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ABSTRACT 

Government sponsored agricultural insurance programs are susceptible to losses 

due to moral hazard and adverse selection problems. To lessen the problems, the Group 

Risk Plan (GRP) of insurance has been offered by the Federal Crop Insurance 

Corporation since 1993. Under this product, losses are measured on the basis of a 

county’s mean yield. Accurate pricing of insurance products like GRP requires the 

distribution of future yields conditional on the current information set. The main 

objective of this thesis is to improve the accuracy of premium rates thus improving the 

efficiency of GRP program. In satisfying this objective, a seminonparametric (SNP) 

maximum likelihood method is utilized in an attempt to reduce program inefficiencies 

induced by distributional assumptions in determining premium rates. A spline model with 

one knot point is used to capture the central tendency and to predict mean yields. A 

mixture of two normal distributions is used to represent the disturbance distribution. 

National Agricultural Statistics Service (NASS) county mean yield data over the 

period 1955 to 2007 of 102 Illinois counties are used in the analysis. The crop analyzed is 

corn for grain. The premium rates are calculated numerically from the recovered yield 

distributions of each county. The SNP maximum likelihood approach makes more 

efficient use of the data in that yield correlation among counties is explicitly modeled. As 

a result, SNP rates tend to be more consistent among counties. 
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CHAPTER ONE 

INTRODUCTION 

Government sponsored agricultural insurance programs are susceptible to losses 

due to moral hazard and adverse selection problems. Multiple Peril Crop Insurance 

(MPCI), the traditional insurance product of the Federal Crop Insurance Corporation 

(FCIC), has been based on individual producer yields. To lessen the problem of moral 

hazard and adverse selection, Group Risk Plan (GRP) has been offered by the FCIC since 

1993. Under this product, losses are measured on the basis of a county’s mean yield. That 

is, producers may only purchase insurance against a realization of their county’s mean 

yield below the predicted mean yield. GRP is not offered in those counties where 

individual producers can influence the county mean yield. Thus, moral hazard problem is 

eliminated under GRP. Adverse selection may be reduced because information on county 

yield is generally available and more reliable than that on individual yield. However, 

misuse of county yield data in constructing GRP premium rates may not reduce losses but 

simply transfer adverse selection responses at the farm-level to the county-level. 

Accurate pricing of insurance products under either MPCI or GRP requires the 

distribution of future yields conditional on the current information set. Proper 

representation of the conditional yield distribution may be complicated by several factors 

affecting both the location and the shape of the distribution. For instance, biological 

constraints limit the maximum yield attainable while environmental factors tend to 

adversely affect yield levels. Hence, crop yields distributions tend to be negatively 

skewed. In addition, local idiosyncrasies may affect not only the location and scale of the 

distribution but the entire shape of the distribution. Hence, the set of county specific 
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conditional distributions may not belong to a common distributional family. If the 

distributional assumption is incorrect, probability estimates are biased, and hence 

premium rates are incorrect. As a result, low-risk producers who are overcharged are less 

likely to purchase insurance, while high-risk producers who are undercharged are more 

likely to over-purchase insurance. 

A secondary policy problem is maintaining consistency of premium rates among 

contiguous counties. There should be consistency to some extent since yield realizations 

would be similar. However, given the limited number of realizations, large yield 

deviations among contiguous counties may lead to significantly different rates. Properly 

incorporating contiguous county information into the construction of premium rates is 

another problem addressed in this thesis. 

The main objective of this thesis is to improve the accuracy of premium rates thus 

improving the efficiency of GRP program. As stated above, accurate rates require proper 

representation and estimation of the conditional yield densities. In satisfying this 

objective, seminonparametric (SNP) maximum likelihood method is utilized in an 

attempt to remove any program inefficiencies induced by distributional assumptions in 

determining premium rates. A spline model with one knot point is used to capture the 

central tendency and to predict mean yields. SNP method estimates both the spline model 

and a separate disturbance distribution for each county simultaneously. A mixture of two 

normal distributions is used to represent the disturbance distribution. This structure can 

accommodate various departures from normality that exist in the conditional yield 

distributions (i.e. skewness, multi-modality). Parameters indexing the mixture 

distribution follow a mixed effects regression model where the joint density of the 
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random effects is estimated by a Hermite expansion. County specific yield distributions 

are completely defined given the empirical Bayes estimates of the random effects and 

estimates of other fixed effects. At the same time, correlation among counties is explicitly 

modeled. 

The remainder of the thesis has four chapters. Chapter two reviews insurance in 

U.S. agriculture, in particular GRP. Chapter three provides a review of the literature on 

modeling conditional yield densities. Chapter four describes the data used in the 

empirical analysis, specifies the structure of the model, and outlines seminonparametric 

maximum likelihood estimation techniques. The last chapter reports the empirical results, 

summarizes the findings, and discusses areas requiring further research. 
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CHAPTER TWO 

INSURANCE IN AGRICULTURE 

2.1 Insurance in U.S. Agriculture 

Insurance is an instrument to spread risk over time, across space, and among 

different industries and individuals. Farming has always been an inherently risky industry 

because it depends on natural conditions and is subjected to various weather related perils 

such as droughts, flood, hurricanes and other natural disasters. Since the 1930s, many 

American farmers have been able to transfer part of the risk of loss in production to the 

federal government through crop insurance. 

Congress first authorized Federal crop insurance in the 1930s along with other 

initiatives to help agriculture recover from the combined effects of the Great Depression 

and the Dust Bowl. The Federal Crop Insurance Corporation (FCIC) was created in 1938 

to carry out the program. Initially, the program was started as an experiment, and crop 

insurance activities were mostly limited to major crops in the main producing areas. Crop 

insurance remained an experiment until passage of the Federal Crop Insurance Act of 

1980 (RMA, USDA). 

Coble and Knight (2002) describe the Federal Crop Insurance Act of 1980 as the 

foundation of the modern era of U.S. crop insurance. The act helped start the expansion 

of the program to include many more crops and regions, and most importantly, more 

farmers’ participation by authorizing premium subsidies and allowing private sector 

delivery of federal crop insurance. However, during the 1980s and up through 1993, the 

crop insurance program witnessed a consistent high loss ratio (indemnities/total 

premiums; as high as 2.5 in the drought year of 1988) and failed to prevent ad hoc 
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disaster assistance in several years. Therefore, the Federal Crop Insurance Reform Act 

was enacted in 1994. It created catastrophic (CAT) coverage, a low-coverage and 

effectively free insurance and increased subsidies for higher coverage level insurance. 

Farmers were required to purchase crop insurance or otherwise waive their eligibility for 

any disaster benefits that might be available. Following the 1994 Act, participation in the 

crop insurance program increased significantly. According to RMA USDA, the acreage 

of farmland under insurance in 1998 is more than three times that in 1988, and more than 

twice that in 1993. 

Most recently in 2000, the Agricultural Risk Protection Act provided the private 

sector an increased role in developing new crop insurance products and further increased 

the premium subsidies to encourage producers to purchase higher insurance coverage 

levels and to make the insurance program more attractive to prospective producers. 

Figure 1 summarizes some attributes of the U.S. crop insurance program including the 

loss ratio over the 1999-2008 period and premium combination during the 2004-2008 

period. The program is expected to provide about $71.8 billion in risk protection on about 

288 million acres in 2009. This represents about 80 percent of the nation’s acres planted 

to principle crops. The 2009 budget of the total government cost of the crop insurance 

program achieves $6.4 billion (USDA, 2008). 

Given the importance of crop insurance to U.S. agricultural sector and the 

increasing government resources devoted to crop insurance, there are more concerns 

about the cost efficiency of the program and its vulnerability to fraud, waste, and abuse. 

As with most insurance, crop insurance is susceptible to moral hazard and adverse 

selection problem. 
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Figure 1: Summary of U.S. Crop Insurance Loss Ratio 1999-2008 and Premium 2004-
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Source: USDA Risk Management Agency 
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2.2 Moral Hazard and Adverse Selection 

Moral hazard occurs when an insured producer can increase his or her expected 

indemnity by actions taken after buying insurance (Glauber and Collins, 2002). FCIC can 

hardly monitor production practices throughout the growing season. A farmer may fail to 

fertilize properly or treat for pests. Therefore, the farmer actually changes his yield 

distribution by actions unknown to FCIC and may benefit from it. U.S. GAO (2007) has 

reported some farmers may have abused the crop insurance program by allowing crops to 

fail through neglect or deliberate actions in order to collect insurance.  

Adverse selection occurs when an insured producer has more information about 

the risk of loss and thus is superior at estimating the fair premium rate than the insurer. 

An actuarially fair premium rate is a rate that is set such that premiums collected are 

equal to expected indemnities. By and large, farmers know more about their yield 

distributions than insurers. As a result, low-risk producers who are overcharged are less 

likely to purchase insurance, while high-risk producers who are undercharged are more 

likely to over-purchase insurance. Over time, this will distort participation in favor of the 

higher risks, and thus premiums will not be sufficient to cover indemnity payments. And 

raising premium for all producers will create an even more adversely selected market 

since less risky participants drop out of the program. Deng, Barnett, and Vedenov (2007) 

point out that the premium rates of farm yield insurance often contain large positive 

wedges
1

 caused by moral hazard and adverse selection. The large positive wedge 

(negative expected value) will make the insurance product unattractive to many potential 

insureds. 

                                                 
1
 The term wedge is used to describe the difference between the premium cost and the expected indemnity 

for an insurance product. A positive wedge implies that the premium cost is greater than the expected 

indemnity. 
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2.3 Crop Insurance Products 

A crop insurance contract is a commitment between insured farmers and their 

insurance providers. Under the contract, the insured farmer agrees to insure all the 

eligible acreage of a crop planted in a particular county. This choice is made county by 

county and crop by crop. All eligible acreage must be insured to reduce the potential for 

adverse selection against the insurance provider. The insurance provider agrees to 

indemnify (or protect) the insured farmer against losses that occur during the crop year. 

