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CHAPTER 6

METHODS

The objective of this thesis is to determine the extent, if any, to which private
insurance companies may inflate government losses through adverse selection activities
based on El Nino/Southern Oscillation. To accomplish this, reinsurance decisions over
the 20-year period of 1978-1997 are simulated. Assume that in each year, insurance

premiums are established by the government and are based on the conditional yield
density f e (V1) . Alternatively, assume that an insurance company would have at
their disposal information regarding SSTs. This will allow them to base their reinsurance

strategy on the conditional yield density f pic (V,1t,88T) . The econometric methods used

to derive the conditional yield densities f e (V]t) and f pic(V,|t, SST) are outlined in

this chapter. Section 6.1 will discuss the techniques used by the RMA to estimate the
process of technology in wheat production. This is followed in section 6.2 by a
discussion of the techniques used in PIC estimation of wheat production. Section 6.3 will
present estimates of the technology and SST processes. Section 6.4 will explain the
manner in which conditional yield densities are estimated to recover the corresponding
insurance premiums. Section 6.5 compares RMA and PIC estimated conditional yield
densities and their associated insurance premiums. The final section will present a

chapter summary and conclusions.
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6.1 RMA Estimation of the Technology Process

Wheat production is generally characterized by an increase in yield over time as
technology has advanced. In calculating an insurance premium, RMA will estimate the
process of technological advancement to forecast the expected yield of the crop. The
residuals of the estimation are used to construct the yield distribution. To most closely
approximate RMA techniques in this simulation, the technological component will be
estimated in the same manner used for the county yield GRP program, specifically a
restricted linear spline model. A linear spline function is estimated with one knot to
accommodate a change in the rate of technological advancement. This can be expressed:

yi = a+p( x10,8®)+51-1(0,9)(1) +S2(1 - 1(0,8)(1)(t-9)) +e, (10)

where / 1s the indicator function. However this is estimated not with ordinary least
squares but once-iterated least squares. Ordinary least squares is first used to estimate a
spline function and identify outlying yield realizations. The outlying yield realizations
are then windsorized to obtain a robust estimate on the second iteration. The final

estimate of the function is used by the RMA to forecast yield in time period 7+1 while

the residuals are used to empirically construct the conditional yield density f raia (Y ollt)

6.2 PIC Estimation of Wheat Production

PIC reinsurance strategy will be based on the conditional yield density
f prc (¥,|2,88T) . Thus wheat yield is modeled as a function of both the technology

employed and SSTs. The relationship between these processes and wheat yield is
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discussed in this section. To ensure that any difference between f s (V,|t) and

f’ pic (V,|t, SST) results strictly from the incorporation of SSTs, the technology process

will be estimated with the linear spline in the same manner as used by RMA. However,
for reasons outlined in section 6.2.2, a two-stage procedure will be used to estimate the
combined technology and SST process. The technology process is first estimated using
nonparametric techniques, to extract the SST process. The SST process is then combined

in a model with the linear spline for the final estimation

6.2.1 The SST Process on Wheat Yield

In analyzing the relationship between ENSO and crop yield, most studies have
assumed a linear relationship. This was consistent with early theory indicating a linear
relationship between ENSO and weather variables such as precipitation and temperature.
However as discussed in chapter 3, more recent analysis has found that the assumption of
linearity does not always hold. Studies that investigate non-linearity typically employ a
phase-based analysis. A phase-based approach uses some quantitative criteria to
categorize ENSO conditions as either: El Nino, La Nina, or neutral. Upon delineating the
phases of ENSO, one is able to distinguish any differences or trends in the subject data
that may be attributed to the different phases. Though a phase-based methodology
addresses the question of linearity, it fails to recognize that the temperature and pressure
anomalies associated with ENSO actually fluctuate along a continuum. Given the
limitations of the linear and phase-based approaches, nonparametric techniques are used

to estimate the relationship between ENSO and crop yield.
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6.2.2 Recovery of the SST Process on Wheat Yield

In simulating RMA modeling techniques, a restricted linear spline was used to
estimate the process of technological advancement in wheat production. However, a
problem arises when a spline function is used to estimate technological advancement
given SSTs have been introduced to the model. Moss and Shonkwiler (1993) have
pointed out that technical innovation may be a stochastic process. Ker and Coble (1998)
propose that technical innovation may be a Poisson process where there is a distribution
surrounding the magnitude to which an innovation may impact crop yield, as innovations
are adopted neither completely nor simultaneously by all producers. As a result, the
temporal trend in yield will likely be marked by random and sporadic increase as
technology advances. Under these circumstances it may be difficult or inappropriate to
specify a functional form a priori. A linear spline function as used by the RMA may not

sufficiently accommodate the sporadic nature of technological advancement. This
creates a problem when estimating f e (V|t, SST) . Any residual effect of the

technology component that the spline is unable to capture may be spuriously attributed to
SSTs. Therefore nonparametric techniques will initially be used to estimate the
technology component of wheat yield.

In a fully nonparametric setting we would minimize
E(y - m(t, SST))® (11)
where m(t, SS§T ) represents the process of yield as a multivariable function of technology

and SST. However, for reasons outlined in the following section it is suitable to estimate

a generalized additive model of the form
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Yield= m,(¢)+m,(SST) (12).

The estimates 77, (¢) and 7, (SST') may then be obtained individually using
nonparametric techniques. Nonparametric estimation of 7, (¢) will accommodate the
sporadic nature of technological advancement, which will allow recovery of the SST
component 71, (SST ) without the risk of contamination presented by the linear spline.
The properly estimated SST component can then be incorporated into a model with the
linear spline in the manner of:

yi -1, (SST)=a+ i (tx(0,§) () +¢ (1-10,(®) +y2 (1-I (0,P(D)(t-¢)) +v. (13)
where [ is the indicator function. The spline function is employed for the final

estimation so we are assured that any difference between f’ e (V,]2) and f pic (Y|, S8T)

may be attributed strictly to the incorporation of SSTs, and not contaminated by the

nonparametric estimation of the technology component, 7, (t)

6.2.3 Generalized Additive Modeling

Inherent to the additive model is the assumption that the effect of SST is
independent of technological advancement in wheat production. Intuition would suggest
that this is the case. In fact, the assumption of independence has typically been elemental
to past studies regarding SST and crop yield. In addition, independence was supported
by preliminary analysis that found an interaction term (year x SST) to be statistically
insignificant. These items considered suggest the additive structure is an appropriate

estimation technique for the purposes of this study.
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In estimating a generalized additive model we now minimize E(y — m(t, SST))’

such that m(z,SST) = m (1) + my(SST). Thus we recover an estimate of the closest
additive approximation to the underlying multivariable function m(#,SS7). A thorough
review of additive modeling can be found in Buja, Hastie, and Tibshirani (1989).

In estimating the model we employ the backfitting algorithm. Backfitting
essentially involves estimating each component holding all others fixed, and then

iterating until convergence. That is, the current estimates of 7, (SST ) are obtained by
regressing the residuals £, =y - () against SSTs. Estimation of the function in an

additive form offers an advantage in that each of the individual components can be
estimated using the appropriate univariate techniques, and the resulting estimators

provide easily interpretable information as to how the dependent variable relates to each.

