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Abstract 

Cotton is an important U.S. agricultural commodity, generating about 200,000 jobs among the 

various sectors from farm to textile mill and accounting for more than $25 billion in products and 

services annually. A double hurdle model is estimated to assess the effects of weather extremes, 

irrigation, crop variety choice, and changes in cotton prices on rates of county-level cotton 

acreage abandonment.  Acres abandoned are those planted with cotton, but not subsequently 

harvested.  The first step of the double hurdle model estimates factors affecting the probability 

that a county will have at least some acres abandoned.   County level data were available for 

eight states and three crop types: upland irrigated cotton, upland non-irrigated cotton and 

irrigated Pima cotton.  Abandonment rates were highest among upland non-irrigated acreage.  

Seasonal temperature and precipitation variables were significant predictors of abandonment 

behavior.  A sub-sample of the data from Census of Agriculture years contained a variable for 

the number of cotton farms in a county.  The probability that a county had some, positive amount 

of acres abandoned increased with the number of farms.  The rate of abandonment for counties 

with abandoned acres, however, declined with the number of cotton farms.  This results provides 

some justification of a more flexible double hurdle specification over a tobit specification to crop 

abandonment.   
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Chapter 1 

Introduction 

The United States cotton industry generates about 200,000 jobs among the various sectors from 

farm to textile mill and accounts for more than $25 billion in products and services annually. The 

predominant type of cotton grown in the U.S. is American Upland (Gossypium hirsutum), 

accounting for about 97% of the annual U.S. cotton crop. The other popular type is American 

Pima or extra-long staple (Gossypium barbadense). The markets for Pima cotton are mainly 

high-value products, for its long staple length of 1 ½ inches or longer, comparing to 1 to 1 ¼ 

inches for Upland cotton (Economic Research Service, United States Department of Agriculture, 

2013). Like all other crops, cotton production suffers from abandonment due to various reasons. 

Figure 1.1 (Economic Research Service, United States Department of Agriculture, 2013) shows 

total acres planted and harvested from 1985 to 2009, across all cotton types. 

Numerous studies have examined how climate and/or economic attributes can cause crop failure. 

Existing models vary drastically in complexity, largely in proportion to the dimensionality of the 

chosen environment specification (Starr and Kostrow 1978). For example, Brown (Brown 1959) 

used only linear functions of total precipitations for two periods, September-October and May-

June, to explain variations of winter wheat yield in Utah. In contrast, Baier (1973) explained 

variations of spring wheat yield on selected plots in the Canadian Prairie Provinces. He used 

nonlinear functions of daily measures, throughout the growing season, of any three of minimum 

and maximum air temperature, soil moisture within the rooting zone of crops, the ratio of actual 
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to potential evapotranspiration, and total incoming radiation from sky and sun as explanatory 

variables.  

 

Figure 1.1. Total acres planted and harvested from 1985 to 2009 in United States, across all cotton types 

 

Cotton production in this research is divided into 3 categories: non-irrigated Upland cotton, 

irrigated Upland cotton, and Pima cotton. The study timeframe is from 1990 through 2011. All 

the Pima cotton fields included in this research are irrigated. Figure 1.2 shows the shares of acres 

planted and abandoned by categories. It is obvious that the non-irrigated Upland cotton is the 
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most likely to be abandoned, whereas Pima cotton is the least likely. The acreage abandonment 

of each category from 1990 through 2011, as shown in Figure 1.3, confirms the hypothesis.   

 

Figure 1.2. Share of acres planted and abandoned by category from 1990 through 2011 

 

 

 

Figure 1.3. Percent abandoned of by category from 1990 through 2011 

 In this research, I have evaluated county-level cotton acreage abandonment of Arizona, 

Arkansas, California, Louisiana, Mississippi, New Mexico, Oklahoma, and Texas from 1990 
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through 2011. Those are the only states having separated irrigated/non-irrigated cotton records 

from 1990 through 2011 from QuickStats, USDA. A full description of variables included in this 

research is given in Chapter 5. For this analysis, I have used SAS 9.2 and Microsoft Excel 2010 

for data management and Stata 12.1 for regression modeling and post-estimation predictions. 
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Chapter 2 

Literature Review 

2.1 Multivariate Analyses on Crop Abandonment 

A few studies have been done estimating crop acreage abandonment. Michaels (Michaels 1983) 

used a time series Crop Reporting District (CRD) level model to estimate both the changes in 

large-area stress-tolerant crop yield and changes in abandonment, winter wheat in this research, 

from 1932 through 1975. The factors he included are changes in precipitation, temperature, and 

crop price in the western Great Plains. Crop yield is described as the total yield (measured in 

metric tons) over total hectares planted times 10. The formula for abandonment calculated as 

((Acre Planted) – (Acre Harvested)) / (Acre Planted).  

Michaels concludes that the abandonment is more likely to be associated with climate changes 

rather than economic factors. The overall model explained 77% of the total variance in 

abandonment, with 36.5% of the variation explained by the weather variables. 

Michaels (Michaels 1985) extended the previous work described in Michaels (Michaels 1983). 

This paper extended the initial analysis to the spring wheat regions of North Dakota and South 

Dakota, and Minnesota. He also examined the effects of major weather factors with yield, rather 

than abandonment. The climate data consist of monthly mean temperature and total precipitation 

for May through August, as well as March to April. A principle component analysis was adopted 

to analyze the spatial correlation of abandonment. He then estimated abandonment on weather 
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conditions, price, and yield. Again, he concluded that the abandonment is more likely due to 

climate conditions, rather than economic reasons.  

Mendelsohn (2007) evaluated the crop failure contributed by climate, soil condition, and 

location. He used Agricultural Census data gathered in 1978, 1982, 1987, 1992, and 1997. The 

dependent variable was expressed as (failed cropland divided by all cropland), but in the 

denominator, he included idled land, and pastureland. He then regressed the crop failure rate on 

soil and climate variables. His conclusions are temperature and precipitation are likely to be 

significant, but the signs and significances varied by month. In addition, flatter terrains and soils 

with high water capacity reduced crop failure rates. Location was another important factor 

causing variations in crop failure rate. He commented that the results provided some insight into 

how global warming might influence crop failure rates.  

2.2 Crop Abandonment, Insurance and Moral Hazard 

Chen (2005) examined whether the insurance participation decision encouraged producers to 

abandon their crops. Data of individual insured units for her research were obtained from 

unpublished Risk Management Agency Corporate Database, USDA. The objective was to 

construct an intra-seasonal dynamic optimization model that incorporated crop producer‟s 

acreage abandonment decision with and without purchasing crop insurance. She concluded that 

insured farmers were more likely to abandon more crops to maximize the expected profits, when 

non-insured producers might take the risks to continue growing.  
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Chapter 3 

Description of Data 

3.1 Cotton Acres Planted/Harvested Data 

This research covers 22 years (1990 ~ 2011) of cotton planted and harvested acreage records in 

315 counties from 8 states in the Cotton Belt region of the United States. The 8 states included in 

this research are (in alphabetical order): Arizona (AZ), Arkansas (AR), California (CA), 

Louisianan (LA), Mississippi (MS), New Mexico (NM), Oklahoma (OK), and Texas (TX). Only 

those eight states have separated irrigated/non-irrigated cotton records available. The data 

include three types of cotton production: non-irrigated Upland cotton, irrigated Upland cotton, 

and Pima cotton. The annual cotton planted and harvested acre records are collected at the 

county-level. I have obtained the county-level cotton planted/harvested records using QuickStats 

tool, managed by National Agricultural Statistics Service, United States Department of 