Losses must be due to unavoidable perils beyond the farmer's control. 

A variety of crop insurance products are currently available to farmers and a 

number of new pilot programs are under development. Multiple Peril Crop Insurance 

(MPCI) is the traditional product provided by FCIC. This program insures producers 

against yield losses due to natural causes such as drought, excessive moisture, wind, 

insects and disease. Coverage is available at 50% to 75% of the predicted yield for the 

farm. The predicted yield is determined from producer production records for a minimum 

of 4, up to 10 consecutive crop years. For producers who provide less than 4 years of 

actual yields, a T yield is substituted for each missing year. 
2
 After 10 years of history are 

reached, the predicted yield becomes a moving 10-year average yield. The farmer also 

selects the percent of the predicted price he or she wants to insure; between 55 and 100 

percent of the FCIC expected market price. If the harvest is less than the yield insured, 

the farmer is paid an indemnity based on the difference. Indemnities are calculated by 

multiplying this difference by the selected price level. 

                                                 
2
 Each county has a different T yield. It is based on the 10-year historical county average yield. Growers 

with no records are assigned 65% of the T yield as their predicted yield. Growers with a record for one year, 

two years, and three years receive 80%, 90%, 100% of the T yield respectively for the missing years. Once 

each year has been assigned a yield, the predicted yield is just a simple average of the four yields. 
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Optimally, an insurance provider would prefer to calculate individual premium 

rate for each farmer on the basis of that farmer’s risks and expected yields. However, 

individual data are rare at best. Information asymmetry about individual yield 

distributions leads to adverse selection responses while information asymmetry about 

producers’ actions exposes MPCI to moral hazard problems. One way to lessen the 

problem is to base the crop insurance products on more aggregate data, such as data at the 

county level. In fact, such index-based crop insurance products were developed to 

overcome the problem of short or nonexistent individual crop yield data, which 

represented a dramatic departure from conventional crop insurance products. 

Since 1993 an area yield insurance product called Group Risk Plan (GRP) has 

been offered through the FCIC for selected crops and regions (Deng, Barnett, and 

Vedenov, 2007). GRP is designed as a risk management tool to insure against widespread 

loss of production of the insured crop in a county. The product was developed on the 

basis that if producer yields are highly correlated within the given area, area-yield 

insurance covers approximately the same risk as farm-level insurance. That is, when an 

entire county's crop yield is low, most farmers in that county will also have low yields 

and thus, farmers would receive an indemnity payment. GRP uses a county index as the 

basis for determining a loss. When the county yield for the insured crop, as determined 

by National Agricultural Statistics Service (NASS), falls below the trigger level chosen 

by the farmer, an indemnity is paid. In this sense, GRP is essentially a put option on the 

average yield for a production region. Producers must choose one coverage level for each 

crop and county combination. The grower selects the dollar amount of protection per acre 

(between 90% and 150% of the forecasted value) and one of the five coverage levels (70, 
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75, 80, 85, or 90%) of the FCIC expected county yield. The expected county yield is 

calculated using many years of county data from the NASS with an adjustment for the 

yield trend. 

GRP has the potential to reduce losses from moral hazard and adverse selection 

problems. By definition, moral hazard is eliminated with GRP because actions of 

individual producers hardly exert noticeable influences on county yields. GRP is only 

offered in counties where this conjecture is reasonable. Adverse selection may be reduced 

because information on county yield distributions is generally available and more reliable 

than that on individual yield distributions. However, Ker (1996) points out that using this 

information to construct actuarially fair premium rates is difficult and misuse of county 

yield data in constructing GRP rates may not reduce losses but simply transfer adverse 

selection responses at the farm-level to the county-level. GRP also has the advantage of 

cost efficiency compared to farm-level insurance. Producers do not have to maintain and 

provide production history or evidence of loss because payments are made on losses 

based on the county yield. The only information a producer needs to provide is the 

number of acres planted. 

Because farm-level yields are not perfectly correlated with the area average yield, 

GRP purchasers are exposed to basis risk (Deng, Barnett, and Vedenov, 2007). It is 

possible for a farmer to experience a production loss and yet not receive an indemnity 

because there has been no shortfall in the county average yield. In general, GRP basis 

risk is higher in regions with more heterogeneous production conditions, such as 

elevation, soil type, drainage, and climate. Skees, Black, and Barnett (1997) gives an 

example of such a region—the sub-mountainous deciduous fruit production region 



 18 

around Hood River, Oregon. In a sub-mountainous region, freeze is the major source of 

yield risk, and the probability and extent of yield loss depend largely on localized 

topographical features such as elevation. Area yield insurance will not provide effective 

risk management in an area such as this. 

 

2.4 Premium Rate 

Accurate pricing of insurance products and precise risk assessment is critical to 

the success of achieving an actuarially sound crop insurance program. An actuarially fair 

premium rate is a rate that is set such that premiums collected are equal to expected 

indemnities. Indemnity is paid when the value of a farmer’s production is less than the 

liability he or she purchased. The amount of indemnity paid is equal to the difference 

between the liability and the value of production (VP). For a farmer who selects a 

coverage level of  percent of the FCIC expected yield y
e 
(bushels/acre), plants A acres of 

land, chooses a price level of P dollars per bushel, and realizes a yield of Y (bushels/acre), 

(1) Liabilty VPeA y P A Y P       

, Indemnity Liabilty - VP ( )e eif Y y A y Y P        

(2) Premium Rate (%) =  

Expected Indemnity Pr( )[ E( | )]

Liabilty

e e e

e

Y y y Y y y

y

  



  
  

where the expectation operator and probability measure are taken with respect to the 

conditional yield density t( | Ι )Yf y , and It is the information set known at time of rating. 

Note that the acres planted A and price level P in both the numerator and denominator of 

equation (2) are cancelled out. Accuracy in premium rates is entirely dependent on 
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accurate estimation of the conditional yield densities, especially the lower tails—below 

ey —of the yield density estimates. 

To construct premium rates, the conditional distribution of yields in time t + 2 

given information available until time t needs to be recovered.
3
 In general, this is done by 

first estimating the central tendency
 4

 and predicting the mean of the conditional yield 

distribution. Then, a distributional assumption is made (usually normal distribution) and 

the fitted errors from estimating the central tendency are used to recover the parameters 

indexing the assumed distribution. The conditional yield distribution is recovered by a 

simple location transformation of the error term distribution.
5
 

In 1996, the use of spline regression was employed by FCIC for estimating central 

tendency. Empirical premium rates, sum of all percentage shortfalls divided by the 

number of years, were calculated at various coverage levels in the GRP. The implied 

coefficient of variation of an assumed normal yield distribution, based on the empirical 

premium rate at 100% coverage level, was put into the Botts and Boles (1958) algorithm 

to develop parametric premium rates for each levels of coverage used in the GRP. At 

each coverage level, the parametric premium rate was compared to the empirical 

premium rate and the higher rate was used in GRP contract. The final premium rate for 

each county GRP contract was a weighted average of the premium rate for that county 

and the premium rate for each contiguous county using relative acreage as weights (Skees, 

                                                 
3
 This lag reflects the substantial amount of time required to derive accurate aggregate yield measures from 

farm-level surveys. 
4
 The first GRP contracts estimated central tendency using a robust double exponential smoothing 

procedure. In 1995, central tendency was estimated for wheat GRP using ARIMA models developed by 

Ker and Goodwin. In 1996, the method for estimating central tendency changed to spline regression with 

one knot point. 
5
 Location transformation assumes a model with additive error term (i.e. y = g(x) + e). 
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Black, and Barnett, 1997). 
6
 

 

CHAPTER THREE 

LITERATURE REVIEW 

Crop yields follow a spatio-temporal process, in the sense that, if we take the 

average over some spatial region (field, farm, or county), conditional on the underlying 

temporal process, we can recover the conditional mean yield density for that given space 

at a point in time (Ker and Goodwin, 2000). In most empirical work, the only information 

known at time t is the time index and previously realized yields. 

Over years, economists have conducted much research on modeling conditional 

yield densities. This chapter provides a review of the literature on the subject. 

Corresponding to the spatio-temporal characteristic of crop yields, the chapter is 

separated into two main parts: the spatial aspect of yields and the temporal process of 

yields. In addition, the spatial aspect part is further divided into two sections: parametric 

approaches and nonparametric approaches. 

 

3.1 Spatial Aspect of Yields 

In empirical applications, most researchers opt to use parametric method where a 

parametric distribution is assumed and the parameters indexing the distribution are 

estimated with the detrended yield data. The literature is replete with candidate yield 

distributions, few of which can be excluded on theoretical grounds. This has led 

economists to seek empirical evidence as to which models are best. Along another vein, 

some researchers try to solve the problem with the alternative nonparametric methods. 

                                                 
6
 A reserve loading was implemented by dividing the final premium rate by 0.9 in order to build reserves. 
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3.1.1 Parametric Approaches 

Crop yield distributions are generally recognized as skewed (nonnormal). 

Ramirez (1997) claims that (i) adverse weather conditions, (ii) biophysical and 

technological limitations on the maximum yields attainable during any given year cause 

the yield distributions to exhibit left-skewness. Gallagher (1987) states that yield cannot 

exceed the biological potential of the plant, yet it can approach zero under blight, early 

frost, or extreme heat. Declining positive and negative marginal returns to weather inputs 

is one set of factors that could produce negatively skewed distributions of yields. More 

recently, Hennessy (2009) formalizes the role of the weather: whenever the weather-

conditioned mean yield has diminishing marginal product with respect to a weather-

conditioning index, then there is a disposition toward negative yield skewness. This is 

because high marginal product in bad weather stretches out the yield distribution’s left 

tail relative to that for weather. 

In addition, Nelson (1990) points out that spatial dependence between individual 

losses means that the Central Limit Theorem (CLT) cannot be used as a basis for 

assuming that crop yields are normally distributed. Hennessy (2009) formally explains 

why CLT does not help in any way to narrow down the set of distributions appropriate 

for crop yield modeling. 