6.2.4 Choice of Nonparametric Techniques

Recall that technical innovation may be a stochastic process. In addition there
may be a distribution surrounding the magnitude to which an innovation may impact crop
yield, as innovations are adopted neither completely nor simultaneously by all producers.
As aresult, the temporal trend in yield will likely be marked by random and sporadic
increase as technology advances. As such, locally weighted regression smoothing,
specifically an Isotonic Robust Super Smoother (IRSS) (Ker and Coble 1998), is used to

estimate the technology component 7, (t)

Locally weighted regression smoothing will estimate a weighted least-squares

regression at each realization (x;, y;) in the set. The weights are determined by a
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decreasing function of the distance between xy and the other realizations in the local
neighborhood. If the underlying function were to exhibit more curvature, then a smaller
neighborhood is more desirable. Higher variance would require a larger neighborhood.
Thus the size of the neighborhood may vary for each observation and is chosen using
local cross-validation techniques. This is termed super smoothing.

Locally weighted least squares regression smoothing is employed under the
assumption that the dependent variable is normally distributed. However crop yields in
this area are generally considered non-normal. Recall the RMA uses windsorizing
techniques to address this issue. Therefore the super smoother is augmented with robust
techniques. Specifically, the IRSS uses the default S-Plus m-estimator. This is the Huber
m-estimator until convergence followed by two iterations of the Bisquare. In using the
m-estimator, outlying yield realizations are essentially down-weighted during the
regression smoothing. This is used in cross validation procedures as well as in the final
estimates of the regression coefficients.

Finally, technological advancement is an accumulating process. As such the
impact of technological advancement on wheat yield will likely be a non-decreasing
function. Therefore estimates are isonotized, or restricted to be non-decreasing. This is
imposed using the pool-adjacent-violators (PAV) algorithm in Hanson, Pledger, and
Wright (1973). The IRSS is fully delineated in Appendix A.

There is little in the climatology or agronomy literature which discusses the
underlying functional form of the relationship between crop yield and ENSO. Most

studies have assumed a linear model, while more recently a phase-based approach has
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been used. As stated, both of these approaches face limitations. Recall that the warm
SSTs indicative of El Nino are associated with above normal precipitation in the state of
Texas. Alternatively, the cold SST's associated with La Nina often result in below normal
precipitation and a tendency toward drought. Considering that moisture availability and
the occurrence of drought are often limiting factors in the production of wheat in Texas,
this would imply that yield is likely an increasing function with SSTs.

Given the lack of guidance from previous research, it is felt that locally weighted
regression smoothing will again serve as an appropriate means of estimating the
underlying function. The m-estimator is used to address the non-normality of the data.
The agronomy and climatology literature suggest that yield is likely an increasing
function of SSTs. As such, estimates are restricted to be non-decreasing. In short, the
IRSS is well suited to estimate the unknown underlying functional form of the

relationship between SSTs and wheat yield.

6.3 Analysis of Technology and SST Components

The process of technological advancement in wheat production has not been
uniform throughout the state of Texas. Figure 6.1 compares technological advancement
as estimated by the IRSS to that of the linear spline for Coleman county Texas over the
period of 1956-1997. In some counties the spline is a good approximation of
technological advancement, however in many the shortfalls are evident. For instances,
note the latter part of the time series for Coleman county where yield appears to level off;

the IRSS is able to approximate this while the spline estimators indicate continued
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technological advancement

In most cases the spline estimates by the RMA and those of the PIC are nearly
identical. This is not surprising as they differ only in that insurance companies have
accounted for SSTs prior to estimation of the spline. To the extent that technological
advancement and SSTs are essentially independent, this should have very little effect on
the spline estimate. The relative independence of the two components was also evident
in back-fitting the estimates, as convergence was typically achieved in 5 to 7 iterations.

Figure 6.2 depicts the estimation of the SST component for Coleman county. As
expected, the cold SSTs associated with La Nina typically result in decreased wheat yield
while the warm temperatures associated with El Nino typically resulted in increased
yields. In general the SST component explained a larger share of inter-annual yield
variability in the eastern and central portion of the state, then in the western.

In using nonparametric techniques to estimate the SST component there is some
ambiguity as to the number of degrees of freedom involved in the estimation. This makes
it difficult to conduct typical hypothesis testing. As a result, randomization procedures
were used to test the statistical significance of the SST component in each county.

Define the R’ correlation of the estimate as:

> (y, = 7, () = 7, (SST,))’
>y’

Through randomization procedures, we are able to construct a distribution of the R’

RE=1-

(14).

correlation under the null hypothesis that the SST component 7, (SST') is not significant.

To accomplish this, the vector of SSTs is randomized when estimating equation 14. That
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is, in estimating , (SST ), each observation is paired with a SST value selected

randomly without replacement from the set of recorded SSTs. This can be expressed
Yield= m, () + m, (SST;) (15).
Because these SSTs are chosen randomly, any variation in yield that 7, (SST ) may
explain thus increasing the R? correlation, is therefore spurious. Repetitive trials will
allow construction of the distribution of R’ correlation under the null hypothesis that the

SST component 7, (SST) is not significant. This will allow a test of the hypothesis that

the R correlation corresponding to the actual nonparametric estimate were drawn from
this population.

The results indicated that the SST component was significant (o = 0.1) in 50 out
of 55 counties analyzed. All five counties where SSTs were found insignificant are
located in a region of the Panhandle where irrigation is most common. Logically, the use
of irrigation would likely result in mean yields that are less dependent on weather
conditions and hence SSTs than are yields in other parts of the state.

Similar randomization procedures were used to test that the relationship between
wheat yield and SSTs differed significantly from linearity. Consider that the relationship
between wheat yield and SSTs were made up of two components: a linear component,
and a second component responsible for any deviation from linearity. This can be
expressed in the semi-parametric model

Yield= m,(¢)+ f - SST, + m,(SST,) (16)

such that ﬁ - SST is the least squares estimate of the linear relationship between wheat

yield and SSTs, and 7, (SST')is the nonlinear component which can be recovered using
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the nonparametric techniques. > To determine whether the relationship between wheat
yield and SSTs differs significantly from linearity is tantamount to determining whether

the nonparametric component #, (SST ) is statistically significant. Repetitive trials, in
which SSTs are randomized when estimating the nonlinear component 7, (SST), will

allow construction of the distribution of R correlation under the null hypothesis that the
relationship was linear. This will subsequently allow a test of the hypothesis that the R
correlation corresponding to the actual nonparametric estimate were drawn from this
population. The results indicated that 20 of the 50 counties in which the relationship

between wheat yield and SSTs is significant, reject that the relationship may be linear.