Agriculture (National Agricultural Statistics Service, 2013). The options in QuickStats are:  

 Select Commodity: 

Program: survey > Sector: CROPS > Group: FIELD CROPS > Commodity: COTTON > 

Category: AREA HARVESTED and AREA PLANTED > Data Item: COTTON, PIMA, 

IRRIGATED – ACRES HARVESTED and COTTON, PIMA, IRRIGATED – ACRES 

PLANTED and COTTON, UPLAND, IRRIGATED – ACRES HARVESTED and 

COTTON, UPLAND, IRRIGATED – ACRES PLANTED and COTTON, UPLAND, NON-
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IRRIGATED – ACRES HARVESTED and COTTON, UPLAND, NON-IRRIGATED – 

ACRES PLANTED > Domain: TOTAL  

 Select Location: 

Geographic Level: COUNTY > State: ARKANSAS and CALIFORNIA and LOUISIANA 

and MISSISSIPPI and NEW MEXICO and OKLAHOMA and TEXAS > Year: 1990 through 

2011 > Period Type: ANNUAL 

The records of cotton production in Arizona are not listed in the data option. Given the fact that 

all the cotton fields growing in Arizona were irrigated, I have chosen the option “COTTON, 

PIMA, IRRIGATED – ACRES HARVESTED and COTTON, PIMA, IRRIGATED – ACRES 

PLANTED and COTTON, UPLAND – ACRES HARVESTED and COTTON, UPLAND – 

ACRES PLANTED” under “Data Item” tab and assigned all the planted/harvested acre records 

as irrigated Upland cotton records. I have not used the “Data Item” option “COTTON, UPLAND 

– ACRES HARVESTED and COTTON, UPLAND – ACRES PLANTED” for all the states is 

due to the fact that I could not fully separate the irrigated Upland cotton records from non-

irrigated Upland cotton records.  

I then have aggregated the records into one spreadsheet. All the observations with the county 

name “Other (COMBINED)” were omitted. There are only 5 records of non-irrigated Pima 

cotton, and I have deleted those records as well. All Pima cotton included in the dataset is 

irrigated. Some county records do not meet USDA‟s publishing standard. In addition, for this 

reason, the following records were omitted as well:. 

 Irrigated Upland cotton from Otero County, NM in 1995 
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 Non-irrigated Upland cotton from Starr County, TX in 2006 

 Pima cotton from Culberson County, TX in 1990 

 Pima cotton from Ward County, TX in 1991 

With the aggregated cotton production spreadsheet, I have created the cotton planted/harvested 

record dataset. A county can have up to three data entries in a specific year, covering non-

irrigated Upland cotton records, irrigated Upland cotton records, and Pima cotton records with 

the help of two binary variables, d_irri and d_pima. d_irri takes the value of 0 and d_pima takes 

the value of 0 to control for non-irrigated upland cotton records, d_irri takes the value of 1 and 

d_pima takes the value of 0 to control for irrigated Upland cotton records, d_irri takes the value 

of 1 and d_pima takes the value of 1 to control for Pima cotton records.  

In the final step, I calculated the acreage abandonment (labeled as pc_aban) using Equation 3.1. 

Acreage abandonment = (planted acreage-harvested acreage) / (planted acreage) * 100      (3.1) 

If pc_aban value is missing for a county in a certain year, it means this county did not have the 

type of cotton production indicated by d_irri and d_pima, and this observation is deleted. The 

cleaned cotton acres planted/harvested dataset has 6,501 records, organized in an unbalanced 

panel fashion. The numbers with respective percentage of pc_aban in each abandonment 

percentile is shown in Figure 3.1. The descriptive statistics of pc_aban is given in Table 3.1. All 

categories have a maximum abandonment of 100% except for Pima cotton. However, mean 

abandonment of all the categories never exceeds 15%. The category having the highest mean 

abandonment is non-irrigated Upland cotton, followed by irrigated Upland cotton. The mean 
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abandonment of irrigated Upland cotton is 4.3%, dropped 10% from the non-irrigated Upland 

cotton. The Pima cotton category has the lowest mean abandonment, which is 3.2%. 

 

 

Figure 3.1. Numbers with respective percentage of percentage abandoned in each percentile 

 

Data item N Maximum Minimum Mean 5% 95% 

Full dataset 6,501 1 0 9.43 0 53.85 

Non-irrigated Upland 3,384 1 0 14.26 0 69.65 

Irrigated Upland 2,816 1 0 4.3 0 20 

Pima 301 99.39 0 3.17 0 12.5 

Table 3.1. Descriptive statistics of percentage abandoned 

 

3.2 Weather Data 

The weather records are provided by National Climatic Data Center (NCDC), National 

Environmental Satellite, Data, and Information Service (NESDIS), National Oceanic and 

Atmospheric Administration (NOAA), United States Department of Commerce (National 

Climatic Data Center, National Oceanic and Atmospheric Administration, 2013). The records are 
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monthly, climate-division-level data collected from 1990 through 2010. The items recorded are 

described in Table 3.2. I have only used values of SP09 observed in September, PCP, and TMP 

in this research.  

Item Unit Description 

PCP In. Precipitation Index 

TMP °F Temperature Index 

PDSI Unitless Palmer Drought Severity Index 

PHDI Unitless Palmer Hydrological Drought Index 

ZNDX Unitless Palmer Z-Index 

PMDI Unitless Modified Palmer Drought Severity Index 

CDD Unitless Cooling Degree Days 

HDD Unitless Heating Degree Days 

SP01 Unitless Standard Precipitation Index Over 1 Month 

SP02 Unitless Standard Precipitation Index Over 2 Months 

SP03 Unitless Standard Precipitation Index Over 3 Months 

SP06 Unitless Standard Precipitation Index Over 6 Months 

SP09 Unitless Standard Precipitation Index Over 9 Months 

SP12 Unitless Standard Precipitation Index Over 12 Months 

SP24 Unitless Standard Precipitation Index Over 24 Months 
Table 3.2. Weather record items with respective units and descriptions  

 

I then have manually recorded the counties within each climate division, based on the climate 

division map provided by Climate Prediction Center (CPC), NOAA, (Climate Prediction Center, 

National Oceanic and Atmospheric Administration, 2013). The climate division borders in 

California and New Mexico do not match the county borders, so I have picked the climate 

division covering the most area of a county in those two states as the designated climate division. 

The final weather dataset includes county-level seasonal weather data and modifications on 

sp_09 records. Season 1 is the planning season, from January through March; season 2 is the 

planting season, from April through June; season 3 is the growing season, from July through 
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September; season 4 is the harvesting season, from October through December. In order to create 

the seasonal PCP and TMP records, I have summed monthly PCP values and averaged TMP 

values on a 3-month basis. The sp_09 index measures the average precipitation of the current 

nine months comparing to the long-term norm. I have used the sp_09 index measured in 

September for this analysis. For the states included in this analysis, September is either the end 

of the growing season or the beginning of the harvesting season, and by this time farmers have 

either abandoned some (even all) of their cotton fields, or made their decisions about abandoning 

their crops or not. Therefore, the precipitation of September can give a hint on the rainfall 

received of the crop season, in addition to the direct measurement of precipitations. I suspect 

sp_09 having a non-linear effect on crop abandonment, so I have derived 2 different variables, 

dry_sp09 and wet_sp09, regarding to sp_09 index values to count for the non-linear effect.  I first 

have created 2 binary variables, d_dry and d_wet. d_dry equals to 1 if sp_09 index value is 

negative, otherwise 0. d_wet equals to 1 if sp_09 index value is positive, otherwise 0. dry_sp09 

equals to the product of d_dry and the absolute value of sp_09 index. wet_sp09 equals to the 

product of d_wet and the absolute value of sp_09 index. At last, I have matched the weather 

variables into the county – climate division spreadsheet I created in the previous step.  