The calculation of a fair insurance premium rate involves integration under the 

lower tail of the distribution function and skewness can significantly alter the probability 

mass in that tail. Thus, use of a normal distribution could produce significant errors if the 

true distribution is skewed. Goodwin and Ker (1998) mention that densities that are more 

symmetric than the population will result in premiums that tend to be larger than they 
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should be for negatively skewed distributions. Using farm-level yield data of Iowa corn 

producers, Nelson (1990) shows that the symmetry of the normal distribution can cause 

significant overestimates of a premium when the true yield distribution is negatively 

skewed. 

The beta distribution has been used by many researchers to accommodate 

skewness of yield distributions; see for example, Nelson and Preckel (1989); Nelson 

(1990); Coble et al., (1996); Babcock and Hennessy (1996). Nelson and Preckel (1989) 

list three reasons why crop yield may be distributed as beta distribution: (i) Crop yields 

are known to fall in a range from 0 to some maximum possible value. The beta variate 

may be defined on an interval (0, y
u
) where y

u
 is a finite upper bound on the random 

variable. (ii) Crop yield distributions can be significantly skewed either to the right or to 

the left. The beta distribution has such flexibility. (iii) The beta distribution is well known 

and mathematically tractable. All of the moments of the distribution exist and are simple 

functions that are ratios of polynomials in the parameters of the distribution. 

Some researchers have assumed crop yields follow other distributional families. 

Gallagher (1987) uses the gamma distribution because varying degrees of skewness and 

variance can be captured with relatively few parameters. A positively skewed gamma 

variate corresponds to a negatively skewed yield deviation (error term is subtracted from 

capacity). However, Norwood, Roberts, and Lusk (2004) point out that gamma is 

sensitive to the maximum yield value chosen. When conducting real forecasts, it is 

difficult to identify the maximum yield needed to implement the gamma model. 

Taylor (1990) presents two operational approaches to empirically fit multivariate 

nonnormal joint probability density functions. In lieu of assuming a specific multivariate 
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density for empirical analysis, a cubic polynomial approximation of the cumulative 

distribution function constrained to the zero-one range by a hyperbolic tangent is used. 

Empirical estimates of the joint distribution for corn, soybeans, and wheat yields are 

presented to illustrate the method. Ramirez (1997) specifies three limitations inherent in 

Taylor’s method, including (i) impossibility to assess the flexibility of the technique, (ii) 

sacrificed statistical efficiency, (iii) incompatible with heteroskedasticity. 

Moss and Shonkwiler (1993) uses an inverse hyperbolic sine transformation to 

model yields. Ramirez (1997) proposes a modified inverse hyperbolic sine transformation 

which extends the original parameterization to a multivariate nonnormal density function 

that simultaneously accounts for skewness, kurtosis, heteroskedasticity, and correlation 

among the random variables of interest. The theoretical attributes of the modeling tool are 

discussed and exemplified by analyzing and simulating Corn Belt corn, soybean, and 

wheat yields. 

Nonetheless, not all researchers accept the idea of the skewness of crop yields. 

Just and Weninger (1999) attempt to restore the support for the normal distribution. They 

point out deficiencies in the work of Nelson and Preckel (1989), Taylor (1990), Moss and 

Shonkwiler (1993), and Ramirez (1997). Then they generalize three methodological 

problems common in yield distribution analysis: (i) misspecification of the nonrandom 

components of yield distributions, (ii) misreporting of statistical significance, and (iii) use 

of aggregate time-series data to represent farm-level yield distributions. After proposing 

their own procedure, they present tests of normality using both detrended aggregate time-

series yield data and farm-level yield data from 106 Kansas farms during 1973-87. The 

results contradict previous findings of nonnormality. 
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In response, Atwood, Shaik, and Watts (2003) use Monte Carlo procedures to 

demonstrate that Just and Weninger’s suggested detrending procedures often tend to bias 

the analysis in a Type II direction i.e., in favor of failing to reject normality for 

nonnormal error distributions. The results of Monte Carlo simulations using several 

nonnormal distributions demonstrated that the powers of the standard and omnibus 

normality tests are often significantly reduced when trends are individually estimated for 

a short-term yield panel data set. An alternative detrending procedure is suggested that 

demonstrates higher power for the distributions examined. Normality is generally 

rejected when both Just and Weninger’s and the alternative procedures are applied to a 

larger Kansas panel data set than used by Just and Weninger. 

In the same year, Ramirez, Misra, and Field (2003) utilize an expanded, refined 

parameterization of Johnson SU family of densities, arguing that it is flexible enough to 

alleviate the concerns of using competing distributional assumptions in applied research. 

The parameters determining the first four moments of and the correlations between the 

yield distributions are jointly estimated by maximum likelihood. This expanded SU family 

is used to revisit the issue of whether aggregate Corn Belt corn, soybean, and wheat yield 

distributions are nonnormal. Using an expanded data set and addressing the procedural 

issues that have been raised in Just and Weninger (1999), they reaffirm Ramirez’s (1997) 

findings that Corn Belt corn and soybean yields are nonnormally distributed and left 

skewed. 

Goodwin and Ker (2002) also disagree with Just and Weninger (1999). By 

conducting a simulation where the underlying distribution is nonnormal, they illustrate 

that while the statistical test will tend to fail to reject the normal, the economic 
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consequences of using the normal to derive crop insurance rates can be disastrous. They 

emphasize that the inability to reject normality (or any parametric form) based on a 

relatively small sample should never be used as grounds to assume normality. 

Sherrick et al. (2004) recover corn and soybean yield distributions under 

alternative distributional representations. Farm-level data set from the University of 

Illinois Endowment Farms containing same-site yield records from 1972 to 1999 is used. 

Even though the detrended yields display predominantly negative skewness and fatter 

tails than would be implied by normal distributions, logistic, normal, and lognormal 

distributions are also considered in addition to beta and Weibull distributions. Formal 

goodness-of-fit test is conducted to assess the appropriateness of each distribution in 

representing the sample data for each farm. Beta and Weibull rank first and second 

overall, followed by the logistic, then normal and finally lognormal. It is also 

demonstrated that distributional choice can have large impacts on insurance valuation and 

risk assessments. 

 

3.1.2 Nonparametric Approaches 

Ker and Goodwin (2000) express two concerns about the parametric approaches. 

First, the fact that some parametric families can accommodate negative skewness does 

not indicate crop yields can be adequately approximated by them. The unknown yield 

distribution may or may not be uniquely defined by its first three population moments. 

Theoretical distributions may be constructed such that their resulting premium rates at 

low coverage levels differ by an order of magnitude despite having identical first three 

moments. Second, these parametric families do not allow bimodality. Central Limit 
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Theorem for dependent processes suggests the possibility that yields at some aggregate 

level may be bimodal. Goodwin and Ker (1998) found evidence of bimodality, 

suggesting that high yields (near the capacity constraint) happen frequently while 

relatively low yields also happen fairly often. Yields between the extremes are less likely. 

Given the deficiencies associated with parametric forms, some economists have 

used the alternative nonparametric density estimation approach; see for example, 

Goodwin and Ker (1998); Deng, Barnett, and Vedenov (2007); Nadolnyak, Vedenov, and 

Novak (2008); Ker and Goodwin (2000); Racine and Ker (2006). 

Nonparametric density estimation techniques do not assume a particular 

functional form for the yield distributions but rather allow the data to select the most 

appropriate representation of the yield distributions. Most nonparametric density 

estimation applications utilize the kernel method of smoothing. Under the kernel 

approach, each observation is surrounded by a symmetric weighting function K. A 

bandwidth parameter determines the weight to assign to neighboring observations in 

constructing the density and thus corresponds to the amount of smoothing to be done. A 

larger bandwidth will smooth more and thus will result in a flatter, smoother density 

function while a small bandwidth will yield a rough and irregular density (Goodwin and 

Ker, 1998). 

Goodwin and Ker (1998) apply nonparametric density estimation methods to 

model county-level crop yield distributions. Expected yields are forecast and premium 

rates are calculated for the 1995-96 GRP for barley and wheat. In most cases, existing 

rates are significantly smaller than the nonparametric rates, suggesting that existing rating 

procedures may understate the risk of loss. Ker and Goodwin (2000) improve the 
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nonparametric kernel methods by employing empirical Bayes techniques on the estimated 

values from the kernel density estimator. Simulations suggest that this empirical Bayes 

nonparametric estimator may provide very significant efficiency gains in estimating 

conditional yield densities. Furthermore, a variable smoothing approach is employed 

which significantly decreases the dependency of estimated tail probabilities on the 

specific location of the tail realizations. 

Norwood, Roberts, and Lusk (2004) rank six yield densities based on their out-of-

sample forecasting performance. The forecasting ability for each density is ranked 

according to its likelihood function value when observed at out-of-sample observations. 

All six models are mentioned in this chapter, including Gallagher (1987), Nelson and 

Preckel (1989), Moss and Shonkwiler (1993), Ramirez (1997), Goodwin and Ker (1998), 

and Just and Weninger (1999). The first contest utilizes Corn Belt corn, soybean, and 

wheat yields from 1950 to 1989. The second contest utilizes county level yields from 

1962 to 1992. Univariate yield distributions are estimated for corn, wheat, and soybeans. 

In both contests, the nonparametric model offered by Goodwin and Ker (1998) best 

forecast county average yields. 

The limitations of nonparametric approaches are also acknowledged. Other than 

the requirement to choose a kernel function and a bandwidth parameter, the most 

prominent one is the lack of efficiency. Goodwin and Ker (1998) recognize that although 

the kernel procedures provide a consistent estimate of any density, the rate of 

convergence to the true density is relatively slow. If one has prior knowledge of the true 

parametric form of the density, a parametric specification will provide more efficient 

estimates. Ker and Coble (2003) claim that nonparametric methods tend to be inefficient 
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relative to maximum likelihood methods when the assumed parametric model is correct. 