6.4 Estimation of Conditional Yield Density

In calculating an insurance premium RMA will estimate the process of
technological advancement to forecast the expected yield of the crop. The residuals of
the estimation are used to construct the yield distribution. A number of techniques have
been used to estimate conditional yield densities and derive crop insurance premiums in
the past. Goodwin and Ker (1998) note that researchers have often used a beta
distribution to estimate yield densities. This is appealing since it may accommodate

skewness in the data. Others have used a gamma distribution. However the unknown

¥ When backfitting the semi-parametric process of SST’s, the current estimate of ,3 is updated by
regressing the residuals é‘,, =y— ﬁ11 (t ) against SST’s. Estimates of the nonparametric component

i, (SST ) are then updated by regressing the residuals €, r = y — 11, (t ) - ,B - SST against SST’s.
Lastly, the PAV algorithm is used to impose the monotonicity constraint not on ﬁiz (SS T ) but rather the
sum ,8 -SST + m, (SST).
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yield densities may not likely belong to the restricted parameter space of these
distributions. Therefore nonparametric kernel techniques will be employed to estimate
the conditional yield densities. Nonparametric kernel techniques offer an advantage in
that they can estimate the unknown density without restricting it to a pre-specified
parametric space. Nonparametric kernel density estimation is outlined in Appendix B,
and is discussed in detail in Goodwin and Ker (1998).
The spline model of yield conditioned on technology, which is used by the RMA
in deriving insurance premiums was defined in equation 10 as:
ye = a+py(t x1(0,8)@)+81-1(0,8)(1)) +P2(1 - 1(0,9)(1)(t-9) +&: (17
Alternatively, the model conditioned on technology and SSTs was defined as:
yi =1, (SST) =0t n(@x1(0, (1) + (1-1(0, (1)) +y2 (1-1 (0,)())(t-)) +v. (18)
Estimation of a conditional yield density requires a set of independent yield realizations
that represent a sample from the unknown density in question. Therefore using the
forecasts of yield recovered from the estimation of equations 17 and 18 and the estimated

residuals {&,...£,} and {V,..v,}, we adjust historic yield observations to a base of time

period 7+ 1.

As technology has lead to higher yield over time, wheat may become susceptible
to greater shortfall or show increased variability in the harvested yield. In estimating
equation 17, the nonparametric peak test indicated the presence of heteroscedasticity in
44 of 55 counties. In estimation of equation 18 the presence of heteroscedasticity was
indicated in 39 out of 55 counties. Therefore the appropriate corrections were made as

follows.
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In estimating f‘ s (V,F) » the set of independent yield realizations is defined as:

(f_fjx Py Ppst =1..T (19).

Vi

where 7., is the forecasted yield for time period 7'+ 1. The same procedure is followed
when adjusting yield realizations to estimate f o (v,]t, SST) , but with the exception that

we use the forecast of yield and the residuals {V,...V,.}, as estimated by PICs and

recovered from equation 18 rather than equation 17. Note that the yield forecast by PICs
will contain the additive sum of the technology component estimated by the spline, as
well as the effect of SSTs. Upon adjusting yields we then estimate the conditional yield

densities and calculate the corresponding insurance premiums.

6.5 Comparison of Conditional Yield Densities
The relationship between yield and SSTs is evident by comparison of conditional

yield densities. Figure 6.3 compares the alternative conditional yield densities
fRMA (»,]t) and fp,c (y,It,SST) for Coleman county in crop year 1991. The actual SST

anomaly observed in July-September prior to planting the 1991 crop was very moderate,
at only 0.213 °C. As aresult there was little difference between the expected yield

forecasted by PICs and that by the RMA (see Table 6.1). However notice the reduction
in variance exhibited by f oie (v, 8SST) in comparison to f s (Vit). Because the
variation in yield attributed to SSTs has been explained, there is a smaller portion of the

probability mass in the tails of f wc (v |t,SST) while a larger portion in the neighborhood
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of the expected yield. Although the difference in forecasted yield was only slight, when
combined with the reduced variance there results lower premium rates calculated by the
PICs than the RMA (Table 6.2). Coleman county ultimately produced a wheat yield of
16.97 bushels/acre in 1991, which resulted in a net profit at all coverage levels.
However unlike 1991, strong La Nina conditions were developing prior to

planting for crop year 1989. The July-September SST anomaly of —1.38°C resulted in a
substantial decrease in expected wheat yield for Coleman county (Table 6.1). Although
the RMA had estimated an expected yield of 21.34 bushels/acre, the PICs included SSTs
into their estimation to forecast a yield of only 11.11 bushels/acre. Figure 6.4 compares

the subsequent conditional yield densities for Coleman county. Notice that
f o (¥[8, SST) still exhibits less variance than f i (V1) , however it has shifted

downward to reflect the lower expected yield. As a result of the downward shift, the
corresponding PIC premium rates which more accurately reflect the risk in production are
substantially higher than those estimated by the RMA (Table 6.2). Dry conditions
associated with the low SSTs resulted in Coleman county producing a wheat yield of only
13.40 bushels/acre in 1989 which resulted in no indemnities paid at the 60% coverage

level but net losses at the 70, 80, and 90% levels.

6.6 Summary and Conclusions
To determine the extent to which PICs may recover excess profits at the expense
of excess government loss, reinsurance decisions over the period of 1978-1997 are

simulated. It is assumed that in each year, insurance premiums are established by the
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government and are based on the conditional yield density f s (Vilt) . Alinear spline

model is used to estimate the process of technological advancement. This will enable a

forecast of yield in time period 7 + 1. The residuals of the regression are then used to
empirically construct the yield density ]} a2

Alternatively, it is assumed that a PIC would base their reinsurance strategy on
the conditional yield density f oic(¥,]2,8ST) . The linear spline is limited in its ability to

approximate the process of technological advancement (figure 6.1). Therefore the
processes of technology and SSTs are estimated in two stages using a generalized
additive model. First, nonparametric techniques are used to estimate the technology and
SST process. This will allow extraction of the SST process without contamination
resulting from the limitations of the linear spline. Secondly, the SST process is inserted

into an additive model with the linear spline. This is used to forecast yield in time period

T+ 1 and estimate f o (1,11, SST) . By using the linear spline in the final model we are

assured that any difference between J} e (V1) and f" pic (¥,|t, 88T results strictly from
the inclusion of SSTs.

Figures 6.3 and 6.4 presented comparisons of /}RMA (»,]t) and fp,c (y,1t,88T). In

years of moderate or warm SSTs the reduced variance associated with f e (V[t,S8T)
resulted in lower premiums estimated by PICs than the RMA. However in years of
strong negative SSTs, the downward shift associated with f wic (¥,1t, SST) resulted in

higher premiums estimated by PICs than the RMA.



Forecasted yield

Year SST anomaly RMA PIC
1991 0.213 19.62 20.81
1989 -1.38 21.34 11.11

Table 6.1: Comparison of forecasted yield for Coleman county.