 

3.3 Cotton Price Data 

The cotton price data are monthly observed national level data, provided by National Cotton 

Council of America (National Cotton Council of America, 2013). For both non-irrigated and 

irrigated Upland cotton prices, I have used NYCE (New York Cotton Exchange) Near December 

Contract Price, starting from 1990. For Pima cotton prices, I used ELS Spot Prices, starting from 
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1990. I then have taken the difference by subtracting May prices from September prices, and 

deflated to 2005 dollars.  

3.4 Full Dataset 

I have merged the weather data and cotton price data into the cleaned cotton acres 

planted/harvested dataset by using SQL procedure with “left join” option. The criteria were 

county names, state, and year. A full description of full dataset will be given in the next chapter. 

The county-level data used in this research have omitted the observations under the county name 

“Other (COMBINED)”. Those observations are the combined cotton records from the counties 

that do not meet the USDA‟s standard for data publishing on a county-level within the same 

agricultural district. This procedure reduces the state total coverage. Appendix A lists the annual 

state-level planted acre coverage from the full dataset, and annual state-level planted acre 

coverage directly from NASS, USDA for non-irrigated Upland cotton, irrigated Upland cotton, 

and Pima cotton. In most cases, the differences in state-level acre coverage are within 5%. New 

Mexico State stopped recording irrigated and non-irrigated Upland cotton records separately 

from 2008, so the New Mexico county-level records from 2008 through 2011 are Upland cotton 

planted/harvested records, assuming all the cotton fields in New Mexico were irrigated after 

2007. The irrigated upland cotton record differences in Arkansas stay below 2% across two 

reports until 2000, and then stay above 10% afterwards. The differences exceed 40% after 2008. 

The irrigated Upland coverage is better than non-irrigated Upland in Arkansas. The differences 

stay below 10% until 2008, and then exceed 10% afterwards. The difference goes up to 29.46% 

in 2011. The data coverage in Arizona, California, New Mexico, and Texas is good, except for 

Texas in 2011. The county-level report only covers 3.11% for irrigated Upland cotton and 9.46% 
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for non-irrigated Upland cotton. The data coverage in Louisiana is good until 2007. However, 

the coverage is not so good for Mississippi and Oklahoma in general.    

 

 3.5 Census Data 

The agriculture census data are observed on 5-year basis, provided by USDA (United States 

Department of Agriculture, 2013). The advantage of using agriculture census data is that the 

census data have numbers of farms growing cotton. However, the drawback is that the census 

data are recorded every 5 years, so in the census subset only the observations from 1992, 1997, 

2002, and 2007 are used, reducing the number of observations. There are minor variations of 

obtaining census data from different states. Here I will demonstrate the procedure of obtaining 

Arizona census data from 2007 as an example. After going to the website, I have picked 2007 

under the “Census Publications” menu, clicked on “2007 Census of Agriculture” link under 

“Publications” section, clicked on “Full 2007 Census Report” link under “2007 Census Results” 

section, clicked on “All Counties by State by Table” link under “State and County Reports” 

section, selected “Arizona” from the link below the map, then clicked on the “Text” link and 

downloaded the full text file. Under Table 26, I have selected the table with the title “COTTON, 

ALL (BALES)”. At last, I have selected the numbers under “Farms” column in “Harvested” 

section in 2007 for all the recorded counties and imported the columns into an Excel spreadsheet. 

I have repeated the procedure 32 times and collected the county-level farm counts for all 8 states 

in 1992, 1997, 2002, and 2007. I have merged the census farm count dataset and full dataset by 

using SQL procedure with “left join” option. The criteria were county names, state, and year. 

The number of observations in the census subset is reduced to 1,204. 
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Chapter 4 

Empirical Model and Methodology 

4.1 Conceptual Framework 

The objective of this research is to capture cotton field acre abandonment, giving the weather 

conditions and economic incentives, cotton type, and adoption of irrigation. Data from 8 states in 

South/Southwest U. S. from 1990 through 2011 are selected for this research. In this analysis, I 

have focused more on the weather impact on crop abandonment. 

A tobit model or an alternative hurdle model can both predict the positive outcomes required for 

this research. However, an important limitation of the standard tobit model is that a single 

mechanism determines the choice between y = 0 versus y > 0 and the amount of y given y >0 

(Wooldridge 2002). In addition, tobit model assumes the distribution of error terms is normal 

distribution. However, the acreage abandonment is following a gamma distribution, instead of 

normal distribution. Meanwhile, the second tier of hurdle model recommends taking the natural 

log of the dependent variable, which will fix of the gamma distribution of abandonment in the 

full dataset. Therefore, I have chosen hurdle model over tobit model for this analysis. 

4.2 Hurdle Model 

Described by Wooldridge (Wooldridge 2002), the hurdle model is also known as two-tiered 

model. The first tier is predicting the probability of having a positive outcome, and the second 

tier is predicting the amount of the positive outcome. 
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For tier 1 estimation, I have chosen a probit model. Probit model is a special case of binary 

response model. The binary response model takes the general form: 

P(y = 1|x) = P(y
*
 >0|x) = P(e > -xγ|x) = 1 – G(-xγ) = G(xγ)                                            (4.1) 

Where y
*
 = xβ + e,    y = 1 [y

*
 > 0], assuming e is symmetric above zero. 

The probit model is a special case of Equation 4.1 with: 

G(z) ≡ Φ(z) ≡                                                                                                (4.2) 

Where φ(z) is the univariate standard normal density 

φ(z) = (2π)
-1/2

 exp(-z
2
/2)                                                                                                   (4.3) 

So (y = 1|x) = Φ(x ) ≡                                                                               (4.4) 

Where  is the estimated parameter vector of the probit model. 

For the second tier, Cragg (1971) suggested to use OLS specification from the regression log(y) 

on x, where y are all positive. This estimation is simple because it is assumed that log(y) follows 

a classic linear model, given that all values of y are positive. The distribution of abandonment is 

a gamma distribution. By taking the natural log of the abandonment the distribution is assumed 

to follows a normal distribution. The expected value of lognormal OLS model is: 

E( |x, y > 0) = exp(x  + 
2
/2)                                                                                         (4.5) 

Where  is the parameter estimate vector of the OLS model, 
2 
is the model variance. 
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So the expected value of the hurdle model can be expressed as: 

E( |x) = (y = 1|x) * E( |x, y > 0) = Φ(x ) exp(x  + 
2
/2)                                          (4.6) 

Due to the restriction on having only the positive y values in the second tier OLS model, I cannot 

predict abandoned percentage for the counties with 0% abandonment in the dataset.  
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Chapter 5 

Variables and Summary Statistics 

5.1 Description of Variables 

The dependent variables for the two-step hurdle model are: d_aban for probit model and 

ln_pc_aban for OLS model. d_aban is a binary variable, taking value of 1 when a positive 

abandonment is observed, otherwise 0. ln_pc_aban is the natural log of actual percent abandoned 

(pc_aban) calculated only when a positive percent abandoned is observed. Of all 6,501 records in 

the full dataset, 4,587 records show positive abandoned, so the OLS model is only applied to 

those records. Of all 1,204 records in the census subset, 811 records show positive percent 

abandoned, again the OLS model is only applied to those records. 

