

IID 
355,611 -$43,251,558 -$16,966,308 -$8,539,515 $5,449,742 $29,500,800 $31,106,520 

2001 

PV 
116,350 -$5,520,375 -$3,140,441 -$2,943,960 $5,076,241 $2,344,800 $10,216,440 

 Note: Negative values indicate that no water lease is anticipated 
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  The table above shows us that shows us that all of the lead time methods (1, 7, 

and 13 month leads) provide the urban water manager with underestimations of water 

diversions. This results in water managers deciding not to negotiate water leases on the 

assumption that agriculture use less than average. However, this use of forecast 

temperature and precipitation will leave the urban water manager in shortage of accrual 

water needed. While we do not assign a monetary cost to this predicament, we can 

conclude that the decision to not negotiate water leases in advance of need could cost the 

city a lot of money because the city will be in shortage and may be forced to pay a higher 

price for short turnaround water acquisitions or incur significant costs due to cutbacks.  

However, the „more naïve‟ approaches of using historical data (last year and three 

year average temperature and precipitation values) produce the opposite result. We find 

that these planning methods predict that agriculture will use more water than the average 

and therefore water managers must negotiate water leases for the upcoming summer 

season.  

Our results also show that there is not a constant preferred lead time in terms of 

decision making for the urban water manager. At some points a one month lead time will 

cost the least, but at others a seven or thirteen month may. This result confirms the 

findings of Livezey (2008), who found that lead time was not a significant factor in the 

skill of forecasts. Our results also do not show any consistently preferred method of 

planning, whether it is using climate forecasts or historical data.  
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8. Conclusions and Recommendations 

The scope of this thesis was to investigate the factors that affect climate forecast 

skill. We also wanted to make a connection between climate forecast skill and the 

economic ramifications of application and interpretations of those forecasts. In order to 

determine the factors affecting climate forecasts, we analyzed the surprise and false alarm 

rates along with the Ranked Probability and Brier Skill scores. Then, to investigate the 

economic implications, we ran simulations depicting hypothetical decisions that an urban 

water manager could make based on various uses of forecasts compared to using 

information about past years climate variables.   

8.1 Skill Scores 

 These four descriptive skill scores each told us something different regarding 

forecast performance. The surprise and false alarm rates indicate forecasts are not 

currently accurate enough to be used on a consistent basis by water managers. The 

forecasts made are not consistently accurate, and they can, therefore, lead to incorrect 

decisions.  

 The Ranked Probability and Brier Skill scores give us a better understanding of 

what measurable factors affect forecast skill. Using our fixed effects model, we were able 

to measure how ONI, lead time, issue year, and location determine forecast skill. 

Although our results were spread out over different seasons, we can still draw general 

conclusions in regards to climate forecasting.  Our results show the ONI only affects 

forecast skill when extreme values are observed. Extreme values lead to El Nino and La 

Nina climate periods, and these periods typically lead to better forecast skill. When the 
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ONI does not reach extreme values, it is typically insignificant in forecast skill. Our 

results show the ONI plays a large role in temperature forecasts than in precipitation, 

however, it can still play a large role in both. The interpretation is basically that climate 

forecasters find the El Nino and La Nina weather phenomenon present better climate 

conditions in terms of prediction.  

 Using the results from our skill score analysis, we were able to analyze the time 

effect of forecast skill. Both the lead time and issue year dependent variables were 

analyzed and found to be insignificant or have a negative effect on overall forecast skill. 

Our interpretation is that technology has not been developed well enough to account for 

the ever changing climate scenarios. Additional research and development is needed to 

ensure future climate forecasting can be done more than six months in advance and that 

each year forecast skill improves. The final independent variable analyzed was the 

geographic location of the target forecast. Our climate division dummy variables allowed 

us to analyze each climate division individually with respect to forecast skill. Our results 

showed with respect to precipitation, location was not a key factor in determining 

forecast skill. Each climate division showed typically the same forecast skill. However, 

when analyzing temperature, we found forecast skill differed depending on the region 

forecasted. This infers there is a need for separate temperature forecast methods 

depending on the target location.   
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8.2 Simulations 

  Our simulation model allowed us to estimate a monetary „stake‟ associated with 

the use of different planning methods. We found that because Imperial Irrigation District 

is such a large water user, that accurate estimates of their consumptive water use can 

provide the largest benefits to urban water managers.  Our model has also shown there is 

not a significant difference in accuracy and economic benefits between the various lead 

times for seasonal forecasts. In some situations, the simplest planning method of using 

the previous year‟s temperature and precipitation values performs as well as using the 

seasonal forecast methods we have analyzed. However, simply using historic weather 

data is not a recommended method due to the long term changes in regional climate. 
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8.3 Recommendations and Future Work 

 Our analysis has led us to conclude current climate forecasts are not as skillful as 

decision makers‟ need. The realistic use of climate forecasts for decision makers must be 

as a planning tool. Managers cannot use climate forecasts (regardless of lead time) as 

their only source of information for the upcoming planning season. If this were the 

method a decision maker chose, then one incorrect forecast would create devastating 

results. Instead, it is suggested that climate forecasts are used to prepare for the worst and 

help eliminate the possible scenarios most likely not to occur. If managers can use 

forecasts to limit their scopes of what is most likely to happen, but still plan for other 

possibilities, then climate forecasts can be useful.  

 Of course it is important for a decision maker to consider the various location 

factors affecting climate and their possible water supply. Water managers need to not 

only focus on their own climate divisions forecast, but also on those divisions that play 

critical parts in supplying their water. An example can be taken from a water manager in 

the Lower Colorado River Basin. It is not only critical what the climate forecasts are in 

his geographical area, but also further upstream along the Colorado River, because the 

higher elevation portions of the basin are where the majority of his water supply comes 

from.  

Future work can be performed in both the climatology and economic sectors. 

There is a need for better methods of forecasting throughout the Western United States. 

The high surprise and false alarm rates imply forecasts are rarely useful and cannot be 
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trusted by managers as a legitimate planning tool. This is the basic fault of climate 

forecasts and with further research and development can be accounted for. Economic 

research should attempt to find and quantify other factors that play a role in forecast skill. 

Our research analyzed four of the base factors (ONI, lead time, issue year, and location), 

however, many more factors exist and can play key roles in forecasts. These include, but 

are not limited to, other climate phenomenon such as the Pacific Decadal Oscillation. 

Future research could also focus on the rest of the United States since our analysis only 

covered the western United States. Although the western United States contains much of 

the agricultural sector, the energy sector is also a primary user of climate forecasts and 

has implications throughout the United States.  

More work is needed to analyze exactly how decision makers use climate 

forecasts on a day to day basis. Our simulation model assumes urban water managers 

have adequate planning time and information; however, this may not be the case for all 

managers. A unique decision and simulation model would be very useful in determining 

the exact economic benefits and losses due to climate forecasts. 