It is possible, perhaps likely, for very small samples such as those corresponding to farm-

level yield data, that an incorrect parametric form, say Normal, is more efficient than the 

standard nonparametric kernel estimator. 

Ker and Coble (2003) propose a semiparametric estimator that encapsulates the 

benefits of both parametric and nonparametric methods while mitigating their 

disadvantages. The semiparametric estimator begins with a parametric estimate and then 

corrects it nonparametrically based on the data. If the assumed parametric model is 

correct the semiparametric estimator attains the parametric rate of convergence while if 

not, it attains the nonparametric rate of convergence. Most importantly, if the assumed 

parametric model is sufficiently close, efficiency gains are realized in relation to the 

standard nonparametric kernel estimator. In the simulation, for samples above fifteen the 

semiparametric estimator with the normal distribution is preferred to the competing 

parametric and nonparametric estimators. 

 

3.2 Temporal Process of Yields 

The use of time series data to represent a point-in-time distribution requires that 

the time component, if any, be controlled in the data. Approaches for doing so include 

deterministic trend models and stochastic trend models. Deterministic trend models are 

based on time functions such that the random effects from year to year have no effect on 

trend, while stochastic trend models have trends that are permanently affected by 

previous shocks (Sherrick et al., 2004). 

Among deterministic time trends, the simplest and most widely used one is linear 
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trend of time; see for example, Gallagher (1987); Taylor (1990); Coble et al., (1996); 

Ramirez (1997); Sherrick et al. (2004). Just and Weninger (1999) express their concerns 

about the use of linear trend. They argue that misspecification of the deterministic 

component of yields, represented by differences between the true and assumed trend 

specifications, causes non-stationarity of yield deviations and incorrect assessment of 

skewness and kurtosis. They show that substantial departures in skewness and kurtosis 

from normality are possible in either direction by making a simple error in choosing the 

degree of polynomial. Instead of linear trends, they reveal quadratic or cubic polynomial 

trends when analyzing Ramirez's data and Gallagher's data.  

Following the procedures outlined in Just and Weninger (1999), Sherrick et al. 

(2004) fit polynomial time trends of fifth order and lower and selecting the order based 

on the significance of F-tests for higher order terms. The result is that linear trends are 

imposed in the end. Similarly, to address the concerns raised in Just and Weninger (1999), 

Ramirez, Misra, and Field (2003) specify the means of the yield distributions as fourth- 

and third-degree polynomial functions of time for the Corn Belt and Texas Plains county-

level yield data respectively. The final models include quadratic, linear, and cubic 

polynomial trends for the means of the corn, soybean, and wheat yield distributions, after 

excluding parameters not significantly different from zero. 

Log-linear trends are utilized in Deng, Barnett, and Vedenov (2007), and 

Nadolnyak, Vedenov, and Novak (2008). Following the practice of FCIC, Ker and Coble 

(2003), Racine and Ker (2006) employ the one-knot linear spline to approximate the 

temporal process of yields. The justification is also provided: as new technologies 

become available, early adopters capture profits. As early adopters demonstrate to others 
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that profits are possible with the new technologies, a larger contingent adopts thus 

reducing profits. Finally, the remaining non-adopters either adopt or exit. The unused 

resources from those exiting are acquired by those remaining. Given that adopters have 

higher yields than those that exited, average yields must increase. The greater the rate of 

consolidation of these resources, the greater will be the rate of adoption. Thus, while 

technology will directly increase average yields, the rate of farm consolidation will also 

increase average yields. Farm consolidation was greatest in the decades of the 1950s and 

1960s and slow in the 1970s thus suggesting a one-knot spline. 

Moss and Shonkwiler (1993) propose modeling the central tendency of crop yield 

distribution with a stochastic trend model, which explicitly recognizes that the 

distribution's central moment need not evolve at a constant rate over time. The stochastic 

trend model is based on two equations, a measurement equation and a transition equation. 

The measurement equation relates changes in an observable variable (crop yield), to a 

vector of unobservable state variables, deterministic effects, and an error term. The 

evolution of the state vector over time is governed by the transition equation which 

includes a matrix of coefficients relating past values of the state vector to current values 

of the state vector. The stochastic trend representation in Moss and Shonkwiler consists 

of a measurement equation and two transition equations. 

Past work by Bessler (1980), Goodwin and Ker (1998), Ker and Goodwin (2000) 

model yields using ARIMA processes. Goodwin and Ker (1998) evaluate a range of 

specifications using Akaike's information criterion and Schwarz's criterion. An 

ARIMA(0, 1, 2) specification is found to be optimal by both criteria. Ker and Goodwin 

(2000) provide a detailed discussion about the ARIMA(0, 1, q) model: It is a stochastic 
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linear trend with autocorrelated innovations. The linear trend represents technological 

advances while the moving average component suggests that the underlying factors 

generating the sequence of innovations have effects on future yields. Consider, for 

example, a drought in time t. It is obvious that yields in time t will be affected by drought 

conditions in time t. It is also reasonable that the soil in time t + 1, which influences 

yields in time t + 1, would have leftover effects from the drought in time t. Because 

weather is not a conditioning variate, these effects are represented in the innovations. 

Consequently, the innovations in time t would influence yields in time t + 1, thereby 

suggesting the existence of an MA component. Ker and Goodwin (2000) also point out a 

problem with estimating the ARIMA(0, 1, 1) model—the need to employ nonlinear least 

squares in small samples where convergence and parameter stability become issues. They 

replace the MA(1) process with an AR(4) representation to address the problem. 

Ozaki et al., (2008) make use of Bayesian hierarchical models to capture the data 

generating process of Brazilian corn yields. They assume that the observed data follow a 

normal distribution, the mean of which is stochastic. To select among a large number of 

potential candidate models, a minimum mean square prediction error criterion is used. 

The stochastic mean component of the selected model includes both deterministic and 

stochastic trend. The deterministic part is a linear time trend and the stochastic part 

follows a first-order autoregressive model AR(1). 
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CHAPTER FOUR 

DATA AND METHODOLOGY 

4.1 Data and Heteroskedasticity Considerations 

National Agricultural Statistics Service (NASS) county yields over the period 

1955 to 2007 of 102 Illinois counties are used in the analysis. The crop analyzed is corn 

for grain. Figure 2 illustrates annual mean yields from three randomly sampled counties. 

All figures indicate yields have a slight upward trend with several years bearing 

extremely low yields.  

It is ideal to predict mean yields by examining model selection criteria for each 

county-crop-practice combination and selecting the optimal specification and indexing 

parameters for each combination. Unfortunately, such an approach is operationally 

formidable given the large quantity of county-crop-practice combinations involved in 

GRP. The method outlined in this thesis considers less flexible but operationally more 

efficient way of predicting mean yields. Following the practice of FCIC, the central 
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Figure 2: Plots of County Yield Data: Illinois Corn—All Practices 

Source: USDA National Agricultural Statistics Service 

tendency of yields is assumed to have a one-knot linear spline structure and the knot 

point is constrained to be equivalent across counties. 

A concern with time series data is the existence of heteroskedasticity. The crop 
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yield variance is possible to vary over time or with respect to some exogenous factors. 

For instance, yield variance may increase with yield levels suggesting yields have a 

constant coefficient of variation. When a constant coefficient of variation of crop yield is 

imposed, premium rates will be inflated if variance increases at a slower pace than that of 

the mean yield. Conversely, premium rates will be deflated if mean yield increases 

slower than the variance does. The assumption of the constant coefficient of variation can 

be evaluated by testing for heteroskedasticity in the fitted residuals of the spline model 

(detrended yields). 

Breusch and Pagan (1979) devised a Lagrange multiplier test of the hypothesis 

that 2 2

0( ' )i if   α z , where zi is a vector of independent variables. The model is 

homoskedastic if 0α . Under the null hypothesis of homoskedasticity, the test statistic 

LM has a limiting chi-squared distribution with degrees of freedom equal to the number 

of variances in zi. This test requires a set of independent variables to be specified as the 

base of the disturbance variance. Figure 3 shows the annual fitted residuals from the 

spline model of the same three counties sampled in Figure 2. 

The variance of the fitted residuals (detrended yields) appears to vary across time 

and relate to yield levels. Since the one-knot linear spline model is a time trend model, 

yield levels and time are not independent variables. Thus, two Breusch-Pagan tests are 

conducted separately, using time and predicted yields as independent variable 

respectively. Then, another test is conducted on the fitted residuals standardized by the 

predicted value of yields. The first two hypotheses consider whether the fitted residuals 

are homoskedastic across time or with respect to the predicted yields. The third 

hypothesis considers whether the standardized residuals are homoskedastic versus 



 35 

heteroskedastic. It has been argued that the Breusch-Pagan Lagrange multiplier test is 

sensitive to the assumption of normality. Koenker and Bassett (1982) suggest a modified 

statistic, which will have the same asymptotic distribution as the Breusch-Pagan statistic 

under normality. But absent normality, there is some evidence that it provides a more 

powerful test. The Koenker and Bassett statistic is also calculated in each of the three 
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Figure 3: Plots of County Yield Fitted Residuals: Illinois Corn—All Practices 

tests. A 5% level of significance is used for all tests. All test results are reported in Table 

1. The tests strongly indicate that the raw residuals are heteroskedastic and the 

standardized residuals are homoskedastic, which implies that residuals have constant 

coefficient of variation. 

Table 1: Heteroskedasticity Test Results: Counties Rejecting Null 

  Hypothesis Hypothesis Hypothesis 

    Test 1 Test 2 Test 3 

Breusch-Pagan Number 40 42 5 

 Percent 39.22% 41.18% 4.90% 

Koenker-

Bassett 
Number 37 37 7 

  Percent 36.27% 36.27% 6.86% 

Test 1 H0: Raw residual is homoskedastic across time. 

H1: Raw residual is heteroskedastic. 