In general, more rainfall and higher temperature are welcome by cotton farmers, but excess 

moisture and/or extreme temperature conditions can cause abandonment. Therefore, I expect the 

signs of the first order of the seasonal precipitation and temperature variables to be negative, and 

the signs of the second order seasonal precipitation and temperature variables to be positive. 

However, pcp_s4 and tmp_s3 are exceptions. Season 4 is the harvesting season, and more 

rainfall can have negative impact on the harvesting process. Season 3 is the growing season, and 

the higher temperature is healthier for cotton growth. Therefore, I expect the signs of the first 

order and second order of pcp_s4 and tmp_s3 to be positive and negative, respectively. The 9-

month standard precipitation index (sp_09) measured in September is an indicator of the overall 

rainfall condition of the crop year, and the two variables I have derived from sp_09 can measure 
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the impact of the higher and lower than normal rainfall on the same scale from the same 

direction, the higher value the index is, the wetter/dryer the condition is. Less rainfall can 

increase the abandonment, so I expect the signs of dry_sp09 are positive in both models. Excess 

moisture can contribute to the cotton abandonment, even though the farmers welcome as much 

rainfall as possible, so wet_sp09 has counter effects in the hurdle model. I expect the signs of 

wet_sp09 in the probit model and OLS model to be negative and positive respectively. If the 

price increases from May to September, the farmers have a stronger incentive to keep the cotton 

fields, so I expect the signs of price_may_sep_diff_def to be negative in both the probit model and 

OLS model. Like wet_sp09, farm count variable (farm) from census subset can have counter effects in 

probit model and OLS model. With a larger collection of farms in a county, the possibility to observe 

cotton abandonment is higher, but the actual abandonment may decrease. Therefore, I suspect the signs of 

farm in probit model and OLS model to be positive and negative. A full description of the independent 

variables included in this analysis and their expected signs are given in Table 5.1. 

Figure 5.1 illustrates the nation-wide mean precipitation and temperature in each season from 

1990 through 2011. Figure 5.2 illustrates the difference in price from 1990 through 2011. Table 

5.2 shows the minimum, maximum, mean, 5 percentile, and 95 percentile values of each 

variable. The national mean precipitation values in each season show the precipitation varies 

among years, and there is no correlation between seasonal precipitations. However, there is a 

general trend of decreasing in precipitation between 1990 through 2011. On the other hand the 

seasonal temperature variables behave quite normally. There is a trend of average temperature 

increasing universally from 2009.  
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Variable Name Description (Unit) 
fExpected Sign 

((probit/OLS) 

pcp_s1 Summed precipitation,  January - March (In.) Negative/Negative 

pcp_s1_sqr Squared term of summed precipitation, January - March (Sqr. In.) Positive/Positive 

pcp_s2 Summed precipitation, April - June (In.) Negative/Negative 

pcp_s2_sqr Squared term of summed precipitation, April - June (Sqr. In.) Positive/Positive 

pcp_s3 Summed precipitation, July - September  (In.) Negative/Negative 

pcp_s3_sqr Squared term of summed precipitation, July - September (Sqr. In.) Positive/Positive 

pcp_s4 Summed precipitation, October - December  (In.) Negative/Negative 

pcp_s4_sqr Squared term of summed precipitation, October - December (Sqr. In.) Positive/Positive 

tmp_s1 Averaged temperature, January - March (°F) Negative/Negative 

tmp_s1_sqr Squared term of averaged temperature, January - March (Sqr. °F) Positive/Positive 

tmp_s2 Averaged temperature, April - June (°F) Negative/Negative 

tmp_s2_sqr Squared term of averaged temperature,  April - June (Sqr. °F) Positive/Positive 

tmp_s3 Averaged temperature, July - September (°F) Negative/Negative 

tmp_s3_sqr Squared term of averaged temperature, July - September (Sqr. °F) Positive/Positive 

tmp_s4 Averaged temperature, October - December (°F) Negative/Negative 

tmp_s4_sqr Squared term of averaged temperature, October - December (Sqr. °F) Positive/Positive 

dry_sp09 Absolute value of sp_09 index if sp_09 < 0 (Unitless) Positive/Positive 

wet_sp09 Absolute value of sp_09 index if sp_09 > 0 (Unitless) Positive/Negative 

d_irri Binary if irrigation is adopted (Unitless) Negative/Negative 

d_pima Binary if Pima cotton is grown (Unitless)  Negative/Negative 

price_may_sep_diff_def 
Predicted price difference between September and May, deflated into 2005 dollars 

(cents/pound) 
Negative/Negative 

farm Numbers of farms growing cotton in a county (Unitless) Positive/Negative 

Table 5.1. Descriptions of the variables 
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Figure 5.1a. Mean precipitation from 1990 through 2011 

 

 Figure 5.1b. Mean temperature from 1990 through 2011 
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 Figure 5.2. Change in price between May and September for Upland cotton and Pima cotton from 1990 

through 2011 

 

 

Variable Minimum Maximum Mean 5 Percentile 95 Percentile 

d_irri 0 1 0.48 0 1 

d_pima 0 1 0.05 0 0 

pcp_s1 0.06 39.23 8.51 1.02 20.59 

pcp_s2 0 35.82 9.75 0.91 19.12 

pcp_s3 0 24.43 8.21 1.01 15.66 

pcp_s4 0 29.74 8.58 1.36 20.16 

tmp_s1 37.37 70.03 49.47 42.13 59.47 

tmp_s2 54.77 82.80 70.87 63.90 77.53 

tmp_s3 68.97 92.50 78.95 73.63 84.50 

tmp_s4 42.30 72.10 54.46 47.13 63.80 

dry_sp09 0 3.09 0.27 0 1.15 

wet_sp09 0 2.53 0.46 0 1.68 

price_may_sep

_diff_def -39.66 20.47 -1.07 -10.90 10.19 
Table 5.2. Variable descriptive statistics 

 

Table 5.3 gives the means and standard deviations of all the variables, as well as the means and standard 

deviations of percent abandoned between irrigated Upland and non-irrigated Upland. All the mean values 
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of precipitation and temperature variables are higher for non-irrigated Upland, and Z tests reject the 

hypotheses that the mean values are the same. A Z test was carried out between the mean abandonment of 

irrigated Upland and non-irrigated Upland. The test result also rejects the hypothesis. However, Z tests 

fail to reject the hypotheses that the mean values of Sp09 index in wetter conditions, and the price 

difference between May and September are the same.  