91 

Figure 3.1 Irrigation District Map 

 

*Photo from metropolitan Water District of Southern California 
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Table 3.1 Irrigation Districts: 

1. North Gila, Arizona 

2. Unit “B” division, Arizona 

3. Wellton Mohawk, Arizona 

4. Yuma, Arizona 

5. Yuma County Water Users Associates (YCWUA), Arizona 

6. Yuma-Mesa, Arizona 

7. Imperial, California 

8. Palo Verde, California 

9.  Fort Mohave, Arizona 

10. Mohave Valley, Arizona 

11. Colorado River Indian Tribe, Arizona 

12. Cocopah, Arizona 

13. Sturges Gila Farms, Arizona 

14. Fort Yuma Indian Reservation - Bard Unit, California 
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Table 3.3 Descriptive Statistics Colorado River 

Variable Name N Minimum Mean Maximum 

Ln (Water Diversions) 1,512 2.89 8.97 12.84 

Precipitation 1,512 0 0.211 5.37 

Ln (Price) 1,512 0 0.189 2.71 

Lag [Ln (Temp)] 1,512 3.85 4.26 4.57 

Lag [Ln(temp)]*precipitation 1,512 0 0.89 24.34 

Ln (Acres) 1,512 7.16 9.84 13.23 

Share Cotton 1,512 0 0.13 0.52 

Share Grain 1,512 0 0.12 0.39 

Share Forage 1,512 0.05 0.38 0.85 

Share Corn 1,512 0 0.19 0.2 

Share Tree 1,512 0 0.09 0.74 

Share Fruits and Vegetables 1,512 0 0.22 0.58 

Share Other 1,512 0 0.01 0.1 

Ln (Evapotranspiration) 1080* 6.12 9.21 11.1 
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Table 3.4 Colorado River Variable List: 

 Variable Definition Units of Measure 
Expected 

Sign 

Ln (Water Diversions) 
Total Amount of water diversions used by a specific 

Irrigation District 
Acre/Feet 

Dependent 

Variable 

Precipitation Total amount of precipitation in a given month Inches - 

Ln (Price) 
The natural log of price per acre/foot of water paid 

by the Irrigation District 
Dollars - 

Lag [Ln (Temp)] 
Two month lagged average monthly temperature 

value 
Degrees Fahrenheit + 

Lag [Ln(temp)]*rain 
Interaction variable between lagged temperature 

value and total precipitation 

Degrees 

Fahrenheit*Inches 
+ 

Ln (Acres) 
Natural Log of total acres planted in a specific 

Irrigation District 
Acres + 

Share Cotton 
The amount of acres planted for Cotton divided by 

the total number of acres planted 
% Acres - 

Share Grain 
The amount of acres planted for Grains divided by 

the total number of acres planted 
% Acres - 

Share Forage 
The amount of acres planted for Forage divided by 

the total number of acres planted 
% Acres - 

Share Corn 
The amount of acres planted for Corn divided by the 

total number of acres planted 
% Acres - 

Share Tree 
The amount of acres planted for Tree crops divided 

by the total number of acres planted 
% Acres + 

Share Fruits and 

Vegetables 

The amount of acres planted for Fruits and 

Vegetables divided by the total number of acres 

planted 

% Acres - 

Share Other 

The amount of total acres planted subtracted by the 

sum of acres planted for Cotton, Grain, Forage, 

Corn, Tree, Fruits and Vegetables divided by the 

total amount of acres planted. 

% Acres + 
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Table 3.5  

Colorado River Parameter 

Estimates;  

Dependent Variable: Ln Water 

Diversions

Variable Estimate Standard 

Error 

P 

Value 

Intercept -1.544 0.325 -4.750 

Precipitation 
-2.553 0.338 -7.560 

Ln(price) 
-0.193 0.127 -1.520 

Lag(temp) 
-0.013 0.003 -4.540 

Lag(lntemp)*precip 
0.555 0.079 7.050 

Ln(acres) 
1.154 0.021 55.310 

Sharefruit/vegetable 
-0.531 0.164 -3.230 

Share tree 
1.215 0.256 4.760 

Share forage 
0.071 0.261 0.270 

Share cotton 
-0.408 0.366 -1.110 

Share grain 
-2.770 0.703 -3.940 

Share corn 
-1.487 0.757 -1.960 

Variable Estimate Standard 

Error 

P 

Value 

Share other 
1.123 4.079 0.280 

fjan 
-0.231 0.036 -6.430 

ffeb 
0.448 0.041 10.890 

fmar 
0.605 0.052 11.600 

fapr 
0.799 0.061 13.180 

fmay 
0.896 0.074 12.040 

fjun 
1.032 0.089 11.570 

fjul 
0.953 0.103 9.280 

faug 
0.890 0.105 8.500 

fsep 
0.817 0.091 8.940 

foct 
0.349 0.058 6.060 

fnov 
-2.553 0.338 -7.560 
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Table 4.1 Climate Divisions: 

 

31: Northeastern Wyoming 

32: Northwestern Wyoming 

37: Western Nebraska/Cheyenne 

46: Northeastern Colorado 

47: Southeastern Colorado 

48: Western Colorado 

49: Southwestern Wyoming 

83: Northeastern Utah 

84: Southeastern Utah 

85: Western Utah 

86: Northeastern Nevada 

87: Northwestern Nevada 

88: Sacramento Region, California 

89: Northern California Coast 

90: Central Nevada 

91: Fresno Region, California 

92: Central California Coast 

93: Southern California Coast 

94: Southeastern California 

95: Las Vegas Region, Nevada 

96: Southwestern Arizona 

97: Northeastern Arizona 

98: Southeastern Arizona 

99: Northern New Mexico 

100: Eastern New Mexico 

101: Central New Mexico 

102: Southern New Mexico 
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Table 5.1 Climate Variable List: 

Variable Definition Expected Sign 

Ranked 

Probability Score 

Score which measures the skill of a climate forecast 

with three possibilities; below, normal or above. 

Dependent 

Variable 

Brier Score 

Score which measures the skill of a climate forecast 

with two possibilities; above or not above 

Dependent 

Variable 

Lead Time 

The amount of time between when a forecast is made 

and what time period it is intended for, between 1 and 

13 months 

- 

Oceanic Nino 

Index 

Three month running mean of deviations from typical 

sea surface temperatures. Used as a measure to 

compare current events to historical ones 

+ 

Issue Year 

The year in which the forecast was made. Ranges from 

1997 through 2008 

+ 
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Table 6.2 Precipitation Skill Scores  

Variable Season 

 I II III IV V VI 

Surprise Rate Above 0.846 0.742 0.771 0.822 0.941 0.853 

Surprise Rate Normal 0.280 0.288 0.292 0.274 0.133 0.144 

Surprise Rate Below 0.860 0.871 0.882 0.897 0.947 0.958 

False Alarm Rate Above 0.561 0.489 0.437 0.630 0.778 0.663 

False Alarm Rate Normal 0.727 0.723 0.700 0.704 0.741 0.766 

False Alarm Rate Below 0.546 0.560 0.689 0.641 0.629 0.502 

 

Variable Season 

 VII VIII IX X XI XII 

Surprise Rate Above 0.974 0.973 0.94 0.918 0.937 0.913 

Surprise Rate Normal 0.127 0.239 0.231 0.130 0.153 0.209 

Surprise Rate Below 0.918 0.660 0.734 0.872 0.897 0.844 

False Alarm Rate Above 0.813 0.825 0.554 0.579 0.75 0.761 

False Alarm Rate Normal 0.707 0.677 0.695 0.623 0.631 0.636 

False Alarm Rate Below 0.448 0.365 0.485 0.468 0.576 0.466 
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Table 6.3 Temperature Skill Scores 