Test 2 H0: Raw residual is homoskedastic relative to predicted value. 

H1: Raw residual is heteroskedastic relative to predicted value. 
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Test 3 H0: Residual standardized by predicted value is homoskedastic across time. 

H1: Residual standardized by predicted value is heteroskedastic across time. 

 

4.2 Departures from Normality 

As reviewed in Chapter 2, it is widely acknowledged that crop yields are not 

necessarily normal but may be negatively skewed. Normality tests are undertaken for 

each county. Take the concerns raised in Just and Weninger (1999) into account, the 

original yield series are made trend stationary by subtracting the fitted deterministic 

component. Since heteroskedasticity is detected, the fitted residuals are made variance 

stationary by dividing each data point by the predicted yield. Series with trend and 

heteroskedasticity removed are then tested on. The null assumes the standardized 

residuals are independent and identically distributed realizations from a Normal 

distribution. The alternative assumes the standardized residuals are realizations from a 

non-normal distribution.  

The normal distribution is symmetric and mesokurtic. The symmetry implies that 

the third moment is zero. The standard measure of symmetry of a distribution is the 

skewness coefficient. Kurtosis is measure of the thickness of the tails of a distribution. 

The normal distribution is a usual yardstick for kurtosis; the mesokurtic value is the 

kurtosis of the normal distribution, which is 3. We can compare a distribution with the 

normal distribution by comparing its skewness with zero and its kurtosis to three (Greene, 

2000). The Wald test statistic is: 

(3) 
2 2

21 2
2

( 3)
 [ ]

6 24

db b
W n 


    

where b1 is the measure of skewness and b2 is the measure of kurtosis. 
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Normality is rejected in 63 counties or 61.76% of the counties with a 5% 

significance level, which suggest that yield distributions are not normal overall. In 

attempt to gain further information about the departure from normality, the skewness and 

kurtosis pairs of all 102 counties are plotted in Figure 4. The normal distribution 

corresponds to a point located at (0, 3) in the skewness-kurtosis plane. The sample points 

are not clustered around the normal point, which suggests that the yield distributions are 

not generated by a normal distribution. The corn samples display unanimous negative 

skewness and wide variation in the kurtosis. A negative skewness measure indicates 

negatively skewed distribution (mean < mode). Kurtosis measures less than three indicate 

thin tails relative to the normal distribution while kurtosis measures greater than three 

indicate fat tails relative to the normal distribution. 
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Figure 4: Skewness-Kurtosis Diagram for All Illinois Counties 

Ker and Goodwin (2000) claims that the yield distributions may be approximated 

by two distinct sub-populations: a catastrophic sub-population and a non-catastrophic 
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sub-population. That is, in years when a catastrophic event occurs such as a drought, 

flood, freeze, etc., yields are drawn from the catastrophic sub-population. Conversely, in 

years when a catastrophic event does not occur, yields are drawn from the non-

catastrophic sub-population. Thus, a mixture of two distributions can be used to 

approximate the residuals from the model, where the secondary distribution (from 

catastrophic years) lives on the lower tail of the primary distribution (from non-

catastrophic years) and has significantly less mass. The secondary distribution would be 

expected to have less mass because catastrophic events are realized with far less 

frequency than their complement. Also, the secondary distribution would be expected to 

live on the lower tail of the primary distribution because realized yields tend to be far less 

in catastrophic years. Given this basic structure, mean yields may have a unimodal 

symmetric density (mass of catastrophic distribution is negligible), a negatively skewed 

density (mass of catastrophic distribution is non-negligible and distribution is relatively 

flat), or a negatively skewed bimodal density (mass of catastrophic distribution is non-

negligible and distribution is relatively peaked).  

In light of the prominent negative skewness found in the fitted residuals and the 

flexibility of the structure, a mixture of two normal distributions is assumed for the 

residuals from the model in this research. 

 

4.3 Spline Model and Likelihood Functions 

Given that we are using the GRP program as our background, we employ the 

temporal model used by FCIC in rating GRP contracts. The one-knot linear spline model 

can be specified as follows: 
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(4) 
1 1 (0, ) 2 2 [ , )( )I ( ) ( )I ( )t ty t t t t e           

s.t. 1 1 2 2        

where   is the knot point, t = 1, 2, …, 53 is the year, and I(.) is the indicator function. 

Therefore,  

(5) 1 1 2 2 2 1 1 2                  

Plug (5) into (4) and after arrangement, we obtain 

(6) 
1 1 (0, ) [ , ) 2 [ , )[ I ( ) I ( )] ( )I ( )t ty t t t t t e              

To limit the dimension of the estimator, the parameters indexing the spline model 

are assumed not to vary among counties. The advantages of this assumption are a 

significant gain in degrees of freedom and more efficient estimation under the null. 

Define 0 1  , 
1 (0, ) [ , )I ( ) I ( )tx t t t    and

2 [ , )( ) I ( )tx t t   , then 

(7) 0 1 1 2 2( , )it it t t ity f e x x e       tx β  

where f is the one-knot linear spline temporal process, β is a 3 1  parameter vector, and 

eit denotes the intra-county disturbance associated with the t
th

 realization in county i. Note 

that f , β and xt are not indexed by county and are constant for all iI , I = {1, 2, …, 

102}. The total number of observations is 102 53 5406    N I T . The 

heteroskedasticity results of section 3.1 indicate that disturbances have constant 

coefficient of variation. Therefore, 

(8) ( , )it ite f tx β  

where it  has constant variance, so that / ( , )ite f tx β  is homoskedastic. Specification of 

the distribution of the disturbance sequence will complete the characterization of the 

likelihood of county i. 
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The distribution describing the disturbance sequence, {eit}, must be sufficiently 

flexible to accommodate conditional distributions for all counties. A mixture of two 

normal distributions is assumed for the disturbance sequence. Because of the necessity to 

limit the dimension of the estimator, certain restrictions are imposed. The parameters that 

vary by county are the variance parameters of the two normal distributions 2 2( , )i i  . The 

mean parameters of the two normal distributions ( , )   and the mixing parameter   will 

be fixed across counties. 

So for a given county i, the probability density function of eit is  

(9) 2 2 2 2p ( ) ( , ( , ) ) (1 ) ( , ( , ) )e it i ie N f N f       t tx β x β  

where 
2( , )N    denotes the density of a normal distribution with mean   and variance 

2 . The joint density of {eit} is 

(10) 
1

1

p ( ,..., | , , , , , , ) p ( )
T

e i iT i i e it

t

e e e    


t
x β  

Thus, the joint density of yields for county i is 

(11) 

1

1

2 2 2 2

1

p( ,..., | , , , , , , )
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[ ( ( , ), ( , ) ) (1 ) ( ( , ), ( , ) )]

i iT i i
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it

t

T

i i

t

y y
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N f f N f f
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t t t t

x β

x β x β x β x β

 

This density can be obtained by substituting ( , )it ite y f  tx β  into 1p ( ,..., )e i iTe e  because 

the Jacobian of 1( ,..., )i iTe e with respect to 1( ,..., )i iTy y is the identity matrix of order T. 

Parameter vector { , }i i iν  of the disturbance distribution varies from county 

to county. Part of this inter-county variation can be explained by systematic dependence 

on county specific attributes. The unexplained portion of the inter-county variation is 
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assumed to be random and is characterized by a probability density h. The interaction of 

systematic and random sources of variation is represented by an inter-county regression 

model for each parameter in iν . 

(12) g ( , , ) 1, 2k k ki i kiν ω γ z  

where iω  is a vector of county specific attributes, γ  is a vector of unknown fixed effects, 

and ( ,..., )1i Miz ziz is an M-dimensional vector of inter-county random effects with 

density h(z). Determination of an appropriate model for g(.) involves choice of county 

specific attributes to make up iω  and specification of a mathematical form to represent 

the nature of the dependence of iν  on iω  and zi. Collecting all the fixed parameters into a 

vector ( , , , , )  τ γ β , the population likelihood may be written as 

(13) 
1

1

L( ,h) p( ,..., | , , , )h( )d
N

i iT

i

y y z z


 t i i
τ x ω τ z  

Here, the form of p(.) differs from that given in equation (11) because g ( , , )kki i kiν ω γ z  

has been substituted to emphasize the dependence of the density on iω  and zi. The log 

likelihood is 

(14) 
1

1

( ,h) log p( ,..., | , , , )h( )d
N

i iT

i

l y y z z


  t i i
τ x ω τ z  

The primary objective is estimation of and inference regarding the random effects 

density h(z) and the fixed parameters ( , , , , )  τ γ β . Once τ and h(z) are determined, 

the individual parameters { , }i i iν  can be estimated by empirical Bayes. We estimate 

h(z) nonparametrically, simultaneously with τ , by maximizing the population likelihood. 

The procedure is described in the next section. 
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4.4 SNP Estimators 

Nonparametric estimation of h(z) allows one to detect unusual features of the 

population such as multimodality or excess dispersion, which often indicates the presence 

of systematic inter-county variability and the need for a more refined inter-county 

regression model g(.). It also affords protection against incorrect assumption regarding 

h(z) that can bias estimates of τ  and lead to erroneous inferences (Davidian and Gallant, 

1992).  

Seminonparametric (SNP) maximum likelihood method, by sacrificing some 

generality in favor of a smoothness assumption, estimates the density of the random 

effects nonparametrically, jointly with the fixed effects, and inference is possible. The 

method uses a series expansion that follows from smoothness assumptions to represent 

the density, due to Gallant and Nychka (1987), and uses quadrature to compute the 

likelihood. Standard algorithms are used for optimization. Empirical Bayes estimates of 

random parameters are obtained by computing posterior modes. This approach is taken 

from the pharmacokinetics literature where it has been advanced by Davidian and Gallant 

in modeling the pharmacokinetics of quinidine and the pharmacokinetics of phenobarbital 

(1992, 1993). The contents of this section draw heavily from these articles. Fortran code 

for the nonlinear mixed effects model with SNP estimation of the fixed parameters and 

random effects density is written by Davidian and Gallant
7
. Additional Fortran code that 

is written for this article is located in Appendix. 