 

 

Irrigated 

Upland Mean 

Irrigated 

Upland 

Standard 

Deviation 

Non-Irrigated 

Upland Mean 

Non-Irrigated 

Upland 

Standard 

Deviation 

pcp_s1 7.95 6.62 9.24 6.31 

pcp_s2 8.77 5.83 11.21 5.40 

pcp_s3 7.66 4.24 9.08 4.03 

pcp_s4 7.82 6.23 9.61 6.04 

tmp_s1 48.81 5.15 49.89 5.33 

tmp_s2 70.36 4.21 71.40 3.50 

tmp_s3 78.58 3.68 79.27 2.82 

tmp_s4 53.80 4.85 54.94 4.93 

dry_sp09 0.29 0.47 0.25 0.41 

wet_sp09 0.45 0.58 0.47 0.59 

price_may_sep_diff_def -1.08 7.43 -1.06 6.80 

percent abandoned of all observations 4.30 10.70 14.26 21.79 

percent abandoned for observations 

having positive abandonment 8.03 13.56 16.35 22.58 

Table 5.3. Mean and standard deviation of each variable and abandonment 
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Chapter 6 

Results and Implications 

 

6.1 Regression Results 

As discussed in Chapter 5, I have chosen the hurdle model over the tobit model for estimating 

both the weather and economic impacts on cotton acreage abandonment. The hurdle model 

consists of two steps. The first step is the probit model, predicting the possibility of a county 

abandoning any of the planted cotton fields under weather and economic conditions in a given 

year. The second step is the log-linear ordinary least square (OLS) model, predicting the 

percentage of planted cotton field abandoned under weather and economic conditions in a given 

year, given a positive abandonment is observed. The hurdle model is applied both on the full 

dataset and census subset. A brief discussion of the parameter estimates of the full dataset and 

census subset are given in the next two sections respectively. Due to the nature of the census 

records, the variable representing numbers of farms (farm) is only used in the census subset. The 

adjusted R
2
 reported is the adjusted count R

2
, calculated with the following equation: 

Adjusted Count R
2
 = ((number of correct prediction) – (number of most common outcome)) /  

   ((number of observations) – (number of most common outcome))     (6.1) 

6.1.1 Parameter Estimates of Full Dataset 

The parameter estimates with respective z-values or t-values, p-values, and 95% confidence 

intervals of the probit model and OLS model for the full dataset are recorded in Table 6.1 and 

Table 6.2 respectively.  
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The probit model predicts the likelihood of abandoning any cotton fields in a given year, when 

the OLS model predicts the percentage of acres is abandoned in the same year, under the 

precondition that a positive abandonment is observed. Therefore, some variables may have 

opposite effects in different models, for example wet_sp09. In general, cotton growth needs a 

large amount of water and warm environment, but excess moisture and/or extreme temperature 

may increase the likelihood of abandoning the planted crops. Therefore, the expected signs of the 

precipitation and temperature variables are negative for the first order and positive for the second 

order. 

For the probit model of the full dataset, the adjusted count R
2
 is 0.26, and it correctly predicts 

5,091 binary outcomes out of all 6,501 observations. The prediction accuracy is 78.31%. All the 

parameter estimates have expected signs, except for tmp_s2 and tmp_s2_sqr. Most of the 

variables are significant at 5% level of confidence. Variable pcp_s2_sqr has a p-value of 0.35. 

Season 2 is from April through June, and it is the planting season for all the study states. Enough 

precipitation can create healthy growing conditions for cotton, so rainfall has a more of a linear 

effect, rather than a quadratic effect on the possibility to abandon any cotton field. Variable 

pcp_s4 and pcp_s4_sqr have p-values of 0.16 and 0.83 respectively. This may be because season 

4 is the harvesting season and rainfall affects the planting season (season 2) and growing season 

(season 3) more than harvesting season. The temperature variables in season 1 and season 2 are 

all insignificant at 5% confidence level. This may be caused by the fact that season 1 and season 

2 are the initial stage of cotton growing circle and temperature is not an important factor yet. 

Interestingly, the p-value of the cotton price difference between May and September 

(price_may_sep_diff_def) is 0.06, which is not significant at 5% level of significance.  
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Variable 

Parameter 

Estimate 

Standard 

Error z P>|z| 

[95% Confidence 

Interval] 

d_irri -1.35 0.042 -32.05 0 -1.43 -1.26 

d_pima -0.57 0.086 -6.62 0 -0.74 -0.40 

pcp_s1 -0.12 0.013 -9.22 0 -0.14 -0.093 

pcp_s1_sqr 0.0029 0.00045 6.48 0 0.0021 0.0038 

pcp_s2 -0.03 0.011 -2.45 0.014 -0.05 -0.0056 

pcp_s2_sqr 0.00036 0.00038 0.94 0.35 -0.00039 0.0011 

pcp_s3 -0.12 0.017 -7.04 0 -0.15 -0.08 

pcp_s3_sqr 0.0037 0.00077 4.76 0 0.0022 0.0052 

pcp_s4 0.020 0.014 1.42 0.16 -0.0075 0.047 

pcp_s4_sqr -0.00011 0.00051 -0.21 0.83 -0.0011 0.00088 

tmp_s1 -0.10 0.076 -1.35 0.18 -0.25 0.046 

tmp_s1_sqr 0.00072 0.00077 0.93 0.35 -0.00079 0.0022 

tmp_s2 0.15 0.15 1 0.32 -0.15 0.45 

tmp_s2_sqr -0.00083 0.0011 -0.76 0.45 -0.0030 0.0013 

tmp_s3 0.69 0.20 3.52 0 0.30 1.08 

tmp_s3_sqr -0.0044 0.0012 -3.64 0 -0.0068 -0.0020 

tmp_s4 -0.40 0.10 -3.93 0 -0.61 -0.20 

tmp_s4_sqr 0.0035 0.00093 3.74 0 0.0017 0.0053 

dry_sp09 -0.29 0.053 -5.59 0 -0.40 -0.19 

wet_sp09 0.085 0.041 2.06 0.039 0.0042 0.17 

price_may_sep_diff_def -0.0048 0.0026 -1.85 0.064 -0.0099 0.00028 

intercept -15.87 7.29 -2.18 0.029 -30.16 -1.58 

adjust count R
2
  0.26      

sample size 6501      

Table 6.1. Parameter estimates with respecting z-values, p-values, and 95% confidence intervals of the 

probit model from the full dataset 

 

For the OLS model, the adjusted R
2
 is 0.35 and the model variance (σ

2
) is 1.44. The predicted 

percentages of acre abandoned of all the observations have a correlation of 0.53 with the actual 

percentages of acre abandoned. Precipitation in season 2 turns out to be an interesting factor 

regarding percentage abandonment. Both pcp_s2 and pcp_s2_sqr have the opposite signs from 

my expectation, and pcp_s2_sqr is significant at 5% level of significance when pcp_s2 is not. 

This is the only case when the quadratic form of a variable is more important than the linear form 

of that variable in the full dataset. I will discuss more of this result in the marginal effect section.  
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Both the precipitation variables in season 4 are of the predicted signs but insignificant, maybe 

because rainfall matters more in the planting season and growing season but not as much in the 

harvesting season, but less rainfall is better for the harvesting process. Neither the temperature 

variables in season 1 are of the predicted signs and significant. Higher temperature may lead to a 

pest outbreak, and temperature does not have a strong impact on field abandonment because 

season 1 is only the planning season. dry_sp09 variable turns out to be insignificant in this model 

as well. 