Variable Season 

 I II III IV V VI 

Surprise Rate Above 0.594 0.272 0.138 0.135 0.045 0.302 

Surprise Rate Normal 0.582 0.893 0.807 0.794 0.593 0.497 

Surprise Rate Below 0.998 0.988 0.972 0.981 0.996 0.957 

False Alarm Rate Above 0.591 0.437 0.452 0.382 0.365 0.249 

False Alarm Rate Normal 0.721 0.141 0.405 0.370 0.709 0.692 

False Alarm Rate Below 0.955 0.75 0.36 0.771 0.897 0.591 

 

 

 

Variable Season 

 VII VIII IX X XI XII 

Surprise Rate Above 0.231 0.769 0.172 0.538 0.64 0.581 

Surprise Rate Normal 0.739 0.727 0.171 0.538 0.639 0.581 

Surprise Rate Below 0.950 0.993 0.815 0.474 0.386 0.544 

False Alarm Rate Above 0.260 0.273 0.998 0.998 0.959 0.996 

False Alarm Rate Normal 0.704 0.792 0.433 0.400 0.440 0.541 

False Alarm Rate Below 0.914 0.988 0.662 0.761 0.707 0.778 
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Table 6.8  

Precipitation Model Dependent Variable = Ranked Probability Score 

Variable Season 

 I II III IV V VI 

Intercept 18.43  12.12 -0.20 33.94 -20.29 7.55 

ONI 
0.005 

(0.004) 

-0.03** 

(0.005) 

0.04** 

(0.006) 

-0.06** 

(0.008) 

0.03** 

(0.009) 

-0.02**   

(0.007)  

Lead Time 
-0.003** 

(0.001) 

-0.004** 

(0.001) 

-0.002* 

(0.002) 

-0.002* 

(0.001) 

0.003** 

(0.001) 

-0.001** 

(0.001) 

Issue Year 
-0.01** 

(0.001) 

-0.01** 

(0.001) 

0.0002 

(0.001) 

-0.02** 

(0.001) 

0.01** 

(0.001) 

-0.004** 

(0.001) 

 

Variable Season 

 VII VIII IX X XI XII 

Intercept -3.61 -8.50 -1.2 -22.1 -33.7 13.57 

ONI 
-0.04** 

(0.006) 

-0.05** 

(0.005) 

-0.02** 

(0.005) 

0.03** 

(0.004) 

0.05** 

(0.004) 

-0.01**   

(0.004) 

Lead Time 
-0.0004 

(0.001) 

0.002 

(0.001) 

0.001 

(0.001) 

0.002* 

(0.001) 

0.003** 

(0.001) 

-0.003** 

(0.001) 

Issue Year 
0.002 

(0.001) 

0.004** 

(0.001) 

0.001 

(0.001) 

0.01** 

(0.001) 

0.02** 

(0.001) 

-0.01**   

(0.001) 

*Standard Errors are in parenthesis.  

Significance Levels: *.05 **.01 
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Table 6.9 Precipitation Model Dependent Variable = Brier Score 

Variable Season 

 I II III IV V VI 

Intercept -3.62 -2.67 12.06 6.55 0.58 -2.69 

ONI 
-0.03** 

(.001) 

-0.06** 

(0.002) 

-0.09** 

(0.003) 

-0.11** 

(0.003) 

-0.027** 

(0.002) 

-0.003** 

(0.001) 

Lead Time 
0.002** 

(.0004) 

0.002** 

(0.0005) 

0.001* 

(0.0006) 

-0.001 

(0.0006) 

-0.001** 

(0.0003) 

-0.001** 

(0.0002) 

Issue Year 
0.002** 

(0.0004) 

0.001* 

(0.0005) 

-0.01** 

(0.0006) 

-0.003** 

(0.0005) 

-0.001 

(0.0003) 

0.001** 

(0.0003) 

 

Variable Season 

 VII VIII IX X XI XII 

Intercept -2.58 -6.67 -3.1 2.49 1.98 -3.3 

ONI 
0.0003 

(0.008) 

0.006** 

(0.001) 

-0.003** 

(0.002) 

-0.01** 

(0.0009) 

-0.01** 

(0.001) 

-0.01**  

(0.001) 

Lead Time 
-0.0002 

(0.0002) 

0.001** 

(0.002) 

-0.001** 

(0.003) 

-0.002** 

(0.0002) 

-0.002** 

(0.0003) 

-0.001** 

(0.0003) 

Issue Year 
0.001** 

(0.0002) 

0.003** 

(0.003) 

0.002** 

(0.0003) 

-0.001** 

(0.001) 

-0.001** 

(0.0003) 

0.002** 

(0.0004) 

*Standard Errors are in parenthesis.  

Significance Levels: *.05 **.01 
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Table 6.10 Temperature Model Dependent Variable = Ranked Probability Score 

Variable Season 

 I II III IV V VI 

Intercept 36.87 5.73 5.42 -10.63 -53.45 -26.86 

ONI 
0.03** 

(0.005) 

0.03** 

(0.005) 

0.08** 

(0.007) 

0.02*    

(0.01) 

0.11** 

(0.008) 

0.02**   

(0.007) 

Lead Time 
-0.01** 

(0.002) 

-0.003* 

(0.001) 

0.0003 

(0.001) 

-0.0004 

(0.001) 

-0.0002 

(0.001) 

-0.004** 

(0.001) 

Issue Year 
-0.02** 

(0.001) 

-0.003* 

(0.001) 

-0.003* 

(0.002) 

0.005** 

(0.001) 

0.027** 

(0.001) 

0.014** 

(0.001) 

 

Variable Season 

 VII VIII IX X XI XII 

Intercept -7.84 -33.65 21.43 -35.66 -18.91 -28.02 

ONI 
0.02** 

(0.006) 

-0.04** 

(0.005) 

-0.04** 

(0.005) 

0.04** 

(0.004) 

0.08** 

(0.003) 

0.01**   

(0.003) 

Lead Time 
-0.01** 

(0.001) 

-0.001 

(0.001) 

0.002 

(0.001) 

0.002* 

(0.001) 

-0.002* 

(0.001) 

-0.0002  

(0.001) 

Issue Year 
0.004** 

(0.001) 

0.02** 

(0.001) 

-0.01** 

(0.001) 

0.02** 

(0.001) 

0.01** 

(0.001) 

0.02**   

(0.001) 

*Standard Errors are in parenthesis.  