SNP estimation of τ and h(z) maximize the likelihood function (14). Maximizing 

likelihood function (14) is equivalent to minimizing over τ and h 

                                                 
7
 The Fortran code is available via ―http://econ.duke.edu/webfiles/arg/nlmix/‖. 
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(15) 
N 1
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1
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    t i i
τ x ω τ z  

After the estimates ˆˆ( ,h)τ are obtained, empirical Bayes estimates of the random effects zi 

are computed as the values ˆ
iz that maximize with respect to z 

(16) 
1

ˆˆp( ,..., | , , , )h( )i iTy y z
t i i

x ω τ z  

Then, the empirical Bayes estimate of a county’s disturbance parameter iν  can be 

obtained by plugging in the estimated parameters into g(.), which is ˆ ˆ ˆg( , , )i i iν ω γ z . 

The approach is based on the assumption that the true density h(.) belongs to a 

class of smooth densities H described below. A mathematical description of the class H is 

given in Gallant and Nychka (1987). The main requirement is that a density h(.) in H 

must satisfy the smoothness restriction that h(.) be at least M/2 times differentiable. As a 

consequence, densities exhibiting unusual behavior such as kinks, jumps, or oscillation 

are excluded from consideration; however densities in H may be skewed, multimodal, 

and fat-tailed or thin-tailed relative to the M-variate normal density. Thus, the assumption 

that true density belongs to H rules out densities with unusual features that are unlikely to 

characterize the random effects while allows for a wide range of behaviors. 

A density from H can be represented as an infinite series expansion. The format of 

the expansion is 

(17) 
2

2

[P( )] ( )
h( )

[P( )] ( )

M

M

z z
z

z z dz







 

where P(z) is a Hermite expansion and ( )M z denotes the multivariate normal density of 

dimension M. P(z) is squared to insure non-negativity. The denominator is to insure that 

the estimated density h(z) integrates to one. Given the division, h(z) is homogeneous 
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function of the coefficients of the expansion P(z) and hence may only be determined to 

within a scalar multiple. Unique representation may be achieved by setting the constant 

term of the expansion to one. 

For practical application, one may consider approximation of h(z) by a truncation 

of this expansion to finite number of leading terms. By increasing the truncation point 

when specification error is detected, these procedures have nonparametric properties in 

that they are consistent estimators. The truncated expansion is 

(18) 
1 2

2

[P ( )] ( | 0, )
h ( )

[P ( )] ( | 0, )

M

M

R z N z RR
z

u N u I du






 



 

where ( | , )MN  μ denotes the multivariate normal density of dimension M with mean μ  

and variance-covariance matrix  and R is an upper-triangular matrix. P ( )z  is a 

polynomial that is the sum of all powers and cross-products of the components of z up to 

degree . For illustration, if M = 2 and =2 then z = (z1, z2), and 

(19) 2 2

2 00 10 1 01 2 20 1 02 2 11 1 2( )P z a a z a z a z a z a z z       

The coefficients of the polynomial are 00 10 01 20 02 11( , , , , , )a a a a a a with 00 1a  . Let 
(1)  be a 

vector whose elements are the coefficients of P  and let 
(2) be a vector of dimension 

M(M+1)/2 whose elements are the elements of the upper-triangular matrix R stacked 

column by column. Let 
(1) (2)( , )   , vector  completely describes the truncated 

expansion and the dimension of   is determined by the degree  of the polynomial and 

dimension M of the random effects z. In the example, with M = 2 and  =2, the 

dimension of  is 6 + 3 = 9 and the denominator of (18) is a weighted sum of products of 

moments to the fourth order of the standard normal distribution. 
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Once h(z) has been approximated by the truncated expansion h ( | )  , estimation 

of τ and h(z) becomes a standard finite dimensional nonlinear optimization problem. One 

minimizes s [ , h ( | )]N  τ  in the variables τ and   to obtain τ̂ and̂ . The estimate of h is 

then ˆh ( | )  . As long as the degree  of the polynomial increases with the sample size N, 

the estimates ( τ̂ , ̂ ) obtained in this way are consistent estimators. The appropriate 

truncation point   is chosen by visual inspection of the estimated density of the random 

effects. 
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CHAPTER FIVE 

FINDINGS AND SUMMARY 

5.1 Empirical Results 

Results from least squares estimates are used as initial starting values. Because 

there are many local maximum, numerous starting values and random number seeds are 

tried. To select the proper knot point, a grid search is conducted, namely twenty models 

are estimated with the knot point ranging from 1960 to 1980 respectively and the 

likelihood values of those twenty models are compared. The maximum likelihood occurs 

with a knot point of 1969, thus it is selected as the estimated knot point. 

Two caveats need to be specified regarding the estimation of the population 

likelihood. First, not all parameters are estimable. In the common situation of a linear 

model with normal disturbances, it is obvious that the location parameter of the 

disturbance distribution, denoted  , and the intercept term from the model, denoted  , 

are non-estimable. However,    is estimable. In general, the location parameter of the 

disturbance distribution is restricted to zero ( 0  ) and hence the intercept parameter is 

recovered as     . Now consider the situation where the disturbance distribution is 

a mixture of two normal distributions with non-zero location parameters (  , ) and non-

zero intercept 0 . Without any restrictions  ,  and 0  are non-estimable while 0   

and 0   are estimable. Imposing the restriction that the disturbance distribution has 

zero mean, that is (1 ) 0     , then  ,  and 0  are recoverable from the 

estimates of 0   and 0  . Specifically, 
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As a result, 0 c     and 0 c     . This approach is used to recover ̂ , ̂  and 

0̂ .  

Second, unlike in Davidian and Gallant (1992, 1993), the model selection criteria 

(AIC, BIC, HQ) are relatively uninformative. In Davidian and Gallant applications, the 

parameters of the non-random component of the model vary across experimental units 

while the parameters indexing the disturbance distribution remain constant. In this 

application, the parameters of the non-random component of the model are constant 

whereas the parameters indexing the disturbance distribution vary across counties. As a 

consequence, changes in g(.) and h(.) will not significantly influence the likelihood and 

hence not significantly influence the model selection criteria. As a result, an alternative 

methodology must be used to recover g(.) and h(.). 

Methodology outlined in Davidian and Gallant (1992, 1993) is used to identify an 

appropriate model given the available county specific attributes. At first, the models are 

fit without any county specific attributes and the truncation point   is increased until the 

empirical Bayes estimates of the random effects ˆ
iz  separate. Davidian and Gallant (1992) 

note that the occurrence of this separation indicates the truncation degree   is large 

enough. Also noted by Davidian and Gallant (1992) is that omission of influential county 

specific attributes from the inter-county regression function g(.) will tend to yield a fat-

tailed or multimodal estimate of the random effects density h(z). These facts are exploited 

to identify an appropriate truncation point and relevant county specific attributes. 
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The following log-linear inter-county regression functions without any county 

specific attributes are initially estimated: 

(21) 
1 1

3 2

exp( )

exp( )

i i

i i

z

z

 

 

 

 
 

The log-linear form ensures positivity of standard deviation parameters. Figure 5 plots 

the estimated joint density of the random effects for 2  . Note the separation suggests 

an expansion of order 2   is sufficient. National Agricultural Statistics Service (NASS) 

keeps data of harvested acreage of every county each year. So both the mean acreage and 

standard deviation of the acreage appear to be the natural candidates for county specific 

attributes. The empirical Bayes estimates of the inter-county random effects are plotted 

against available county attributes in Figure 6. However, Figure 7 suggests that these two 

attributes are highly correlated
8
. Thus, only mean acreage is used as the county specific 

attribute. 

                                                 
8
 The correlation coefficient between mean acreage and standard deviation of acreage is 0.915. 
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Figure 5: Estimated Inter-County Random Effects Density: No County Specific 

Attributes. (a) Perspective Plot of the Estimated Joint Density; (b) Contour Plot of the 

Estimated Joint Density at Quantiles 10%, 25%, 50%, 75%, 90%, 95%. 

 

Figure 6: Inter-County Regression Graphics: No County Specific Attributes 
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Figure 7: Mean Acreage versus Standard Deviation of Acreage 

The following inter-county regression models are estimated: 

(22) 
1 2 1

3 4 2

exp( (mean acreage) )

exp( (mean acreage) )

i i i

i i i

z

z

  

  

  

  
 

Using this model, Figure 5 and Figure 6 are reproduced in Figure 8 and Figure 9 

respectively. Ideally, after the county specific attributes are included in the model, the 

separation of the joint density of the random effects will disappear. However, the 

separation still exists in Figure 8. One possible explanation is that some influential county 

specific attribute is omitted. Several possible attributes (e.g. weather factors) are tried but 

all fail to eliminate the separation. Should this separation be due to the omission of some 

influential factor, it would decrease the efficiency of the model to some extent. However, 

since the deficiency occurs at the regression models for standard deviations, it would only 

affect the second moment of the yield density moderately. 

The separation can also be a result of the inflexible model specification. The 

central tendency is constrained to be the same for all counties. If the estimated central 
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tendency systematically overestimates or underestimates the yields of a group of counties, 

the systematic fitted errors will be reflected in the estimates of the disturbance terms. In 

addition, only the variance parameters can differ by county, thus the variance parameter 

estimates of this group of counties must be fundamentally different from those of the 

other counties. And the groupwise difference cannot be explained by any county specific 

attributes. As a result, the estimated joint density of the random effects becomes 

separated to accommodate the groupwise difference. In this case, the separation is an 

artifact due to the inflexible model specification and cannot be eliminated by adding 

county specific attributes in the inter-county regression models. 