1991 Premium rates 1989 Premium rates
Coverage RMA PIC RMA PIC
level %
60 0.28 0.09 0.31 2.11
70 0.56 0.21 0.62 4.05
80 0.97 0.42 1.07 6.14
90 1.55 0.77 1.70 8.27

Table 6.2: Comparison of premium rates for Coleman county.
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Figure 6.1: Estimated technology process, Coleman county
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Figure 6.3: Density of yield, Coleman county 1991
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CHAPTER 7

SIMULATION ANALYSIS AND DISCUSSION

To determine the extent to which ENSO based adverse selection may increase
government losses, we simulate the reinsurance decisions of a private insurance company
over the 20-year period of 1978-1997. The general guidelines are outlined in section 7.1.
The reinsurance simulation is repeated under 3 different scenarios. In the first scenario,
PIC decision strategy is dependent on their expectation of profit subject to the constraints
of the 1998 SRA. Each contract is evaluated individually under the assumption that the
loss ratio of each fund would follow the loss ratio of the contract in question. In the
second scenario, PIC decision strategy is based on the expected loss of each contract.
The underwriting gains and losses are subject to the constraints of the SRA. In the third
scenario, PIC decision strategy is independent of the SRA, and they may either accept or
cede to the government 100% of the underwriting gains or losses as they choose. These
scenarios are presented and explained in more detail in section 7.2. They allow a
comparison of the results both with and without the constraints of the 1998 SRA. Upon

discussing the scenarios, a summary of the findings is presented in section 7.3.

7.1 Simulation Guidelines
There are 55 Texas counties included in the study, and each county-year
observation is considered one insurance contract to be reinsured. Therefore 55 contracts

are evaluated in each year for a total of 1100 contracts over the 20-year period of the
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simulation. Each contract is weighted by the average number of acres insured in that
county over the period of 1995-1998. The simulation is performed at the 60,70, 80, and
90% coverage levels.

Premiums are established on a contract by contract basis and we assume that rates
are set one year in advance by the RMA. For example the premium for 1978 is based on
the conditional yield density as estimated from the information set Jray = {¥1956.... Y1977}
Alternatively, PICs will have at their disposal information regarding SSTs. Therefore
they would base their decision strategy on the conditional yield density as estimated from
the information set Ip;c = {y1956 ... Y1977, SST1956... SST, 1978}.14 The respective information
sets are then updated in each successive year of the simulation. Thus the premium for
1979 is based on the information set Irps = {V1956.... Y1978} -

Historic yield realizations are used to determine the profit or loss on each
contract. This will allow calculation of the total profit or losses that are accrued by
insurance companies, the government, and the overall program over the 20-year period.
In addition, pseudo loss ratios are calculated for insurance companies, the government,
and the program overall. Because profits and losses under the SRA are shared between
the government and PICs, there is no delineation as to the actual premiums or indemnities
accredited to each. This prohibits the calculation of actual loss ratios for each party.
Thus pseudo loss ratios are calculated for the government, PICs, and the program overall.

The pseudo loss ratio is defined as

!4 Note that the conditions of SS77,,s are observed in the months of July-August-September 1977, just prior
to the deadline date for 1978 reinsurance decisions.
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total losses 20)
total profits

where total losses = the sum of the losses for those years in which PICs [or government]
realized a net loss, and fotal profits = the sum of the profits for those years in which PICs

[or government] realized a net profit.

7.2 Simulation Analysis and Results

Recall from chapter 5 that the 1998 SRA designates three funds to which a
contract may be assigned: the commercial, developmental, and assigned risk. The
government and PICs share any underwriting gains or losses from each fund in a given
year by a two-tiered risk-sharing structure. At the first tier, an insurance company will
retain a predetermined share of the profit or loss (see table 5.1). At the second-tier, the
shares are determined by the loss ratio of the fund (see table 5.2).

The reinsurance simulation is repeated under three different scenarios. In the
first, assume that the loss ratio of each fund would be entirely dependent on the loss ratio
of the contract in question. Thus the fund loss ratios would equal the contract loss ratio.
PIC reinsurance decisions are then based on their expectation of profit under the
constraints of the 1998 SRA. This is termed the dependent scenario, and is presented in
section 7.2.1. In the second scenario, assume that the loss ratio of each contract is
independent of the loss ratios of the different funds. Reinsurance decisions are then
based on the expected loss of each contract. However, the underwriting gains and losses

are subject to the constraints of the SRA. This is termed the independent scenario, and is
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presented in section 7.2.2. In the third scenario PICs are fully unconstrained by the SRA.
Their decision strategy is independent of the SRA, and they may either accept or cede to
the government 100% of the underwriting gains or losses as they choose. The

unconstrained scenario is presented in section 7.2.3.
In the dependent scenario, beginning in 1978 we estimate f’ e (Y12, SST) for

every contract. As demonstrated in section 5.2 this will allow calculation of the profit a
PIC would expected from each of the three funds. Each of the 55 contracts is then placed
in the fund that offers the highest expected profit. Using historic yield realizations for
1978, the loss ratios for each fund are then calculated and the gains or losses divided
between the government and PICs accordingly. This process is repeated for each year of
the simulation to recover the total profit or losses that are accrued by PICs, the
government, and the overall program over the 20-year period. In addition, pseudo loss
ratios are calculated for each party.

Randomization procedures were used to test the statistical significance of ENSO-
based reinsurance strategy. From the original simulation, it is determined how many
contracts are placed in each of the three funds. The simulation is then repeated for 1000
trials in which contracts are assigned randomly to one of the three funds. However, the
random trials are restricted so that the total number of contracts assigned to each fund 1s
equal to the quantity so assigned during the original simulation. For example, suppose
that during the original simulation 150 contracts were placed in the assigned risk fund,
100 in the developmental fund and 850 in the commercial fund. For each random trial,

150 contracts are placed in the assigned risk fund, 100 in the developmental fund and 850
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in the commercial fund. By comparing the results from the original simulation, to those
from the random trials, the statistical significance of this reinsurance strategy can be
evaluated. Probability values are calculated to indicate the likelihood that ENSO based
adverse selection did not result in higher [lower] PIC [government] profits and lower
[higher] PIC [government] loss ratios.

In the independent scenario of the simulation, PIC reinsurance decisions are made
under the assumption that the loss ratio of each contract is independent of the loss ratios

for the three reinsurance funds. However, the underwriting gains and losses are subject
to the constraints of the SRA. Using oic (|8, SST) PICs will calculate the expected
loss on a contract, which will differ from the premium established by the RMA using

f i (|0) . If they estimate the expected loss to be more than reflected in the premium,

they will assign the contract to the commercial fund. Alternatively, if they estimate the
expected loss to be higher than reflected in the premium, they will place it in the
developmental or assign risk fund. As with the first scenario, this is repeated for each
contract to recover the total profit or losses that are accrued by PICs, the government, and
the overall program for the 20-year period. In addition, the loss ratios and pseudo loss
ratios are calculated for each of these parties. Randomization procedures similar to those
in the first scenario are used to test the statistical significance of ENSO based adverse
selection.