Significance Levels: *.05 **.01 

 

 

 

 

 



103 

Table 6.11 Temperature Model Dependent Variable = Brier Score 

Variable Season 

 I II III IV V VI 

Intercept 27.77 24.6 18.98 5.47 22.92 35.28 

ONI 
0.01** 

(0.002) 

0.03** 

(0.003) 

0.04** 

(0.001) 

0.04** 

(0.005) 

0.06** 

(0.004) 

0.03**   

(0.004) 

Lead Time 
0.01** 

(0.001) 

0.002** 

(0.001) 

0.0002 

(0.001) 

0.001* 

(0.001) 

0.005** 

(0.001) 

0.007** 

(0.001) 

Issue Year 
-0.02** 

(0.001) 

-0.01** 

(0.001) 

-0.01** 

(0.001) 

-0.003** 

(0.001) 

-0.01** 

(0.001) 

-0.02**  

(0.001) 

 

Variable Season 

 VII VIII IX X XI XII 

Intercept 44.72 61.14 27.72 16.2 9.77 22.34 

ONI 
0.02** 

(0.003) 

0.02** 

(0.002) 

0.007** 

(0.002) 

0.005** 

(0.001) 

0.007** 

(0.001) 

0.006**  

(0.002) 

Lead Time 
0.01** 

(0.001) 

0.001* 

(0.001) 

0.002** 

(0.001) 

0.002** 

(0.0004) 

0.006** 

(0.0004) 

0.01**    

(0.001) 

Issue Year 
-0.02** 

(0.001) 

-0.03** 

(0.001) 

-0.01** 

(0.001) 

-0.01** 

(0.0004) 

-0.01** 

(0.0004) 

-0.01**  

(0.001) 

*Standard Errors are in parenthesis.  
Significance Levels: *.05 **.01 
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Appendix A: Bureau of Reclamation Water Accounting Method- Example 

Table A1 

Water 

User 
2001 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total 

Imperial 

Irrigation 

District 

Diversions 

Ordered 
110000 125000 98000 121000 86400 113000 143000 156000 98700 89000 104000 129000 1373100 

Other use 22000 15000 11000 10000 12000 14000 8000 7000 9000 10000 11000 8000 137000 

Returns 12000 14000 10000 6000 8000 14000 12000 9000 4000 8000 4000 6000 107000 

Consumptive 

Use 
76000 96000 77000 105000 66400 85000 123000 140000 85700 71000 89000 115000 1129100 

Palo 

Verde 

Irrigation 

District 

Diversions 

Ordered 
65000 54000 60000 55000 42000 39000 52000 47000 51000 50000 46000 53000 614000 

Other use 11000 12000 7000 8000 7000 10000 8000 4000 6000 4000 8000 7000 92000 

Returns 2500 1000 4000 3000 2000 1000 3000 2000 2500 500 1000 2000 24500 

Consumptive 

Use 
51500 41000 49000 44000 33000 28000 41000 41000 42500 45500 37000 44000 497500 
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Appendix B: Climate Division Effects 
Table B1 Climate Division Effects:  Division 31 

Season I II III IV V VI 

RPS Temp -0.125** -0.125** -0.181** -0.095** 0.051* -0.064* 

BS Temp 0.124** 0.195** 0.171** 0.186** 0.219** 0.235** 

RPS Precip -0.069* -0.127** -0.047 0.010 0.239** 0.100** 

BS Precip 0.039** 0.014 0.013 0.015 0.005 0.010 

Season VII VIII IX X XI XII 

RPS Temp 0.055* 0.109** 0.086* -0.077** -0.139** -0.121** 

BS Temp 0.186** 0.181** 0.269** 0.173** 0.133** 0.146** 

RPS Precip 0.092** 0.168** -0.098** 0.253** 0.212** -0.071 

BS Precip 0.004 0.010 -0.005 -0.005 -0.029** -0.016 

Significance Levels: *.05 **.01 

Table B2 Climate Division Effects:  Division 32 

Season I II III IV V VI 

RPS Temp -0.106** -0.271** -0.018 -0.032 -0.004 -0.121** 

BS Temp 0.145** 0.196** 0.141** 0.133** 0.210** 0.226** 

RPS Precip 0.012 -0.118** 0.141** -0.041 0.133** 0.004 

BS Precip 0.059** 0.026 0.020 0.011 0.001 0.011 

Season VII VIII IX X XI XII 

RPS Temp 0.008** 0.068 0.151** -0.076* -0.142** -0.093* 

BS Temp 0.175** 0.150** 0.257** 0.172** 0.133** 0.159** 

RPS Precip 0.011 0.172** -0.152** 0.051 0.204** 0.027 

BS Precip 0.009 0.017** -0.002 0.001 -0.022** -0.009 

Significance Levels: *.05 **.01 

 

Table B3 Climate Division Effects:  Division 37 

Season I II III IV V VI 

RPS Temp -0.119** -0.209** 0.073* -0.081* -0.098** -0.014 

BS Temp 0.113** 0.192** 0.176** 0.203** 0.219** 0.233** 

RPS Precip -0.027 -0.214** -0.061* 0.050 0.090** 0.103** 

BS Precip 0.025** 0.018 0.021 0.022 0.009 0.011 

Season VII VIII IX X XI XII 

RPS Temp 0.002 0.041** 0.041 -0.132** 0.001 -0.181** 

BS Temp 0.201** 0.184** 0.261** 0.173** 0.126** 0.114** 

RPS Precip 0.093** 0.170** -0.243** 0.071* 0.011 -0.023 

BS Precip 0.001 0.006* -0.032** -0.050** -0.040** -0.002 

Significance Levels: *.05 **.01 
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Table B4 Climate Division Effects:  Division 46 

Season I II III IV V VI 

RPS Temp -0.208** -0.166** 0.021 0.044* -0.084** -0.009** 

BS Temp 0.112** 0.157** 0.147** 0.190** 0.207** 0.223** 

RPS Precip 0.074* -0.098** -0.217** 0.042 0.293** 0.056* 

BS Precip 0.022 0.016 0.024 0.033 0.012 0.011 

Season VII VIII IX X XI XII 

RPS Temp -0.047* 0.153** 0.151** -0.128** -0.131** -0.124** 

BS Temp 0.198** 0.161** 0.228** 0.171** 0.122** 0.104** 

RPS Precip 0.144** 0.018 -0.290** 0.151** 0.004 0.025 

BS Precip 0.002 0.004 -0.018 -0.009 -0.010 -0.006 

Significance Levels: *.05 **.01 

 

 

 

Table B5 Climate Division Effects:  Division 47 

Season I II III IV V VI 

RPS Temp -0.197** -0.239** 0.029 0.019 -0.044 -0.102** 

BS Temp 0.099** 0.126** 0.127** 0.176** 0.192** 0.209** 

RPS Precip 0.027 -0.142** -0.235** 0.083 0.092** 0.151** 

BS Precip 0.019 0.007 0.021 0.030 0.013 0.011 

Season VII VIII IX X XI XII 

RPS Temp -0.032 0.034 0.212** 0.028 -0.161** -0.165** 

BS Temp 0.178** 0.152** 0.211** 0.166** 0.122** 0.102** 

RPS Precip 0.093** 0.061* -0.204** 0.049 -0.048 -0.072* 

BS Precip 0.002 0.005 -0.007 -0.002 -0.006 -0.010 
Significance Levels: *.05 **.01 

 

 

 

 

 

Table B6 Climate Division Effects:  Division 48 
Season I II III IV V VI 

RPS Temp -0.049 -0.230** -0.020 -0.036 -0.168** -0.016 

BS Temp 0.124** 0.097** -0.004 0.035* 0.124** 0.151** 

RPS Precip 0.022 0.035 0.145** -0.122** 0.088** 0.102** 

BS Precip 0.024* 0.014 0.032 0.036 0.012** 0.010 

Season VII VIII IX X XI XII 

RPS Temp 0.055* 0.208** 0.203** -0.130** -0.077** -0.096** 

BS Temp 0.071** 0.029* 0.117** 0.152** 0.116** 0.124** 

RPS Precip 0.095** 0.217** -0.182** -0.062* 0.151** -0.122** 

BS Precip 0.006 0.005 -0.002 0.003 -0.007 -0.008 
Significance Levels: *.05 **.01 
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Table B7 Climate Division Effects:  Division 49 