Also note in Figure 8 that the joint density is thin suggesting high correlation 

between the two standard deviation parameters. This is not surprising as the parameters 

both measure dispersion. Also of interest is that the random effects plotted against the 

attributes in Figure 9 appear to have flatter slopes and are closer to zero than in Figure 6. 

 



 54 

 

Figure 8: Estimated Inter-County Random Effects Density: With County Specific 

Attributes. (a) Perspective Plot of the Estimated Joint Density; (b) Contour Plot 

of the Estimated Joint Density at Quantiles 10%, 25%, 50%, 75%, 90%, 95%. 

 

Figure 9: Inter-County Regression Graphics: With County Specific Attributes 
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Table 2 contains the parameter estimates and standard deviations from the 

estimation results. All estimates are significant at 5% level. The fact that 
2̂  is smaller 

than 
1̂  indicates that the yield increases at a smaller rate after 1969. Intuitively, variance 

parameters decrease as the acreage increase in accordance with the law of large numbers, 

thus both 2  and 4  ought to be negative. However, 4̂  is positive which may be caused 

by omission of the influential explanatory variable. The second normal distribution is 

located on the lower tail of the first normal distribution maintaining roughly 35% of the 

mass, suggesting that these yield distributions tend to be more skewed as opposed to 

bimodal. What is unexpected is that the variances of the second normal distribution are 

not uniformly higher than those of the first normal distribution, implying not all 102 

counties have negatively skewed yield distribution. 29 out of 102 (28.4%) counties yield 

a positively skewed distribution. Figure 10 shows estimated standard deviations 

ˆˆ( , )i i  of 102 counties. Two clusters of points are observed: the upper left cluster 

corresponds to counties where the variance of the second normal distribution is higher 

than the first normal distribution; the lower right cluster represents the 29 counties which 

yield unexpected positively skewed distributions. 
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Table 2: Parameter Estimates from SNP Maximum Likelihood Estimation 

Parameter Estimate Standard Deviation 

0 * 53.4219   

1  2.5157  0.0560  

2  1.6758  0.0305  

1  -1.6646  0.1213  

2  -0.0163  0.0090  

3  -1.9220  0.0590  

4  0.0239  0.0052  

0   62.4719  0.4624  

 * 9.0500  0.4624  

0   36.6191  0.5326  

 * -16.8028  0.5326  

  0.6499  0.0088  

1Var( )z  0.3206  0.1067  

2Var( )z  0.0376  0.0187  

1 2( , )z z  -0.9134    

* Parameter estimate recovered given zero mean restriction on disturbance distribution. 
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Figure 10: Standard Deviation Parameters Recovered: All Illinois Counties 

Figure 11 illustrates the estimated conditional yield distributions for two given 

counties. Greene County represents the counties that have positively skewed distributions 

recovered, while Alexander County represents the opposite. A closer look at the counties 

which recover positively skewed distribution reveals that 28 of them are located in 

southern Illinois. Though Illinois lies entirely in the Interior Plains, it has three major 

geographical divisions—Northern Illinois, Central Illinois, and Southern Illinois (Figure 

12). Southern Illinois, also known as ―Little Egypt‖, is located near the juncture of the 

Mississippi River and Ohio River. This region can be distinguished from the other two by  
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Figure 11: Estimated Conditional Yield Distribution: (a) Greene County, Illinois; (b) 

Alexander County, Illinois 
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Figure 12: Three Major Geographical Divisions of Illinois 

its warmer climate, different mix of crops, more rugged topography.
9
 Most importantly, 

Southern Illinois has lower yield level on average over the years. Table 3 compares 

average county yield between 68 counties in Northern and Central Illinois and 34 

counties in Southern Illinois. The explanation for the unexpected positive skewness lies 

in the significant yield difference between the two regions. 

                                                 
9
 http://en.wikipedia.org/wiki/Illinois (June 2009) 
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Table 3: Average County Yield Comparison within Illinois 

  1960 1970 1980 1990 2000 
1955-

2007 

Northern and 68.8  77.2  97.7  129.9  152.1  114.9  

Central Illinois (8.35) (9.82) (15.52) (8.16) (14.44) (33.86) 

       

Southern 49.6  42.6  60.3  98.0  134.2  87.3  

Illinois (5.80) (9.18) (14.36) (11.40) (13.07) (31.46) 

* Values in brackets are standard deviations  

Remember that the parameters indexing the spline model are assumed not to vary 

among counties, so all counties have the same estimate of central tendency of yield. 

However, counties in Southern Illinois have much lower yields on average over years, 

thus the central tendency estimated by all 102 counties tends to overestimate the yields of 

the 34 counties in the south. Figure 13 illustrates the estimated central tendency of yield 

and the realized yields for the same two counties in Figure 11. We can see clearly that the  
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Figure 13: Estimated Central Tendency and Realized Yields: (a) Greene County, Illinois; 

(b) Alexander County, Illinois 

central tendency fit the Greene County yield much better than that of Alexander County 

where the central tendency overestimates yields in most years. In light of this systematic 

overestimation, the mean of the fitted residuals is far from zero.
10

 Instead, most of the 

fitted residuals are deeply negative. At the same time, the location parameters and the 

mixture parameter of the two normal distributions are fixed among all counties and only 

the two variance parameters can differ by county. Intuitively, deep negative fitted 

residuals correspond to years with severe catastrophes, which by assumption are 

realizations from the secondary normal distribution. When only several deep negative 

fitted residuals occur, increase of the variance of the secondary normal distribution can 

                                                 
10

 Recall that the mean of the disturbance distribution is restricted to be zero in order to recover the 

intercept parameters. 
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increase the likelihood thus accommodate those deep negative residuals (Figure 14a). 

However, for counties that recover positively skewed distributions, there are few positive 

fitted residuals but negative fitted residuals both big in magnitude and large in quantity. 

In this case, solely increasing the variance of the secondary normal distribution cannot 

accommodate them and maximize the likelihood. In other words, they are more likely to 

come from the major normal distribution. So the variance parameter of the major normal 

distribution is increased to maximize the likelihood. Thus, positively skewed distribution 

is recovered (Figure 14b). In fact, the assumption that the secondary normal distribution 

captures catastrophic years is violated in these counties, since most years are 

―catastrophic‖ due to overestimation. Now we can conclude that the unexpected positive 

skewness of 29 estimated yield distributions are artifactual as a result of systematic 

overestimation of the central tendencies. 

(a) 
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(b) 

Figure 14: A Mixture of Two Normal Distributions Recovered: (a) Greene County, 

Illinois; (b) Alexander County, Illinois 

Now, given the estimation results and what we found above, recall Figure 8. The 

separation of the estimated joint density of the random effects is more likely to be the 

result of the inflexible model specification, rather than the omission of some county 

specific attributes. 

 

5.2 Premium Rates 

Recall, premium rates are expressed as expected indemnity as a percentage of 

total liability. For a contract with coverage level of  % of the expected yield 
ey , the 

premium rate is given as 
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(23) Premium Rate (%) =  

Expected Indemnity Pr( )[ E( | )]

Liabilty

e e e

e

Y y y Y y y

y

  



  
  

where the expectation operator and probability measure are taken with respect to the 

conditional yield density. Table 4 presents summary statistics of the SNP rates and the 

empirical rates for Illinois all practices corn. 

Table 4: Summary Statistics of GRP Premium Rates: Illinois Corn—All Practices 

Method Coverage Level 

  70% 75% 80% 85% 90% 

SNP Rates      

mean 1.8654  2.4331  3.1495  4.0439  5.1530  

std. deviation 0.8970  1.0335  1.2078  1.4348  1.7136  

minimum 0.6744  1.0719  1.6419  2.3841  3.2855  

maximum 4.1405  5.0112  6.1020  7.4637  9.0959  

      

Empirical Rates      

mean 1.7242  2.4152  3.2931  4.3598  5.6274  

std. deviation 2.3206  3.1227  4.0711  5.1170  6.2485  

minimum 0.0000  0.0000  0.0000  0.0916  0.2962  

maximum 9.4218  12.1942  15.3938  19.2574  23.1982  

 

Empirical premium rates are calculated as sum of all percentage shortfalls divided 

by the number of years. In fact, it is the simplest nonparametric approach available for 

making inferences about distributions. However, large samples are needed to accurately 

calculate rates because no smoothing is undertaken and the distributions are not required 

to be continuous (Goodwin and Ker, 1998). The SNP rates are calculated numerically 

from the recovered yield distributions of each county. The SNP rates are higher than 

empirical rates at 70% and 75% levels, while lower than empirical rates at coverage 

levels above 80%. Given the small number of realizations, empirical rates tend to put 
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inadequate mass in the extreme lower tails of the estimated density, as opposed to SNP 

rates. In addition, empirical rates have much higher standard deviations at all coverage 

levels, suggesting that rates are more volatile among counties: for counties having 

experienced few extreme low yields, the rates can be zero for 80% coverage level. In 

contrast, SNP approach, which yields more stable rates, considers the data from all 

counties when estimating the tail probabilities for any given county. 

 

5.3 Concluding Remarks 

The main objective of this thesis is to improve the accuracy of premium rates, 

thereby improving the efficiency of the GRP programs. Accurate premiums rates require 

proper estimation of the conditional yield distributions, including accurately predicting 

mean yield and accurately estimating the mass about the predicted mean yield. A spline 

model with one knot point is used to capture the central tendency and to predict mean 

yield. A flexible mixture of two normal distributions is used to represent the disturbance 

distribution. Parameters indexing the mixture distribution follow a mixed effects 

regression model where the joint density of the random effects is estimated by a Hermite 

expansion. Seminonparametric maximum likelihood estimation technique is employed to 

estimate the spline model and disturbance distribution simultaneously. County specific 

yield distributions are attained from the posterior modes of the random effects and 

estimates of the fixed effects.  