Variable 

Parameter 

Estimate 

Standard 

Error t P>|t| 

[95% 

Confidence Interval] 

d_irri -1.25 0.043 -29.31 0 -1.34 -1.17 

d_pima -0.27 0.12 -2.21 0.027 -0.50 -0.030 

pcp_s1 -0.23 0.013 -17.56 0 -0.26 -0.21 

pcp_s1_sqr 0.0060 0.00050 12.13 0 0.0051 0.0070 

pcp_s2 0.015 0.012 1.28 0.20 -0.0080 0.038 

pcp_s2_sqr -0.00093 0.00039 -2.41 0.016 -0.0017 -0.00017 

pcp_s3 -0.11 0.017 -6.37 0 -0.14 -0.074 

pcp_s3_sqr 0.0034 0.00077 4.42 0 0.0019 0.0049 

pcp_s4 0.025 0.013 1.91 0.056 -0.00061 0.051 

pcp_s4_sqr -0.00048 0.00049 -0.97 0.33 -0.0015 0.00049 

tmp_s1 0.078 0.069 1.13 0.26 -0.058 0.21 

tmp_s1_sqr -0.0010 0.00070 -1.49 0.14 -0.0024 0.00033 

tmp_s2 -0.61 0.17 -3.68 0 -0.93 -0.28 

tmp_s2_sqr 0.0049 0.0012 4.09 0 0.0025 0.0072 

tmp_s3 1.44 0.21 6.83 0 1.03 1.85 

tmp_s3_sqr -0.0091 0.0013 -6.95 0 -0.012 -0.0066 

tmp_s4 -0.70 0.091 -7.7 0 -0.88 -0.52 

tmp_s4_sqr 0.0057 0.00083 6.92 0 0.0041 0.0074 

dry_sp09 0.090 0.053 1.69 0.091 -0.014 0.20 

wet_sp09 0.22 0.041 5.35 0 0.14 0.30 

price_may_sep_diff_def -0.014 0.0027 -5.14 0 -0.019 -0.0085 

intercept -15.15 8.29 -1.83 0.068 -31.41 1.10 

adjusted R
2
  0.35      

sample size 6501      

Table 6.2. Parameter estimates with respecting t-values, p-values, and 95% confidence intervals of the 

OLS model from the full dataset 
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6.1.2 Parameter Estimates of Census Subset 

The parameter estimates with respecting z-values or t-values, p-values, and 95% confidence 

intervals of the probit model and OLS model for the census subset are recorded in Table 6.3 and 

Table 6.4 respectively. With the census subset, I construct the model with an additional variable 

recording numbers of farms growing cotton in a certain county in a given year (farm). Census 

reports are only recorded every five years, so in the census subset I have observations only in 

1992, 1997, 2002, and 2007, and the temporal variance of the data is smaller when comparing to 

the full dataset.  

From the probit model, the adjusted count R
2
 is 0.34, and it correctly predicts 943 binary 

outcomes out of all 1,204 observations. The predicting accuracy is 78.32%. The signs of the 

variable coefficient estimates are presumed to be the same as the signs of the same as the 

variable coefficients from the full dataset. However this is not the case. Both of the precipitation 

variables in season 2 are having the opposite signs as they were in the probit model from the full 

dataset, and the p-values are both 0. This indicates that the precipitation is important in season 2 

for the census subset. I will discuss more in the marginal effect section. In addition, both the 

season 3 temperature variables are of the opposite signs, but they are insignificant at 5% level of 

confidence. Both the wet_sp09 variable and price_may_sep_diff_def variable have positive 

signs, which are the opposite of the expected signs as well, when they both give farmers 

incentives to keep their crops. As I have discussed before, more rainfall is welcome by the 

farmers, and if the cotton price increases during the crop year farmers are less likely to abandon 

their cotton fields. What‟s more, price_may_sep_diff_def is significant when both dry_sp09 and 

wet_sp09 is not.  
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Variable 

Parameter 

Estimates 

Standard 

Error z P>|z| 

[95% 

Confidence Interval] 

d_irri -1.44 0.10 -13.8 0 -1.65 -1.24 

d_pima -0.85 0.23 -3.74 0 -1.30 -0.40 

pcp_s1 -0.29 0.052 -5.47 0 -0.39 -0.18 

pcp_s1_sqr 0.010 0.0021 4.92 0 0.0062 0.014 

pcp_s2 0.27 0.047 5.78 0 0.18 0.36 

pcp_s2_sqr -0.013 0.0021 -6.32 0 -0.017 -0.0090 

pcp_s3 -0.21 0.050 -4.23 0 -0.31 -0.11 

pcp_s3_sqr 0.0041 0.0021 1.93 0.054 -7.1E-05 0.0084 

pcp_s4 0.072 0.044 1.65 0.099 -0.013 0.16 

pcp_s4_sqr -0.00019 0.0015 -0.13 0.90 -0.0031 0.0027 

tmp_s1 -0.85 0.39 -2.16 0.031 -1.61 -0.078 

tmp_s1_sqr 0.0083 0.0040 2.06 0.039 0.00042 0.016 

tmp_s2 2.40 0.54 4.4 0 1.33 3.46 

tmp_s2_sqr -0.016 0.0039 -4.22 0 -0.024 -0.0088 

tmp_s3 -0.87 0.66 -1.33 0.18 -2.16 0.41 

tmp_s3_sqr 0.0052 0.0041 1.28 0.2 -0.0028 0.013 

tmp_s4 -0.18 0.37 -0.49 0.63 -0.91 0.55 

tmp_s4_sqr 0.0014 0.0035 0.39 0.70 -0.0055 0.0082 

dry_sp09 0.11 0.15 0.71 0.48 -0.19 0.40 

wet_sp09 0.22 0.14 1.56 0.12 -0.057 0.50 

price_may_sep_diff_def 0.034 0.016 2.09 0.037 0.0021 0.066 

farm 0.0059 0.00076 7.72 0 0.0044 0.0074 

intercept -21.67 18.95 -1.14 0.25 -58.81 15.47 

adjusted count R
2
  0.34      

sample size 1204      

Table 6.3. Parameter estimates with respecting z-values, p-values, and 95% confidence intervals of the 

probit model from the census subset 

 

In the OLS model, the adjusted R
2
 is 0.47 and the model variance (σ

2
) is 1.11. The predicted 

percentages of acre abandoned have a correlation of 0.68 with the actual percentages acre 

abandoned. Precipitation variables in season 4 have the opposite signs in this model as they have 

in the OLS model for the full dataset. More moisture is harmful for the harvesting process, so the 

percent of cotton field abandoned should be monotonically increasing at a decreasing rate with 

the increase of rainfall in season 4. However, the parameter estimates of season 4 precipitation 
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from this model show the opposite effect.  Again, like pcp_s2 and pcp_s2_sqr in OLS model 

from the full dataset, pcp_s4_sqr turns out to be a lot more significant in this model than pcp_s4, 

even though neither of them is significant at 5% level. In addition, tmp_s1, tmp_s1_sqr, 

dry_sp09, and price_may_sep_diff_dep are having the opposite signs and they are not significant 

at 5% level of confidence.  