Season I II III IV V VI 

RPS Temp -0.022 -0.070* -0.042 -0.056 -0.159** -0.094** 

BS Temp 0.153** 0.191** 0.111** 0.122** 0.203** 0.226** 

RPS Precip -0.019 -0.021 -0.105** 0.059* 0.188** 0.158** 

BS Precip 0.027** 0.011 0.014 0.015 0.006 0.013 

Season VII VIII IX X XI XII 

RPS Temp -0.062* 0.121** 0.274** -0.077** -0.038 -0.050* 

BS Temp 0.158** 0.120** 0.218** 0.168** 0.131** 0.155** 

RPS Precip -0.053* 0.086** -0.301** -0.003 0.162** -0.183** 

BS Precip 0.009 0.014 -0.005 0.000 -0.017 -0.016 
Significance Levels: *.05 **.01 

 
 

 

Table B8 Climate Division Effects:  Division 83 
Season I II III IV V VI 

RPS Temp -0.072* -0.217** -0.037 0.060* -0.224** -0.033 

BS Temp 0.150** 0.127** -0.043* -0.049* 0.121** 0.154** 

RPS Precip -0.126** -0.169** -0.119** -0.150** 0.142** 0.007 

BS Precip 0.024 0.014 0.031 0.024 0.009 0.012 

Season VII VIII IX X XI XII 

RPS Temp 0.064* 0.184** 0.236** -0.075* -0.082** -0.046 

BS Temp 0.058** -0.019 0.069** 0.149** 0.121** 0.149** 

RPS Precip 0.149** 0.270** -0.247** -0.001 0.214** -0.104** 

BS Precip 0.013** 0.015** 0.007 0.007 -0.013 -0.010 
Significance Levels: *.05 **.01 

 

 

 

 

 

Table B9 Climate Division Effects:  Division 84 

Season I II III IV V VI 

RPS Temp -0.119** -0.171** -0.013 -0.001 -0.209** -0.083** 

BS Temp 0.108** 0.038* -0.102** -0.069** 0.065** 0.095** 

RPS Precip -0.014 -0.053** -0.123** 0.132** 0.180** 0.119** 

BS Precip 0.026 0.016 0.036 0.036** 0.013 0.009 

Season VII VIII IX X XI XII 

RPS Temp 0.115** 0.258** 0.201** -0.062* 0.023 -0.079** 

BS Temp 0.001 -0.051** 0.024 0.131** 0.107** 0.111** 

RPS Precip 0.094** 0.108** -0.261** -0.117** 0.151** -0.072* 

BS Precip 0.006 0.007 0.002 0.010 -0.002 -0.005 
Significance Levels: *.05 **.01 
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Table B10 Climate Division Effects:  Division 85 
Season I II III IV V VI 

RPS Temp -0.195** -0.184** 0.009 0.093** -0.165** -0.021 

BS Temp 0.138** 0.077** -0.101** -0.121** 0.080** 0.111** 

RPS Precip -0.068* -0.059* -0.049 -0.031 0.088** -0.045 

BS Precip 0.023 0.011 0.028 0.022 0.008 0.010 

Season VII VIII IX X XI XII 

RPS Temp 0.185** 0.220** 0.154** -0.089** -0.107** -0.229** 

BS Temp 0.018 -0.091** -0.013 0.132** 0.112** 0.137** 

RPS Precip 0.057** 0.037 -0.242** -0.062* 0.263** -0.022 

BS Precip 0.017** 0.034** 0.032** 0.013* -0.011 -0.010 
Significance Levels: *.05 **.01 

 

 

Table B11 Climate Division Effects:  Division 86 
Season I II III IV V VI 

RPS Temp -0.081* -0.176** 0.020 -0.023 -0.106** -0.111** 

BS Temp 0.160** 0.145** -0.042* -0.091** 0.139** 0.142** 

RPS Precip -0.072* -0.013 0.006 -0.073* 0.187** -0.047* 

BS Precip 0.020 0.008 0.016 0.010 0.003 0.006 

Season VII VIII IX X XI XII 

RPS Temp 0.153** 0.341** 0.010 -0.029 0.006 -0.171** 

BS Temp 0.085** -0.042** 0.045** 0.153** 0.122** 0.156** 

RPS Precip 0.187** 0.111** -0.166** -0.047 0.212** 0.029 

BS Precip 0.039** 0.100** 0.083** 0.016 -0.018 -0.010 
Significance Levels: *.05 **.01 

 

 
 

 

 
 

 

 

Table B12 Climate Division Effects:  Division 87 
Season I II III IV V VI 

RPS Temp -0.084* -0.124** 0.035 0.004 -0.072* -0.146** 

BS Temp 0.156** 0.129** -0.022 -0.080** 0.133** 0.150** 

RPS Precip 0.076* -0.062* -0.093** -0.140** 0.079** -0.079** 

BS Precip 0.022 0.004 0.011 0.007 -0.002 -0.018** 

Season VII VIII IX X XI XII 

RPS Temp -0.046** 0.313 0.371** -0.016 0.000 -0.060* 

BS Temp 0.074** -0.050** 0.063** 0.151** 0.118** 0.158** 

RPS Precip 0.013 0.029 -0.203** -0.170** 0.160** 0.131** 

BS Precip 0.030** 0.153** 0.085** 0.021** -0.020 -0.010 
Significance Levels: *.05 **.01 
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Table B13 Climate Division Effects:  Division 88 

Season I II III IV V VI 

RPS Temp -0.010 -0.172** -0.166** -0.199** -0.174** -0.126** 

BS Temp 0.147** 0.106** 0.008 -0.031* 0.120** 0.150** 

RPS Precip 0.081* 0.047 0.010 -0.131** 0.188** -0.086** 

BS Precip 0.015 -0.010 0.006 0.001 -0.006 -0.083** 

Season VII VIII IX X XI XII 

RPS Temp 0.044 0.199** 0.157** -0.036 -0.057* -0.011 

BS Temp 0.069** 0.001 0.134** 0.156** 0.116** 0.155** 

RPS Precip 0.065* 0.227** -0.225** 0.007 0.210** -0.021 

BS Precip 0.012** 0.096** 0.039** 0.010 -0.022** -0.011 
Significance Levels: *.05 **.01 

 

 
 

 

Table B14 Climate Division Effects:  Division 89 
Season I II III IV V VI 

RPS Temp -0.084* -0.149** -0.064* -0.104* -0.046 -0.205** 

BS Temp 0.146** 0.120** 0.033 -0.002 0.099** 0.148** 

RPS Precip 0.127** -0.054* -0.040 -0.081* 0.081** -0.101** 

BS Precip 0.013 -0.010 0.006 -0.001 -0.024** -0.125** 

Season VII VIII IX X XI XII 

RPS Temp -0.013 0.249** 0.047 0.029 0.055* 0.065* 

BS Temp 0.058** 0.032** 0.184** 0.163** 0.118** 0.148** 

RPS Precip -0.002 0.048 -0.352** 0.011 0.205** -0.023 

BS Precip 0.009 0.066** 0.026** 0.003 -0.027** -0.017 
Significance Levels: *.05 **.01 