SNP maximum likelihood approach makes more efficient use of the data in that 

yield correlation among counties is explicitly modeled. As a result, SNP rates are more 

consistent among counties. Also, SNP method tends to put relatively more mass in the 
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extreme lower tail of the estimated density, which helps make the premium rates at low 

coverage levels more reasonable, especially given the limited number of realizations for 

each county. It is shown in the thesis how conditional yield distributions depart from 

normality and that a mixture of two normal distributions could be used to represent 

conditional yield densities. The thesis also demonstrates that yield distributions do not 

necessarily belong to a parametric family of distributions that have been used in the past 

(e.g. beta, gamma).  

It is discussed in Chapter 3 that some researchers have justified the one-knot 

linear spline temporal process on the following basis: while technology will directly 

increases average yields, the rate of farm consolidation will also increase average yields. 

Farm consolidation is greatest in the decades of the 1950s and 1960s and slow in the 

1970s thus suggesting a one-knot spline. The knot point selected by likelihood value in 

this thesis is 1969, which can be considered as a support of the claim. 

There are at least three areas requiring further study. First, the parameters 

indexing the spline model are assumed to be constant among counties in this thesis. 

Although this assumption helps limit the dimension of the estimator and achieve a gain in 

degrees of freedom, it also sacrifices the flexibility of the model to accommodate 

characteristics of different counties. For example, the estimated central tendency does not 

fit the counties from Southern Illinois as well as the other counties. The inflexibility of 

the central tendency even induces artifactual positive skewness in estimated yield 

distributions. More flexible temporal process like AR(p) model might be a better choice 

for the central tendency.  

Second, the correlation structure among counties is modeled with an inadequate 
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set of county specific attributes. The multimodality found in the joint density of random 

effects might be due to some omitted influential county specific attributes. If this is the 

case, the model will be substantially improved if the omitted factor is identified and 

included in the inter-county regression functions. Another possible explanation for the 

multimodality found in the joint density of random effects is the systematic 

overestimation of a group of counties. If this is the case, then a more flexible temporal 

process like AR(p) may remove the multimodality without adding any more county 

specific attributes. 

Last but not least, further research is needed to compare competitive estimation 

methods and analyze the economic implications of the estimation errors. A simulation 

performed in Ker and Coble (2003) exemplifies a good way of doing this. In the 

simulation, competing estimators are used to estimate a set of yield densities and derive 

the associated premium rates, including the rating methodology of Risk Management 

Agency (RMA). Then they evaluate the competing estimators by calculating out-of-

sample loss ratios based on decision rules for retaining or ceding GRP crop insurance 

contracts. This simulation is appealing from an economic and policy perspective because 

private insurance companies are allowed to retain or cede, ex ante and subject to 

constrains, varying portions of the realized underwriting gains/losses of every federally 

subsidized crop insurance contract it sells. Similarly, such a simulation will enhance our 

understanding of the SNP estimators. 

 

 

 



 69 

APPENDIX: ADDITIONAL FORTRAN CODE FOR NLMIX 

 

      subroutine density(isw) 

      implicit real*8 (a-h,o-z) 

      implicit integer*4 (i-n) 

      save 

 

      include "global.f" 

 

      real*8 yld,x1,x2,macres,sacres 

      real*8 data 

      real*8 sig1,sig2,expz1,expz2,vpow 

      real*8 P,Pwsig1,Pwsig2,PwO,PwOx1,PwOx2,Pw12,PwO2 

      real*8 O,O2,S,S2 

      real*8 Plag,Pws1lag,Pws2lag,PwO1lag,PwOx1lag,PwOx2lag,Pw12lag, 

PwO2lag 

      real*8 f,fwO,fwS,f1,f2,fwO2,fwS2 

 

      integer*4 i,j,isw 

      integer*4 id0,id0lag 

      integer*4 count,point,iptr 

 

      character*15 z1out,z2out 

 

      integer*4 mrows,mcols,debug 

 

      parameter (mrows=6,mcols=5406,debug=1) 

      parameter (vpow=2.d0) 

 

      dimension count(mcols),point(mcols) 

      dimension data(mrows,mcols) 

 

 

*     If isw=1, read and setup local data; compute nobs. 

 

      if (isw.eq.1) then 

 

        if (iunit9.eq.1) then 

          j=0 

          do i=1,12 

            if (outfil(i:i).eq.' ') then 

              j=i 

              go to 5 

            end if   

          end do 

5         continue           
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          if (j.eq.0) then 

            z1out=outfil//'.z1' 

            z2out=outfil//'.z2' 

          else 

            z1out=outfil(1:j-1)//'.z1'   

            z2out=outfil(1:j-1)//'.z2'   

          end if 

          open (unit=21,file=z2out,status='unknown',form='formatted') 

          open (unit=22,file=z1out,status='unknown',form='formatted') 

        end if 

 

        open (unit=14,file='s1969.dat',status='old',form='formatted') 

  

        nobs=0 

        iptr=1 

        count(iptr)=0 

        point(iptr)=1 

        id0lag=1  

 

        do i=1,mcols 

          read(14,14001,end=10) 

     &      id0,yld,x1,x2,macres,sacres    

          

          data(1,i)=yld 

          data(2,i)=x1 

          data(3,i)=x2 

          data(4,i)=macres 

          data(5,i)=sacres 

 

          nobs=nobs+1 

 

          if (id0lag.eq.id0) then 

            count(iptr)=count(iptr)+1 

          else 

            iptr=iptr+1 

            count(iptr)=1 

            id0lag=id0 

            point(iptr)=i 

          end if 

        end do 

10      continue 

 

        if (iptr.ne.ncases) then 

          write(3,3001) 

          stop 

        end if 
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        close(14) 

        return 

      end if 

 

*     If isw=2, compute the density. 

 

      if (isw.eq.2) then 

        macres=data(4,point(id)) 

        sacres=data(5,point(id)) 

 

        expz1=z(1) 

        expz2=z(2) 

 

        sig1=dexp(tau(1)+macres*tau(2)+expz1) 

        sig2=dexp(tau(7)+macres*tau(8)+expz2) 

 

        Plag = 1.d0 

        Pws1lag = 0.d0 

        PwO1lag = 0.d0 

        PwOx1lag = 0.d0 

        PwOx2lag = 0.d0 

        Pws2lag = 0.d0 

        PwO2lag = 0.d0 

        Pw12lag = 0.d0 

 

        do i=point(id),point(id)-1+count(id) 

          yld=data(1,i) 

          x1=data(2,i) 

          x2=data(3,i) 

          O = tau(3)+tau(4)*x1+tau(5)*x2 

          S = sig1 

          call normalh(yld,O,S,vpow,f1,fwO,fwS) 

          O2 = tau(6)+tau(4)*x1+tau(5)*x2 

          S2 = sig2 

          call normalh(yld,O2,S2,vpow,f2,fwO2,fwS2) 

          f = tau(9)*f1+(1-tau(9))*f2 

          P = Plag*f 

          Pwsig1 = Plag*fwS*tau(9) + Pws1lag*f 

          Pwsig2 = Plag*fwS2*(1-tau(9)) + Pws2lag*f 

          PwO = Plag*tau(9)*fwO + PwO1lag*f 

          PwOx1 = Plag*x1*(fwO*tau(9)+fwO2*(1-tau(9)))+PwOx1lag*f 

          PwOx2 = Plag*x2*(fwO*tau(9)+fwO2*(1-tau(9)))+PwOx2lag*f 

          PwO2 = Plag*(1-tau(9))*fwO2 + PwO2lag*f 

          Pw12 = Plag*(f1-f2)+Pw12lag*f 
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          Plag = P 

          Pws1lag = Pwsig1 

          Pws2lag = Pwsig2 

          PwO1lag = PwO 

          PwO2lag = PwO2 

          PwOx1lag = PwOx1 

          PwOx2lag = PwOx2 

          Pw12lag = Pw12 

        end do 

 

        d = P 

        dwtau(1)=Pwsig1*sig1 

        dwtau(2)=Pwsig1*macres*sig1 

         

        dwtau(3)=PwO 

        dwtau(4)=PwOx1 

        dwtau(5)=PwOx2 

        dwtau(6)=PwO2 

 

        dwtau(7)=Pwsig2*sig2 

        dwtau(8)=Pwsig2*macres*sig2 

         

         

        dwtau(9)=Pw12 

 

        dwz(1)=Pwsig1*sig1 

        dwz(2)=Pwsig2*sig2 

  

        return 

      end if 

 

*     If isw=3, write individual effects to unit 9. 

 

      if (isw.eq.3) then 

        write(9,9001) id,sig1,sig2 

        write(21,21000) z(1) 

        write(22,22000) z(2)  

      end if 

         

*     If isw=4, print some debugging information. 

 

      if (isw.eq.4) then 

 

        if (iunit9.eq.1) then 

          close(21) 

          close(22)  
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        end if 

 

        if ((iprint.eq.0).and.(debug.ne.0)) then 

          do i=1,ncases 

            write(3,3008) i,point(i),count(i) 

            write(3,3009) (data(j,point(i)),j=1,mrows) 

            write(3,3009) (data(j,point(i)-1+count(i)),j=1,mrows) 

          end do 

          write(3,3002) sig1,sig2 

          write(3,3005) Pws1lag,Plag 

          write(3,3006) P,Pwsig1          

          write(3,3007) O,S,f,fwO,fwS 

          return 

        end if 

      end if 

 

      return 

3001  format(1x,'hao,error, density, error reading data') 

3002  format(1x,'sig1,sig2'/1x,2f20.8) 

3005  format(1x,'Pws1lag,Plag'/1x,2f20.8) 

3006  format(1x,'P,Pwsig1'/1x,2f12.8) 

3007  format(1x,'O,S,f,fwO,fwS'/1x,5f11.7) 

3008  format(1x,'i,point,count',1x,3i6) 

3009  format(1x,'data',1x,18f8.4) 

9001  format(i6,3d30.18) 

14001 format(i4,f7.1,2f8.1,2f9.4) 

21000 format(1x,f28.20) 

22000 format(1x,f28.20) 

23000 format(1x,f28.20) 

      end 
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