 

Variabe 

Parameter 

Estimate 

Standard 

Error t P>|t| 

[95% 

Confidence Interval] 

d_irri -0.53 0.095 -5.58 0 -0.72 -0.34 

d_pima -0.25 0.25 -0.98 0.33 -0.75 0.25 

pcp_s1 -0.074 0.051 -1.45 0.15 -0.17 0.026 

pcp_s1_sqr 0.000059 0.0021 0.03 0.98 -0.0040 0.0041 

pcp_s2 0.21 0.045 4.6 0 0.12 0.30 

pcp_s2_sqr -0.0071 0.0020 -3.54 0 -0.011 -0.0032 

pcp_s3 -0.21 0.045 -4.73 0 -0.30 -0.12 

pcp_s3_sqr 0.0037 0.0019 1.93 0.054 -6.9E-05 0.0074 

pcp_s4 -0.021 0.037 -0.58 0.56 -0.094 0.051 

pcp_s4_sqr 0.0024 0.0012 2 0.046 4.03E-05 0.0047 

tmp_s1 -0.37 0.31 -1.2 0.23 -0.97 0.23 

tmp_s1_sqr 0.0045 0.0031 1.43 0.15 -0.0017 0.011 

tmp_s2 -0.28 0.47 -0.6 0.55 -1.21 0.64 

tmp_s2_sqr 0.0043 0.0034 1.26 0.21 -0.0024 0.011 

tmp_s3 0.26 0.62 0.42 0.67 -0.95 1.48 

tmp_s3_sqr -0.0034 0.0038 -0.88 0.38 -0.011 0.0041 

tmp_s4 -0.52 0.33 -1.59 0.11 -1.16 0.12 

tmp_s4_sqr 0.0029 0.0031 0.94 0.35 -0.0032 0.0089 

dry_sp09 -0.19 0.13 -1.47 0.14 -0.44 0.063 

wet_sp09 0.56 0.15 3.83 0 0.27 0.84 

price_may_sep_diff_def 0.014 0.016 0.87 0.38 -0.018 0.045 

farm -0.0043 0.00049 -8.76 0 -0.0053 -0.0033 

intercept 28.44 18.30 1.55 0.12 -7.47 64.36 

adjusted R
2
 0.47      

sample size 1204      

Table 6.4. Parameter estimates with respecting t-values, p-values, and 95% confidence intervals of the 

OLS model from the census subset 
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6.2 Marginal Effects 

Marginal effect measures how the change in independent variable affects the change in expected 

value of dependent variable. The expected value of the dependent variable for the hurdle model 

is the product of the expected values of the first tier probit model and the second tier OLS model. 

The conventional method to calculate the marginal effect does not give a direct result on how 

either the predicted possibility of abandoning the cotton field, or the predicted acreage 

abandonment changes simultaneously when a dependent variable changes. Therefore, I have 

taken an alternative method to calculate and plot the marginal effect to capture the changes in 

expected values for both tiers of the hurdle model separately. The marginal effect for the hurdle 

model as a whole is presented in the next section.  

In order to present the changes in probabilities or in predicted acreage abandonment regarding to 

the changes in independent variables, I have used the procedure described what follows: 

1. Set non-irrigated Upland cotton as the baseline (set d_irri and d_pima at 0); 

2. Calculate the mean, minimum, and maximum values of the first order 

independent variables; 

3. Evenly sample 9 points between minimum and mean, and between mean and 

maximum values; 

4. Square the minimum, mean, maximum, and 9 sampling point values to get the 

respective second order independent variables if necessary; 

5. Calculate the predicted probabilities for probit model, or predicted acreage 

abandonment for OLS model, at the minimum, mean, maximum and sampling 

points of one independent variable, setting other independent variables constant at 

the mean values; 



40 

 

6. Plot the predicted probabilities for probit model, or predicted acreage 

abandonment for OLS model on the y-axis and the minimum, mean, maximum 

and sampling point values of the independent variable on the x-axis, then create 

the marginal effect curves for non-irrigated Upland cotton; 

7. Switch d_irri to 1 and use it as a curve shifter, then plot the marginal effect curves 

for irrigated Upland cotton following step 5 on the same plain; 

8. Switch d_pima to 1 and use it as an additional curve shifter, then plot the marginal 

effect curves for Pima cotton following the procedure described in step 5 on the 

same plain. 

I have repeated the procedure 10 times and created the marginal effect curves of all 10 weather 

variables (pcp_s1, pcp_s2, pcp_s3, pcp_s4, tmp_s1, tmp_s2, tmp_s3, tmp_s4, dry_sp09, 

wet_sp09) for non-irrigated Upland cotton, irrigated Upland cotton, and Pima cotton. Here I use 

pcp_s2 and pcp_s3 marginal effect curves as examples. All the marginal effect curves for the 

probit model and OLS model are displayed in Appendix B and Appendix C respectively. It is 

worth noting that the tmp_s2 marginal effect curves for all cotton types and tmp_s4 marginal 

effect curve for non-irrigated Upland cotton exceed 100% for OLS model from census subset, so 

I manually set them to 100%. 

The drawback of the method calculating the marginal effect is that it only calculates partial 

marginal effect. In this model, the dry and wet variables also measure the precipitation, and they 

are derived from precipitations. So when reporting the marginal effect of seasonal precipitation, 

the effect of dries and wet variables is ignored.  

Season 2 is April through June. For most of the states May is the planting month, and all the 

states have done planting by the end of June, so season 2 is the planting season in the crop year. 

Precipitation in the planting season is welcomed by the farmers, so I expect the sign of the first 
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order precipitation variable to be negative. However, excess moisture is not healthy for cotton 

seeds to sprout and farmers may have concerns about it, so I expect the sign of the second order 

precipitation variable to be positive. In general, with the increase of rainfall in season 2, the 

predicted possibility of abandoning cotton field and predicted acreage abandoned decreases at a 

decreasing rate. In addition, it is more likely to observe the precipitation variable reaching the 

optimal point on the predicted percentage acre abandoned curves, because rainfall is indeed 

harmful for growing conditions.  
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Figure 6.1.a. Marginal effect curves of season 2 precipitation of the probit model from full dataset 

 

Figure 6.1.b. Marginal effect curves of season 2 precipitation of the probit model from census subset 

 

Figure 6.1 shows marginal effect curves of pcp_s2 regarding to the possibilities to abandon 

cotton fields from full dataset and census subset. The marginal effect curves from the full dataset 

are exactly what I have expected. The sign of the first order precipitation variable is negative and 

the sign of the second order variable is positive. The abandon possibilities monotonically 

decrease at a decreasing speed. d_irri and d_pima act as curve shifter and drop the possibilities 
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by a significant margin. The possibilities are high at the minimum point of precipitation. Probit 

model predicts a 92.14% chance for the farmers growing non-irrigated Upland cotton to abandon 

some crop. The curves do not reach the optimal point when measured at the maximum value of 

the season 2 precipitation. On the other hand the marginal effect curves from the census subset 

are not what I have expected. The expected abandonment possibilities increase until the 

maximum point then decrease, with the increase in precipitation received in season 2. Because of 

the limitation of the census subset, the range of precipitation in season 2 observed is a lot smaller 

than the range of season 2 precipitation in the full dataset.  
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Figure 6.2.a. Marginal effect curves of season 2 precipitation of the OLS model from full dataset 

 

Figure 6.2.b. Marginal effect curves of season 2 precipitation of the OLS model from census subset 

 

Figure 6.2 shows marginal effect curves of pcp_s2 regarding to the percentage acres abandoned 

from full dataset and census subset. The signs of the season 2 precipitation coefficients, both the 

first order and second order, are the opposite from my expectation, in the OLS model for both 

the full dataset and census subset. As I explained earlier, the predicted abandoned percentage 
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should decrease at a decreasing speed as the precipitation in season 2 increases, and it is possible 

to observe the predicted possibility reaching the minimum point. Afterwards the possibility will 

increase at an increasing rate because excess moisture is harmful for cotton growth. However, 

according to the marginal curves of both the OLS models, the predicted possibilities are 

increasing at a decreasing rate then decrease at an increasing rate. The marginal effect curves of 

the full dataset behave a lot closer to my expectation. Even though they are increasing at a 

decreasing rate, but they reach the maximum point fairly fast then start decreasing at an 

increasing rate. The increasing rate is low, due to the fact that the parameter estimate of the 

second order precipitation is -0.00093. 