 

 

 

 

 

 

Table B15 Climate Division Effects:  Division 90 

Season I II III IV V VI 

RPS Temp -0.003 -0.075* 0.091* 0.121** -0.064* -0.059* 

BS Temp 0.105** -0.008 -0.148** -0.187** 0.016* 0.042** 

RPS Precip -0.023 0.045 -0.094** -0.018 0.140** 0.101** 

BS Precip 0.019 0.002 0.020 0.011 0.005 0.005 

Season VII VIII IX X XI XII 

RPS Temp 0.140** 0.394** 0.333** -0.089** 0.114** -0.016 

BS Temp -0.057** -0.197** -0.119** 0.068** 0.094** 0.117** 

RPS Precip 0.247** 0.222** -0.288** -0.001 0.316** 0.080* 

BS Precip 0.015** 0.071** 0.043** 0.017** -0.011 -0.010 
Significance Levels: *.05 **.01 
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Table B16 Climate Division Effects:  Division 91 
Season I II III IV V VI 

RPS Temp -0.031 -0.139** -0.131** -0.073* -0.147** -0.162** 

BS Temp 0.147** 0.072** 0.005 -0.016 0.100** 0.151** 

RPS Precip 0.025 -0.009 -0.039 -0.025 0.139** 0.109** 

BS Precip 0.014 -0.014 0.009 -0.004 0.005 -0.021* 

Season VII VIII IX X XI XII 

RPS Temp -0.005 0.227** 0.238** -0.070* -0.102** -0.007 

BS Temp 0.068** 0.029* 0.122** 0.154** 0.124** 0.157** 

RPS Precip 0.045 0.174** -0.245** 0.102** 0.115** 0.048 

BS Precip 0.007 0.036* 0.003 0.004 -0.014 -0.011 
Significance Levels: *.05 **.01 

 

 

Table B17 Climate Division Effects:  Division 92 

Season I II III IV V VI 

RPS Temp -0.068* -0.196** -0.175** -0.162** -0.011 -0.083** 

BS Temp 0.154** 0.103** 0.047* 0.024 0.121** 0.168** 

RPS Precip 0.028 -0.062* -0.089** 0.044 0.147** 0.054* 

BS Precip 0.016 -0.007 0.003 -0.007 0.006 -0.037* 

Season VII VIII IX X XI XII 

RPS Temp 0.030 0.217** 0.229** -0.223** -0.148** -0.111** 

BS Temp 0.094** 0.101** 0.177** 0.165** 0.124** 0.162** 

RPS Precip 0.095** 0.171** -0.300** 0.042 -0.036 -0.120** 

BS Precip 0.006 0.024* -0.001 0.003 -0.015* -0.011 
Significance Levels: *.05 **.01 

 
 

 

 
 

 

 

Table B18 Climate Division Effects:  Division 93 
Season I II III IV V VI 

RPS Temp 0.024 -0.158** -0.117** -0.080* -0.131** -0.009 

BS Temp 0.132** 0.082** 0.019 0.010 0.081** 0.127** 

RPS Precip -0.021 0.048 -0.075** 0.027 0.090** -0.053* 

BS Precip 0.013 -0.013 -0.001 -0.012 0.005 0.001 

Season VII VIII IX X XI XII 

RPS Temp -0.020 0.216** 0.135** -0.067* 0.058* 0.000 

BS Temp 0.080** 0.090** 0.144** 0.153** 0.132** 0.159** 

RPS Precip 0.095** 0.217** -0.295** 0.154** 0.074* -0.155** 

BS Precip 0.005 0.012 0.001 0.006 -0.011 -0.006 
Significance Levels: *.05 **.01 

 

 



111 

Table B19 Climate Division Effects:  Division 94 
Season I II III IV V VI 

RPS Temp -0.0568** 0.008 -0.224** 0.032 -0.035 0.018 

BS Temp 0.054** -0.050* -0.105** -0.140** -0.030* -0.021 

RPS Precip 0.085** 0.051* -0.074* 0.137** 0.192** 0.118** 

BS Precip 0.015 -0.013 0.013 -0.001 0.003 0.005 

Season VII VIII IX X XI XII 

RPS Temp 0.119** 0.341** 0.118** 0.043 0.113** -0.125** 

BS Temp -0.105** -0.172** -0.102** 0.032* 0.085** 0.086** 

RPS Precip 0.095** 0.135** -0.195** 0.104** 0.177** -0.057* 

BS Precip 0.006 0.017** 0.008 0.017 -0.004 0.000 
Significance Levels: *.05 **.01 

 

 
 

Table B20 Climate Division Effects:  Division 95 

Season I II III IV V VI 

RPS Temp 0.003 0.048 0.187** 0.248** 0.081** 0.130** 

BS Temp -0.035* -0.143** -0.225** -0.267** -0.124** -0.122** 

RPS Precip -0.019 0.010 -0.134** 0.193** 0.087** 0.050* 

BS Precip 0.024 0.002 0.024 0.012 0.004 0.005 

Season VII VIII IX X XI XII 

RPS Temp 0.229** 0.476** 0.460** 0.072* -0.086** -0.031 

BS Temp -0.238** -0.346** -0.253** -0.093** 0.021* -0.014 

RPS Precip 0.094** 0.017 -0.244** 0.084* 0.173** -0.061* 

BS Precip 0.005 0.020** 0.016 0.027** 0.005 0.000 
Significance Levels: *.05 **.01 

 

 

 

 

 

Table B21 Climate Division Effects:  Division 96 
Season I II III IV V VI 

RPS Temp -0.099** 0.061* 0.132** 0.163** 0.077* 0.127** 

BS Temp -0.073** -0.139** -0.194** -0.232** -0.155** -0.189** 

RPS Precip -0.043 0.032 -0.011 0.046 0.166** -0.051* 

BS Precip 0.029** -0.002 0.016 0.012 0.002 0.004 

Season VII VIII IX X XI XII 

RPS Temp 0.256** 0.459** 0.441** -0.029 0.018 -0.017 

BS Temp -0.255** -0.328** -0.250** -0.187** -0.058** -0.072** 

RPS Precip 0.145* 0.104** -0.202** 0.046 0.023 -0.045 

BS Precip 0.000 0.003 0.008 0.026** 0.024** 0.030** 
Significance Levels: *.05 **.01 
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Table B22 Climate Division Effects:  Division 97 

Season I II III IV V VI 

RPS Temp -0.075* -0.067* 0.109** 0.151** -0.007 -0.018 

BS Temp 0.019 -0.096** -0.195** -0.185** -0.056** -0.058** 

RPS Precip -0.016 0.024 0.090** 0.122** 0.116** -0.002 

BS Precip 0.027 0.011 0.024 0.021** 0.008 0.005 

Season VII VIII IX X XI XII 

RPS Temp 0.128** 0.317** 0.225** -0.012 0.063* -0.005 

BS Temp -0.132** -0.185** -0.131** 0.004 0.038** 0.021 

RPS Precip 0.042 0.208** -0.266** -0.067* 0.193** -0.159** 

BS Precip 0.002 0.002 0.005 0.020** 0.007 0.013 
Significance Levels: *.05 **.01 

 