In the unconstrained scenario of the simulation, insurance companies are
unrestricted in their reinsurance decisions. Using f e (¥ |t,SST) they will calculate the

expected loss on a contract, which will differ from the premium established by the RMA
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f wu (,]2) . If they estimate the expected loss to be more than reflected in the premium,

they will accept 100% of the contract liability and profits or losses. Alternatively, if they
estimate the expected loss to be higher than reflected in the premium, they will cede
100% of the liability and profits or losses to the government. This is repeated to calculate
the total profits and losses, pseudo loss ratios, and loss ratios for the government, PICs,
and the program over the twenty-year period. This scenario will provide a base for
comparison, to determine the effect of the SRA on PIC adverse selection.
Randomization procedures are again used to test the statistical significance of this
strategy. The procedure is repeated for 1000 trials in which 100% the liability of each
contract is randomly assigned to either the government or PICs. However, the random
trials are restricted so that contracts are assigned to the government and PICs with the
same likelihood to which they were assigned in the original simulation. The profits,
losses, and loss ratios from the random trials are then compared to those of the original

simulation to evaluate the statistical significance of ENSO-based adverse selection.

7.2.1 Simulation Results, Dependent Scenario

Results of the simulation indicate that overall program loss ratios for the period of
consideration range from 0.90 at the 60% coverage level to 1.39 at the 90% level (Table
7.1). These values are consistent with the historical performance of the program, as was
outlined in chapter 2. Section A of table 7.2 presents a comparison of PIC and

government profits and loss ratios when reinsurance decisions were made under the
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assumption that contract loss ratios were equal to fund loss ratios. Thus, contracts were
placed in whichever of the three reinsurance funds offered the highest expected profit.

At the 3 lowest coverage levels PICs retained a profit while the government
suffered losses, and at the 90% level PICs suffered a substantially smaller loss than the
government. Likewise, PIC loss ratios were substantially lower at all levels. Excess PIC
profit due to ENSO-based adverse selection was statistically significant at all coverage
levels (see Pvalues in table 7.2).

Figure 7.1 compares the cumulative distributions of PIC profit for the commercial
and assigned risk funds for crop year 1991. If PICs were to assign this contract to the
commercial fund in a year of moderate SSTs such as 1991, there is a risk that they may
suffer a loss of over 3 bushels/acre. However they are much more likely to retain a fair
profit in the commercial fund, so the expected value of the contract was 0.48
bushels/acre. In comparison, the negligible share for which they are liable in the assigned
risk fund is evident. They were not likely to realize a significant loss or profit, resulting
in an expected value of 0.08 bushels/acre. In a case such as this a PIC would assign this
contract to the commercial fund.

At all coverage levels a large majority of the 1100 contracts are assigned to the
commercial fund. Intuition may suggest that negative SST anomalies are associated with
below average yields and high risk, while positive SST anomalies are associated with
above average yields and low risk, resulting in approximately 50% of the contracts placed
in the commercial fund and the other 50% in the assigned risk fund. The large

percentage placed in the commercial fund may then appear inordinately high, but it
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results of several factors. Consider figure 7.2, which compares the cumulative
distributions of government and PIC profit for the commercial fund, on a Colby county
contract at the 90% coverage level in crop year 1991. If premiums were actuarial fair and
risk sharing between the government and PICs equal, then there would be 0 expected

profit for each party. However recall from section 6.3 that the reduced variance
associated with f e (v,/t, SST) indicates that in a moderate year such as 1991 (SST

anomaly = 0.213) the risk in production is less than reflected in the premium. As a result
there is an expected profit which is shared between the two parties and equal to the
difference between the RMA premium and the PIC premium:

RMA premium — PIC premium (see table 6.2) = 1.55-0.77=0.78 (21).
Thus the government and PIC expected profits as shown on figure 7.2 were 0.30 and 0.48
bushels/acre respectively. Similarly, even when SST anomalies are negative there may
still be less likelihood of a shortfall and a higher expected profit than reflected in the
premium calculated by the RMA. This will increase the percentage of contracts that PICs
wish to place in the commercial fund.

A second reason for the large number of contracts placed in the commercial fund
results from the risk sharing structure of the SRA. In particular, recall the 2" tier of the
commercial fund as outlines in table 5.2. Note the asymmetry by which profits and
losses are divided between the government and PICs. When yields are favorable and the
loss ratio is below 1, PICs tend to share a larger portion of the profits than they do the
losses when there is a shortfall and the loss ratio is above 1. This too can be seen in

figure 7.2. In the event of no shortfall they share the profits almost evenly, with the
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government retaining 0.772 and PICs 0.778 bushels/acre. Thus the maximum profit each
may retain as indicated on the figure is almost equal. However in the event of a shortfall,
particularly a severe one, the government may absorb a loss of up to 13 bushels/acre
while PICs less than 4. Because of this asymmetry, potential PIC loss due to shortfall is
often offset by the larger share they will retain in the event of no shortfall, making the
commercial fund again the most desirable in which to place a contract. Only in extreme
cases would the assigned risk fund be the option of choice.

Figure 7.3 compares the cumulative distribution of PIC profit for the commercial

and assign risk funds for crop year 1989. The associated strong negative SST anomalies
and low expected yield indicated by f’ e (7,|t, SST) (figure 7.4) have resulted in

distributions of PIC profit which reflect the high likelihood of a loss in each fund. As a
result the expected profit of the commercial fund was -1.82 bushels/acre while in the
assigned risk a negligible —0.04 bushels/acre. With an expected net loss in each, a PIC
would choose to put this contract in the assigned risk fund. Figure 7.4 compares the
distributions of government profit for the commercial and assign risk funds in 1989.
Notice the government is more likely to sustain larger losses in the assigned risk fund,
where the PIC share is negligible, then in the commercial where it is more considerable.
Finally, notice in table 7.2 that a larger number of contracts were placed in the

assigned risk fund as the coverage level increased. Consider a case where

Fore (v,|2,SST) lies on the lower tail of f,,, (¥,|t). Since fpe(y,|t,SST) exhibits less

variance then f’ i (V|1 , it may still contain less probability mass in its tails. Therefore
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at lower coverage levels, f e (V|8 8ST) would still indicate less likelihood of a shortfall

then /} s (,|8) , making the commercial fund more favorable. However, as coverage
level increased the high probability of shortfall associated with the main body of
f e (7,12, SST) would indicate the contract was not favorable, so that it the assigned risk

fund was more favorable.

To better distinguish PIC profit gained directly through ENSO-based adverse
selection activities, from those resulting of asymmetry in the SRA, the scenario was
repeated for which PIC reinsurance decisions were made without regard to SSTs. That is,

for a given contract the expected PIC profit from each of the three reinsurance funds was
calculated using the conditional yield distribution f s (V) rather than j} o (|2, 88T) .

Not surprisingly given the asymmetric risk sharing structure of the SRA, when SSTs
were excluded from reinsurance strategy a PIC would maximize their expected profit by
assigning all contracts to the commercial fund. The resulting loss ratios and profits are
presented in section C of table 7.2. The government still bore a majority of the losses and
suffered higher loss ratios than PICs. Table 7.3 compares government and PIC profits
and losses with and without ENSO-based adverse selection activities. By engaging in
ENSO-based adverse selection, insurance companies were able to lower their loss ratios
while increasing profit substantially. This came at the direct expense of the government
however, which saw higher loss ratios and net loss increases ranging from 12% to almost

40% at the various coverage levels.
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Recall from chapter 5 that in the state of Texas a PIC may allot no more than 75%
of their reinsured contracts to the Assigned risk fund. Therefore, a situation may exist
where the assigned risk fund is an unavailable option for reinsurance. To address this
possibility, the dependent scenario was repeated a third time in which PIC reinsurance
options were restricted to the commercial and developmental funds. In this setting the
developmental fund is viewed as the preferred option in instances where PICs wish to
cede a contract to the federal government. As such, it is assumed that they would opt to
retain the minimum 35% share of first tier liability (see table 5.1).