Table B23 Climate Division Effects:  Division 98 
Season I II III IV V VI 

RPS Temp -0.067* 0.057* 0.124** 0.122** 0.070* 0.202** 

BS Temp -0.056** -0.109** -0.168** -0.207** -0.136** -0.189** 

RPS Precip 0.066* 0.120** 0.012 -0.019 0.147** 0.052* 

BS Precip 0.036** 0.004 0.011 0.014 0.003 0.003 

Season VII VIII IX X XI XII 

RPS Temp 0.226** 0.414** 0.425** 0.098** -0.065* 0.021 

BS Temp -0.225** -0.296** -0.245** -0.228** -0.101** -0.074** 

RPS Precip 0.054* 0.043 -0.133** 0.070* 0.112** -0.029 

BS Precip -0.005 -0.002 0.002 0.016 0.028** 0.034** 
Significance Levels: *.05 **.01 

 

 
 

 

 
 

 

 
 

 

 

Table B24 Climate Division Effects:  Division 99 
Season I II III IV V VI 

RPS Temp -0.163** -0.227** -0.095** 0.000 -0.110** -0.109** 

BS Temp 0.074** 0.068** 0.037* 0.081** 0.113** 0.134** 

RPS Precip -0.015 0.040 -0.196** 0.007 0.067** 0.062* 

BS Precip 0.016 0.008 0.021 0.021 0.006 0.007 

Season VII VIII IX X XI XII 

RPS Temp -0.031** 0.110** 0.046 -0.064* -0.014 -0.233** 

BS Temp 0.104** 0.076** 0.122** 0.140** 0.097** 0.080** 

RPS Precip 0.091** 0.001 -0.208** -0.002 0.099** -0.072* 

BS Precip 0.003 0.003 -0.006 0.000 -0.004 -0.011 
Significance Levels: *.05 **.01 
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Table B25 Climate Division Effects:  Division 100 
Season I II III IV V VI 

RPS Temp -0.037 -0.121** 0.045 0.024 -0.152** -0.074** 

BS Temp 0.028* 0.064** 0.092** 0.127** 0.123** 0.138** 

RPS Precip 0.127** -0.174** -0.179** -0.207** 0.111** 0.053** 

BS Precip -0.019 -0.013 -0.004 -0.002 0.003 0.006 

Season VII VIII IX X XI XII 

RPS Temp -0.023 -0.061* 0.029 -0.002 -0.086** -0.136** 

BS Temp 0.118** 0.109** 0.135** 0.121** 0.068** 0.042** 

RPS Precip 0.042 0.058* -0.151** -0.101** 0.101** -0.097** 

BS Precip 0.003 0.006 0.000 0.001 -0.003 -0.027** 
Significance Levels: *.05 **.01 

 

 
 

Table B26 Climate Division Effects:  Division 101 
Season I II III IV V VI 

RPS Temp 0.020 -0.023 0.068* -0.010 0.023 -0.049* 

BS Temp 0.034* 0.026 -0.005 0.017 0.038* 0.057** 

RPS Precip 0.011 -0.004 -0.034 -0.158** 0.093** -0.003 

BS Precip 0.012 0.006 0.014 0.009 0.003 0.005 

Season VII VIII IX X XI XII 

RPS Temp -0.016 0.070** 0.135** -0.153** -0.109** -0.132** 

BS Temp 0.047** 0.025* 0.048** 0.077** 0.047** 0.032* 

RPS Precip 0.044 -0.051** -0.051* 0.101** 0.097** -0.003 

BS Precip 0.000 0.001 -0.006 -0.002 -0.003 -0.006 

Significance Levels: *.05 **.01
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Appendix C Simulation Results Tables 

Variable Notes: 

Average: Average number of consumptive water used by a specific irrigation district in 

the June- July-August season from 1998 through 2003.  

1 Month: Water consumption forecasted based on a one month lead time forecast 

(Acre/feet) 

7 Month: Water consumption forecasted based on a seven month lead time forecast 

(Acre/feet) 

13 Month: Water consumption forecasted based on a thirteen month lead time forecast 

(Acre/feet) 

Diff: The difference between the forecasted water consumption amount and the average 

water consumption amount (Acre/feet) 

Cost @ X: The number of diversions times the price per acre foot 

($/acre-foot) 

 

*Note: Negative values indicate that no water lease is anticipated 
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Table C.1 CRIT Simulation 

CRIT Average 1 Month Diff Cost @$210 

1998 75,443 43898 -31545 -$6,624,395 

1999 75,443 40774 -34669 -$7,280,427 

2000 75,443 45685 -29758 -$6,249,281 

2001 75,443 45606 -29837 -$6,265,873 

2002 75,443 49086 -26357 -$5,534,945 

2003 75,443 47639 -27804 -$5,838,781 

 

CRIT Average 7Month Diff Cost @ 120 

1998 75,443 43955 -31488 -$3,778,516 

1999 75,443 40827 -34616 -$4,153,879 

2000 75,443 44213 -31230 -$3,747,586 

2001 75,443 45665 -29778 -$3,573,379 

2002 75,443 45645 -29798 -$3,575,803 

2003 75,443 44299 -31144 -$3,737,250 

 

CRIT Average 13 Month Diff Cost @ 90 

1998 75,443 44,013 -31,430 -$2,828,741 

1999 75,443 41,938 -33,505 -$3,015,490 

2000 75,443 50,298 -25,145 -$2,263,021 

2001 75,443 42,353 -33,090 -$2,978,103 

2002 75,443 47,376 -28,067 -$2,526,028 

2003 75,443 43,577 -31,866 -$2,867,908 

CRIT Average Perfect Diff Cost  @$120 

1998 75,443 84,575 9,132 $1,095,798 

1999 75,443 84,269 8,826 $1,059,098 

2000 75,443 89,654 14,211 $1,705,345 

2001 75,443 91,479 16,036 $1,924,278 

2002 75,443 90,544 15,101 $1,812,102 

2003 75,443 92,588 17,145 $2,057,358 

 

CRIT Average Last Year Diff Cost @120 

1998 75,443 101,451 26,008 $3,120,960 

1999 75,443 103,458 28,015 $3,361,800 

2000 75,443 95,784 20,341 $2,440,920 

2001 75,443 98,745 23,302 $2,796,240 

2002 75,443 99,849 24,406 $2,928,720 

2003 75,443 104,578 29,135 $3,496,200 

 

CRIT Average 3 Year Diff Cost @120 

1998 75,443 110,451 35,008 $4,200,960 

1999 75,443 98,745 23,302 $2,796,240 

2000 75,443 85,456 10,013 $1,201,560 

2001 75,443 104,510 29,067 $3,488,040 

2002 75,443 102,111 26,668 $3,200,160 

2003 75,443 94,578 19,135 $2,296,200 

mailto:Cost@120
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Table C.2 Wellton Simulation 

WELL Average 1 Month Diff Cost @$210 

1998 46,535 35,487 -11,048 -$2,320,040 

1999 46,535 30,254 -16,281 -$3,418,979 

2000 46,535 30,296 -16,239 -$3,410,257 

2001 46,535 28,574 -17,961 -$3,771,743 

2002 46,535 36,479 -10,057 -$2,111,865 

2003 46,535 30,187 -16,348 -$3,433,028 

 