Even without availability of the assigned risk fund, ENSO-based adverse
selection resulted in reduced loss or increased profit for PICs at the expense of increased
government loss (table 7.2, section B). Likewise PIC loss ratios were lower and
government’s higher than when SSTs were excluded from analysis and contracts were
assigned to the commercial fund. The higher liability shares of the developmental fund
in comparison to the assigned risk resulted in PIC gains and government losses that were
not as large as when afforded the use of the latter fund. However the results were again
statistically significant (see table 7.2). This demonstrates that the developmental fund,
like the assigned risk fund, is also a viable outlet for PICs to shift a significant share of

unwanted contracts to the federal government.

7.2.2 Simulation Results, Independent Scenario
To this point reinsurance decisions have been determined by projecting the terms

of the SRA onto the conditional yield distribution associated with each contract.
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However the shares stipulated in the SRA are determined not by the loss ratio associated
with each individual contract, but by the loss ratios of each fund overall. Therefore an
informed reinsurance decision would require not only the distribution of yield for a
contract in question, but the joint distribution for all that will be assigned to each fund.
This information is not attainable since it would require an immense number of possible
yield combinations and knowledge as to what contracts will be placed in each fund.
Rather than assume that the yield distribution for each contract is an appropriate
substitute for the joint distribution of an overall fund, an alternative is to assume that the
distribution of each contract is independent of the fund. A PIC could then evaluate the
profitability of each contract independent of the SRA and then assign it to the various
funds accordingly. For instance, if a PIC were to estimate the expected loss (the PIC
premium as in table 6.2) to be lower than calculated by the RMA (the RMA premium)
the contract would be placed in the commercial fund. If they were to estimate the
expected loss to be higher than calculated by the RMA it, would be put in the assigned
risk or developmental fund.

Table 7.2 sections D and E present the results when undesirable contracts were
placed in the assigned risk and developmental funds respectively. When the
advantageous structure by which profits and losses are divided in the SRA, were removed
from PIC decision strategy, they opt to place fewer contracts in the commercial fund.
Subsequently the number allotted to the assigned risk or developmental funds increased
dramatically. Although carrying less liability, PIC profits were similar to those under

previous scenarios. Randomization procedures again indicated that PIC profit attributed
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to ENSO-based adverse selection was statistically significant regardless of whether the
assigned risk or developmental fund were used to shift unwanted contracts to the federal
government. Finally, notice that the tendency to place a higher number of contracts in
the assigned risk fund as the coverage level increases, is even more clearly evident when

the asymmetry of the SRA is removed from PIC decision strategy.

7.2.3 Simulation Results, Unconstrained by the 1998 SRA

For comparison purposes the simulation was lastly repeated such that PICs were
not constrained by the terms of the 1998 SRA, and were free to accept themselves or cede
to the government 100% of the liability as they saw fit. Under this scenario the decision
to accept or cede a contract is again based on the expected loss of a contract. If a PIC
were to estimate the expected loss (the PIC premium) to be less than as calculated by the
RMA (the RMA premium) the contract liability would be retained. Conversely if a PIC
were to estimate the expected loss to be higher than calculated by the RMA, the contract
liability would be ceded to the government. The results are presented in table 7.4.
Though PICs would retain most of the contracts (72-88%) they would successfully avert
a majority of the losses. As with previous scenarios, excess PIC profit recovered by
adverse selection was statistically significant. However the overall discrepancy between
PIC and government profit was less than under the constraints of the SRA since the

asymmetry of the risk sharing is no longer a contributing factor.
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7.3 Summary of Findings

These simulations over the years of 1978 to 1997 have considered PIC
reinsurance strategy under three scenarios. The loss ratio of each fund, which under the
1998 SRA determines the share of underwriting gains or losses retained by PICs, depends
jointly on every contract placed within it. Since this information is unobtainable,
assumptions were made to circumvent the problem. In the dependent scenario, the
reinsurance decision on each contract was made under the assumption that the loss ratio
of each fund would be entirely dependent on the contract in question. Contracts were
then placed in the fund that offered the highest expected profit. In the independent
scenario, fund loss ratios were assumed to be entirely independent of each contract. If
PICs estimated the expected loss on a contract to be less than reflected in the premium, it
was placed in the commercial fund. If they estimated the expected loss to be greater than
reflected in the premium, it was placed in the assigned risk or developmental fund. In the
final scenario, PICs were unconstrained in their reinsurance decisions and either accepted
or ceded to the government 100% of the underwriting gain or loss on each contract.

Having considered the results of the analysis, there are some generalizations that
can be made about the findings. Under all scenarios, insurance companies were able to
recover excess profits thus reducing their loss ratios by engaging in ENSO based adverse
selection activities. These excess profits come at the direct expense of the federal
government, which subsequently saw losses inflated by 12% to almost 40% at various
coverage levels. Furthermore, excess PIC profits gained through ENSO based adverse

selection, were found to be statistically significant under every scenario.
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When looking more specifically at the effect of the 1998 SRA, several interesting
points emerge. The asymmetric structure by which shares are divided under the 1998
SRA found the government bearing substantially more losses over time than PICs even
regardless of ENSO based adverse selection. When PICs consider the asymmetry of the
SRA into their reinsurance strategy, there result minimal instances where they would not
opt to assign a contract to the commercial fund.

Also notable, when an insurance company would place a contract in the assigned
risk fund, they would carry a nearly negligible portion of the liability. Thus when SST
conditions would dictate, it was a most profitable option to cede undesirable contracts to
the government. However in the event that the assigned risk fund were unavailable, the
developmental fund serves as a viable outlet as well. There was surprisingly little
difference in the results when using the assigned risk or developmental fund to cede

unwanted contracts.



% coverage

Loss ratio

60
70
80
90

0.90
1.14
1.35
1.39

Table 7.1: Program loss ratio by

coverage level.
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PIC RMA
% | Without | With Change | Without | With Change
EBAS EBAS EBAS EBAS
60 1.85 2.14 15% -0.74 -1.02 39%
70 2.11 3.04 44% -5.74 -6.66 16%
80 -1.73 0.28 116% -16.60 -18.62 12%
90 -6.92 -2.01 71% -33.25 -38.16 15%

Table 7.3: Change in profits upon the introduction of ENSO-based
adverse selection (EBAS).
Reported in 1,000,000’s of bushels.
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Figure 7.1: PIC profit by fund
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Figure 7.3: PIC profit by fund
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CHAPTER EIGHT

SUMMARY AND CONCLUSIONS

Since their inception over 60 years ago, government supported crop insurance
programs have been persistently plagued by low participation and poor actuarial
performance. Though initially available only to wheat farmers in limited geographic
regions and guaranteeing only against yield shortfall, federal crop insurance has now
broadened in scale and scope. Following early expansions to cover cotton, larger land
areas and other major grains, it eventually became available for such diverse agricultural
products as greenhouse plants and winery grapes. Most recently introduced have been
revenue guarantees. If a farmer does not receive the revenue guaranteed by contract,
whether it is due to yield shortfall, low commodity price or both, he/she will collect an
indemnity payment. Thus through market forces insurance policies are impacted by
production decisions, weather, and other factors occurring worldwide.

Due to expanded programs, premium subsidies and attempted cutbacks in federal
disaster relief, participation in U.S. crop insurance has increased dramatically in recent
years. The added numbers have done little to improve fiscal performance however, as
1998 saw a total cost to the government of about $2.1 billion (USDA-OIG 1999). In
addition Congress in 1998 passed over $1 billion in supplemental appropriations for crop
losses resulting from widespread disaster. This same year however, insurance companies
collected an estimated $759 million in revenue consisting of underwriting gains and

administrative fees paid for by the government. The period 1995 through 1998 saw $8.8
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billion in government expenditures on crop insurance while private insurance companies
received about $2.8 billion in revenue. In an attempt to gain control of program losses,
Congress has set a future loss ratio target of 1.075. The government will also attempt to
reduce the disparity between their losses and PIC profits.

Historically the largest factor inflicting crop loss in the U.S. has been drought, or
more broadly weather variability in general. However recent years have seen great
strides in advanced forecasting of seasonal weather, which offers to lessen the
vulnerability of agriculture to such vagaries through improved planning and risk
management. Crop insurance programs will surely play an important part of this
strategy.

This study has focused specifically on the relationship between Nino3 SSTs and
Texas wheat yields, and the implications that this relationship may have on the federal
crop insurance program. Nino3 SSTs are a commonly used indicator of ENSO, which
exhibits a strong influence on Texas climate. As a result, Texas wheat yields were found
to be correlated with Nino3 SSTs observed prior to the deadline date for reinsurance
decisions on wheat contracts. By incorporating this additional information into the yield
distribution of the crop, a private insurance company would be able to more accurately
than the RMA assess the forthcoming risk in production, and could make reinsurance
decisions accordingly.

Insurance premiums are established by the RMA over a year in advance and are
based on the yield distribution conditioned on technology. At this time, information

regarding ENSO conditions during the growing season is not yet available. However
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insurance companies can base their decision strategy on the yield distribution conditioned
on technology and SSTs. Figures 7.1 and 7.2 demonstrated examples of this distribution
which will offer an alternative expected yield (table 6.1), and because the variation
resulting from changes in SST has been explained, it will have less variance.
Subsequently insurance premiums conditioned on SST differed from those of the RMA
as well (table 6.2). Wheat yield in Texas is generally an increasing function of SST, so
the lowest SSTs were associated with higher production risk than estimated by the RMA
while moderate and warm SSTs were generally associated with lower risk.

The 1998 SRA, by which reinsurance terms are stipulated, is such that any profits
or losses on crop contracts are not shared evenly or symmetrical between insurance
companies and the government. There are three funds to which a PIC may assign a crop
contract: the commercial, developmental, or assigned risk. They are responsible for
varying portions of liability in each, although PICs generally retain a larger share of any
profit than they do of a loss. The asymmetry of the risk sharing structure essentially
becomes an implicit subsidy to the private insurance industry, which regardless of
adverse selection activities would result in the federal government bearing responsibility
for a majority of crop losses over time. Furthermore, via the assigned risk fund and to a
lesser degree the developmental fund, the SRA allows insurance companies to cede all
but a negligible portion of selected liability to the government. In doing so companies
are afforded the opportunity to evaluate the potential profitability of contracts based on
SSTs, and strategically designate them between the available reinsurance funds so as to

maximize their expected profit.
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To perform the analysis the study simulated the actions of an adverse selecting
private insurance company over the 20-year period of 1978-1997. Under various
scenarios it was found that insurance companies would opt to place a majority (from 70%
to almost 100%) of the contracts in the commercial fund. The large percent assigned to
the commercial fund resulted of two factors: the advantageous risk sharing structure of
the SRA, and the minimal production risk associated with years of all but the lowest
SSTs. As the coverage level would increase however, so would the tendency to shift
liability on to the federal government.

The simulation results indicated that under all scenarios, insurance companies
were able to recover excess profits thus reducing their loss ratios by engaging in ENSO
based adverse selection activities. This came at the direct expense of the federal
government, which saw its losses inflated by 12 to 39 percent. In addition to being
economically significant, randomization procedures found these results to be statistically
significant as well.

Given that the potential for ENSO-based adverse selection is present in the
insurance market for Texas wheat, there lies the question as to whether private insurance
companies would take advantage this opportunity. The USDA Office of the Inspector
General (1999) recently reported to the Secretary of Agriculture that “Reinsured
companies have become very proficient at assigning policies to the various pools to
maximize underwriting gains on low-risk policies and to minimize underwriting losses on
high-risk policies.” (p.12) As the Inspector General’s office states private insurance

companies are very adept at taking advantage of such activities. Thus ENSO-based
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adverse selection is an opportunity which they are clearly not likely to forego. The
aforementioned report additionally recommends that RMA revise the SRA to assign more
risk to private insurance companies. As PIC liability increases, it may become even more
advantageous to engage in such activities.

Although the focus of this study was very specific in considering Texas wheat and
Nino3 SSTs, the findings are more widely applicable. The vast improvements in
seasonal weather forecasting will likely continue for the foreseeable future. This will
create similar opportunities throughout the crop insurance industry. This study is just one
example of the impact that such forthcoming science can have on the agricultural sector,
and it is imperative that government policies are able to evolve with these advances.
Given the significant opportunity for ENSO based adverse selection that has been
demonstrated by this study, it seems that the RMA should consider this in future
negotiations of the SRA.

Unfortunately there are few policy options available to eliminate or alleviate the
informational asymmetries that enable PICs to engage in ENSO based adverse selection.
The RMA must establish premiums well in advance to accommodate farmers, however
reinsurance decisions cannot be made until after contracts have been purchased. Under
these circumstances the informational asymmetries are unavoidable. An option that the
RMA could take would be to restructure the SRA so that PIC and government profits
were equitable after any information asymmetries had been exploited. Essentially the

RMA would recognize that adverse selection will take place, and then structure the SRA
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to reflect this. For instance the asymmetry of the risk sharing structure could be reduced

to offset the excess PIC profits gained through adverse selection.
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APPENDIX A

ISOTONIC ROBUST SUPER SMOOTHER"

The isotonic robust super smoother performs a locally weighted regression
smoothing, at each observation (x, y;) in the set of interest. Define an observation xy; and
its k nearest neighbors as the neighborhood Ni(xg). In addition we will define the span as
the number of observations in neighborhood Ny(xy). The weights are then determined by
a decreasing function of the distance between xy and all the other observations in

neighborhood Nj(xg). Defining the farthest point from x, in neighborhood Ny(xy) as

dmax(xo) = max,, (XO)QxO -X ), we assign weights according to the function

| ol 22)
d max(x, )
where

(23).