WELL Average 7Month Diff Cost @ 120 

1998 46,535 40,542 -5,993 -$71,9214 

1999 46,535 37,416 -9,119 -$,1094,246 

2000 46,535 26,579 -19,956 -$2,394,770 

2001 46,535 30,126 -16,409 -$1,969,122 

2002 46,535 32,459 -14,076 -$1,689,173 

2003 46,535 36,241 -10,294 -$1,235,240 

 

WELL Average 13 Month Diff Cost @ 90 

1998 46,535 35,451 -11,084 -$997,542 

1999 46,535 36,579 -9,956 -$896,072 

2000 46,535 37,891 -8,644 -$777,942 

2001 46,535 29,841 -16,694 -$1,502,449 

2002 46,535 27,485 -19,050 -$1,714,468 

2003 46,535 24,581 -21,954 -$1,975,826 

 

WELL Average Perfect Diff Cost  @$120 

1998 46,535 79,814 33,279 $399,3440 

1999 46,535 65,422 18,887 $226,6386 

2000 46,535 58,745 12,210 $146,5225 

2001 46,535 48,754 2,219 $26,6318 

2002 46,535 58,742 12,207 $146,4798 

2003 46,535 101,210 54,675 $656,1030 

 

WELL Average Last Year Diff Cost @120 

1998 46,535 104,376 57,841 $6,940,860 

1999 46,535 85,260 38,725 $4,647,041 

2000 46,535 84,752 38,217 $4,586,040 

2001 46,535 106,541 60,006 $7,200,720 

2002 46,535 65,478 18,943 $2,273,160 

2003 46,535 73,548 27,013 $3,241,560 

 

WELL Average 3 Year Diff Cost @120 

1998 46,535 112,487 65,952 $7,914,240 

1999 46,535 116,882 70,348 $8,441,700 

2000 46,535 57,487 10,952 $1,314,240 

2001 46,535 65,125 18,590 $2,230,800 

2002 46,535 107,232 60,697 $7,283,676 

2003 46,535 90,381 43,847 $5,261,585 
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Table C.3 Imperial Simulation 

IID Average 1 Month Diff Cost @$210 

1998 355,611 226,548 -129,063 -$27,103,167 

1999 355,611 253,495 -102,116 -$21,444,276 

2000 355,611 149,651 -205,960 -$43,251,558 

2001 355,611 247,986 -107,625 -$22,601,166 

2002 355,611 250,364 -105,247 -$22,101,849 

2003 355,611 232,934 -122,677 -$25,762,191 

 

IID Average 7Month Diff Cost @ 120 

1998    355,611  226,843 -128,768 -$15,452,148 

1999    355,611  253,825 -101,786 -$12,214,296 

2000    355,611  214,225 -141,386 -$16,966,308 

2001    355,611  248,309 -107,302 -$12,876,240 

2002    355,611  232,811 -122,800 -$14,736,012 

2003    355,611  216,603 -139,008 -$16,680,996 

 

IID Average 13 Month Diff Cost @ 90 

1998 355,611 227,138 -128,473 -$11,562,561 

1999 355,611 260,728 -94,884 -$8,539,515 

2000 355,611 243,710 -111,901 -$10,071,126 

2001 355,611 230,300 -125,311 -$11,277,963 

2002 355,611 241,642 -113,969 -$10,257,228 

2003 355,611 213,073 -142,538 -$12,828,420 

 

IID Average Perfect Diff Cost  @$120 

1998    355,611  451,453 95,842 $11,500,985 

1999    355,611  523,903 168,292 $20,194,992 

2000    355,611  401,026 45,415 $5,449,742 

2001    355,611  501,742 146,131 $17,535,714 

2002    355,611  412,554 56,943 $6,833,160 

2003    355,611  1,336,641 981,030 $117,723,600 

 

IID Average Last Year Diff Cost @120 

1998    355,611  547,865 192,254 $23,070,480 

1999    355,611  501,254 145,643 $17,477,160 

2000    355,611  601,451 245,840 $29,500,800 

2001    355,611  458,956 103,345 $12,401,400 

2002    355,611  487,621 132,010 $15,841,200 

2003    355,611  512,456 156,845 $18,821,400 

 

IID Average 3 Year Diff Cost @120 

1998    355,611  587,621 232,010 $27,841,200 

1999    355,611  504,189 148,578 $17,829,360 

2000    355,611  614,832 259,221 $31,106,520 

2001    355,611  602,103 246,492 $29,579,040 

2002    355,611  705,412 349,801 $41,976,120 

2003    355,611  547,851 192,240 $23,068,800 
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Table C.4 Palo Verde Simulation 

PV Average 1 Month Diff Cost @$210 

1998 116,350 94,214 -22,136 -$4,648,512 

1999 116,350 84,759 -31,591 -$6,634,196 

2000 116,350 75,242 -41,108 -$8,632,745 

2001 116,350 90,063 -26,288 -$5,520,375 

2002 116,350 93,259 -23,091 -$4,849,188 

2003 116,350 91,761 -24,589 -$5,163,732 

 

PV Average 7Month Diff Cost @ 120 

1998 116,350 56,221 -60,129 -$7,215,438 

1999 116,350 67,004 -49,346 -$5,921,557 

2000 116,350 84,357 -31,993 -$3,839,210 

2001 116,350 90,180 -26,170 -$3,140,441 

2002 116,350 86,720 -29,630 -$3,555,578 

2003 116,350 85,327 -31,023 -$3,722,717 

 

PV Average 13 Month Diff Cost @ 90 

1998 116,350 56,294 -60,056 -$5,404,997 

1999 116,350 68,826 -47,524 -$4,277,184 

2000 116,350 95,967 -20,383 -$1,834,484 

2001 116,350 83,639 -32,711 -$2,943,960 

2002 116,350 85,529 -30,821 -$2,773,881 

2003 116,350 86,107 -30,243 -$2,721,836 

PV Average Perfect Diff Cost  @$120 

1998 116,350 154,126 37,776 $4,533,078 

1999 116,350 129,875 13,525 $1,622,953 

2000 116,350 136,525 20,175 $2,420,942 

2001 116,350 158,652 42,302 $5,076,241 

2002 116,350 139,459 23,109 $2,773,038 

2003 116,350 124,559 8,209 $985,129 

 

PV Average Last Year Diff Cost @120 

1998 116,350 189,541 73,191 $8,782,920 

1999 116,350 145,741 29,391 $3,526,920 

2000 116,350 165,847 49,497 $5,939,640 

2001 116,350 135,890 19,540 $2,344,800 

2002 116,350 157,824 41,474 $4,976,880 

2003 116,350 146,982 30,632 $3,675,840 

 

PV Average 3 Year Diff Cost @120 

1998 116,350 181,664 65,314 $7,837,632 

1999 116,350 227,846 111,496 $13,379,460 

2000 116,350 159,119 42,769 $5,132,292 

2001 116,350 201,487 85,137 $10,216,440 

2002 116,350 154,265 37,915 $4,549,800 

2003 116,350 186,465 70,115 $8,413,836 
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