()= {(1 ~u’)® for0 <u <1
0 otherwise.

Note that for any x; outside of neighborhood Ny(xy), | xo — X; | > dmax(xo) and thus it
receives a weight of 0. Using these weights we calculate the least squares regression
coefficients and recover the vector of residuals for observation x, and neighborhood
Ni(x).

The optimum span for observation xy is then choosing through local cross

validation procedures. Locally weighted regression smoothing with the neighborhood
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chosen by cross validation procedures is termed super smoothing. Cross validation using

the leave one out approach chooses the span which minimizes the sum

n 2
>y - 98] (24)
i=1

where j/(kl.) is the weighted least squares estimate of y;, using span £, after excluding

observation (y;, x;) from the calculation. A constant span over the entire domain may not
be desirable. An increase in the curvature of the underlying function would require a
smaller span, while an increase in the variance would require a larger one. Thus we
employ local cross validation and choose a span for each xp based only on the

neighborhood N y(x). That is, for each predictor value x, the span is chosen on the sum

Z[yi "JA’(i)]z (25).

Ny (x)

Note that the sum is only over N y(x) and not the entire sample. This is calculated
separately for each realization leading to an individual span (%;) for each. An overall
span, y, must be specified beforehand to define the neighborhoods N y(Xy) to undertake
the local cross validation.

Because crop yields in the area of interest are not considered to be Gaussian, the
super smoother is augment with robust techniques. The IRSS employs the default S-Plus
m-estimator for robust regression, which is the Huber (1979) m-estimator until

convergence followed by two iterations of the Bisquare. The robust techniques are used

15 This outline of the IRSS draws heavily from Ker and Coble (1998).
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in both the local cross validation procedure as well as in the final estimates of the
coefficients.
Given observation x , k, Ni(xy), W, and the vector of residuals {e,... €,} recovered

from the corresponding estimated coefficients; we calculate the Mean Absolute Deviation

(MAD):

2l

k

s.t. x; € Ni(xgp) (26).

Thus we calculate the MAD of only those residuals whose corresponding x; € Ni(xg). We
then define u; as the absolute value of residual i divided by the MAD, and recover the
Huber weights, Q, where Q is defined as

1, foru <1.345

. 27
1.345/u  otherwise.

Qu) = {

Using the new weights QW, we re-estimate the coefficients and recover a new set of
residuals for neighborhood Ny(xy). Using the new residuals, we re-calculate the Huber
weights, and repeat the process until convergence is achieved.

Upon convergence using the Huber weights, the estimated residuals are again
used to define the bisquare weights ¥, where ¥ is defined as

W) = {(l —(u/4.685)%)*, foru <4.685 o8)

0 otherwise.

We then perform two iterations using weights W, to recover our final estimates of the

regression coefficients.
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The robust weighted least squares estimates are calculated for all observations and
all possible spans using the leave one out approach, to determine the optimum span for
each xy. Once the optimum span has been determined for each observation, the final
estimates are calculated with the inclusion of the (xg, yo) in question.

Finally, we wish to isotonize, or restrict our estimates to belong to the class of
non-decreasing functions. This is done using the pool-adjacent-violators (PAV)
algorithm in Hanson, Pledger, and Wright (1973).

To begin, the estimates must be ordered so that they are increasing in x. Starting

with the estimate of 7,, we progress through the series until the monotonicity constraint

is violated ( ,,; < 9,). If the monotonicity constraint is violated, then pool ( 9;, ;,,) and

replace the estimates with their average, y; = y,,; = y—’—;i Having now altered j,,

i+1
we then must check that the preceding estimate ,, < 3, , and if not then pool

(929> Piny ) and average. This process is continued with subsequent preceding estimates

until the monotonicity constraint is satisfied, at which point we again progress through

the series until completion.
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APPENDIX B
NONPARAMETRIC KERNEL DENSITY ESTIMATION'®

Nonparametric kernel techniques are an effective way of estimating an unknown
probability density function without restricting the estimate to a known parametric space.
A required input of the kernel density estimator is a set of independent observations from
the unknown density of interest. Intuitively, kernel density estimation centers an
individual kernel on each observation in the set. The estimate of the unknown probability
density function at any point in the domain is then the sum of the individual kernels at
that point.

The estimate of the unknown density at any given point (say yo) is defined as

25

folv)=2——F— 29)

i=1
where K(-) is the kernel function, 4 is a smoothing parameter, and T'is the number of
realizations and hence the number kernels. A decision must then be made as to the
choice of the kernel function K(:), and the choice of the smoothing parameter 4.
Epanechnikov (1969) derived the optimum non-negative kernel function that
would minimize Mean Integrated Squared Error (MISE). Rosenblatt (1971) however,
showed that choice of a suboptimal kernel would result in only a moderate loss in the
asymptotic MISE. Therefore a standard Gaussian kernel is generally used in practice,

and will be employed for this study as well.

1 This appendix draws heavily from Goodwin and Ker (1998).
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In choosing the smoothing parameter, 4, a decision must be made as to whether
one be used globally or locally. If the smoothing parameter is global, then it will smooth
all of the observations equally. This may be problematic however, as minimal smoothing
to obtain greater detail in the main body of the distribution may, lead to spurious detail in
the tails of the distribution where observations are sparse. Thus we use an adaptive
kernel method, which allows the smoothing parameter to vary for each observation
depending on the density of its surrounding neighborhood. We smooth relatively little in
the main body of the distribution where observations are heavily clustered, while
smoothing much more at the tails of the distribution where observations are sparse. We
therefore run a pilot estimate of the distribution, and weight the smoothing parameter for
each observation based on the relative density of its surrounding neighborhood.

Silverman (1986) noted that the adaptive estimate is relatively insensitive to the
pilot. Thus we estimate the pilot density with the smoothing parameter chosen by

Silverman's rule of thumb:

A

A =09 x min[standard deviation,

interquartile range 2
xT 3. (30).

1.34

Denoting the pilot estimate f , we then define the local scale as:

3= (f—(ﬂj (1)

’ g
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where log(g) = Zlog f ( ) and a.e [0, 1] is the sensitivity parameter. For the

theoretical reasons outlined by Abramson (1982) we set o = 1/2. The adaptive kernel
estimate of fy at a given point, say yo is then defined as
r K(yol hylj
o) =2 (32)
where /A is essentially now the smoothing parameter for realization i.

An unfortunate problem with using kernel estimators is that the estimated density
does not necessarily have its moments equal to the sample moments. The consistency of
these estimators indicate that it is a finite sample problem, but with the limited
observations that we are working with, it can be disconcerting. In estimating the density,
each kernel and hence each observation is weighted equally. Thus the density mean will
obviously equal the sample mean. However by smoothing or in a sense spreading each
observation, the density will almost surely have a variance equal to or greater than the
sample variance. This is not desirable, as the sample provides an unbiased estimate of

the population variance. The variance of the estimate is given by:

hZZTl:ZlZ 2
= + 33
T T 5% (33)

Thus we transform the variance of the estimate by the scalar

| Sk (34).
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