If precipitation in season 2 gives confusing signals in predicting the probabilities of abandoning 

cotton field or percentage of the acres abandoned, precipitation in season 3, which is the growing 

season (from July through September), captures the predicted probabilities and percentages fairly 

well. In season 3, precipitation is again a welcoming factor. However, flood caused by excess 

moisture can lead to cotton field abandonment. So the expected signs of the parameter estimates 

of the first order precipitation and second order precipitation are negative and positive 

respectively, just like the precipitation variables in season 2. However, variable pcp_s3_sqr of 

the OLS model from the census subset turns out to be insignificant at 5% level with a p-value of 

0.054. This might be caused by the smaller variance of the data in the census subset not capturing the full 

effect of precipitation in season 3.   
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Figure 6.3.a. Marginal effect curves of season 3 precipitation of the probit model from full dataset 

 

Figure 6.3.b. Marginal effect curves of season 3 precipitation of the probit model from census subset 

 

Figure 6.3 shows marginal effect curves of pcp_s3 regarding to the possibilities to abandon 

cotton fields from full dataset and census subset. This time the marginal effect curves captured 

the increase in abandoning possibilities when precipitation in season3 increases. The marginal 

effect curves of the census subset are not as smooth as the other curves. It is because of the 

uneven sampling distance between minimum and mean values, and mean and maximum values. 

In addition, the curves do not capture the increase in possibilities due to excess moisture.  
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Figure 6.4 shows marginal effect curves of pcp_s3 regarding to the percentage acres abandoned 

from full dataset and census subset. Again, the marginal effect curves have captured the increase 

in predicted acreage abandonment. Interestingly, the percentage abandoned is predicted a lot 

higher in the census subset (35.10%) than in the full dataset (21.51%) for non-irrigated Upland 

cotton initially. Again, this might be caused by the smaller variation in the census subset. 

 

Figure 6.4.a. Marginal effect curves of season 3 precipitation of the OLS model from full dataset  

 

Figure 6.4.b. Marginal effect curves of season 3 precipitation of the OLS model from census subset 
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6.3 Expected Values of the Hurdle Model 

I have used Equation 4.6 to calculate the expected values for full dataset.  

In the last section, I have evaluated the marginal effects of all the weather variables regarding the 

probit model and OLS model respectively, but it would be interesting to evaluate the marginal 

effects of E(y|x) regarding all the weather variables. For this part, I have only used the results 

from the full dataset, due to the poor performance of the hurdle model from the census subset. 

Again, I have repeated the procedure 10 times and created the marginal effect curves of all 10 

weather variables (pcp_s1, pcp_s2, pcp_s3, pcp_s4, tmp_s1, tmp_s2, tmp_s3, tmp_s4, dry_sp09, 

wet_sp09) for non-irrigated Upland cotton, irrigated Upland cotton, and Pima cotton, and I use 

pcp_s2 and pcp_s3 marginal effect curves as examples. All the marginal effect curves are listed 

in Appendix D. 

The expected value marginal effect curves of pcp_s2 behave a lot better than taking the marginal 

effect curves for predicted possibilities and percentages separately. The curves are flat around the 

maximum point and decreases at an increasing rate afterwards. However, the marginal effect 

curves of pcp_s3 is classic. They decrease at a decreasing rate until the minimum point then start 

increasing at an increasing rate, due to the damage caused by excess moisture. The expected 

value for non-irrigated Upland cotton is more inelastic to rainfall in season 3, comparing to 

irrigated Upland and Pima cotton.  
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Figure 6.5.a. Marginal effect curves of season 2 precipitation for expected values 

 

Figure 6.5.b. Marginal effect curves of season 3 precipitation for expected values 
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6.4 An Alternative Approach to Calculate Expected Values 

In Equation 4.4, Φ(xγ) calculates the possibilities of abandoning any cotton fields, but it defeats 

the purpose of having the binary outcomes whether there will be cotton field abandoned or not. 

Therefore, I have proposed an alternative method to capture the possibility: 

0      if Φ(x ) < 0.5 

                                             =                               .                                                     (6.1) 

1      if Φ(x ) ≥ 0.5 

 

Now 6.1 can be expressed as: 

                                        0                              if Φ(x ) < 0.5 

                                          E( |x)alt=                         .                                                    (6.2)        

                                         exp(x  + 
2
/2)      if Φ(x ) ≥ 0.5 

Using Equation 6.2, I have calculated the alternative expected percentage abandonment. The 

column correlations among actual percent abandoned (y), conventional percent abandoned ( ), 

and alternative percent abandoned ( alt) is recorded in Table 6.5. 

  E( |x) E( |x)alt 

y 1   

E( |x) 0.5262 1  

E( |x)alt 0.5264 0.9958 1 

Table 6.5. Correlations among actual percent abandoned (y), conventional percent abandoned ( ), and 

alternative percent abandoned ( alt) 

From Table 6.5, it is clear that the alternative method to calculate the expected percent 

abandoned is more correlated to the true abandoned percentage, but only by a small proportion. 
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6.5 Special Case Study: Texas in 2011 

Texas suffered an ongoing severe drought since 2011. According to a fact sheet released from 

the State of Texas, 2011 was “the driest year Texas has been since modern record keeping began 

in 1895”. Nearly 67% of Texas was still in an “extreme” or “exceptional” drought (by U.S. 

Department of Agriculture standard) as of January 3, 2012 (Combs 2012). Table 6.6 shows the 

mean values of each weather variable across climate divisions in 2011 in Texas and means 

values across divisions over 22 years in Texas. Figure 6.6 shows the drought development from 

May, 2011 through September, 2011, covering the cotton production season in Texas. The 

images are from National Weather Service Weather Forecast Office (National Weather Service 

Weather Forecast Office, National Oceanic and Atmospheric Administration, 2012). 

Variable 2011 22 Year Mean 

pcp_s1 3.56 5.02 

pcp_s2 3.40 8.45 

pcp_s3 3.04 7.77 

pcp_s4 6.55 6.03 

tmp_s1 57.70 50.05 

tmp_s2 78.87 71.50 

tmp_s3 85.38 79.19 

tmp_s4 57.70 50.05 

dry_sp09 2.94 0.28 

wet_sp09 0 0.48 

Table 6.6. 2011 weather variable mean values and 22-year weather variable mean values in Texas 

 

Comparing the 2011 state-level weather variable mean to the state-level weather variable mean 

over 22 years, 2011 is significantly drier, and not surprisingly, hotter. I would expect the percent 

abandoned to be high in the 22-year abandonment spectrum.  
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Figure 6.6. Drought intensity development from May through September in Southern Plain 

 

The drought caused severe damages to agriculture production in Texas. In 2011, there were 

1,819,200 acres of cotton planted in all eight states, with 569,200 acres planted alone in Texas. 

Of all the states, there were 214,800 acres abandoned, accounting for 11.81% of all the acres 

planted. In Texas alone, 188,000 acres were abandoned, covering 87.52% of all the acres 

abandoned in 2011. There were 479,900 acres of non-irrigated cotton fields planted and 183,700 
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acres abandoned; the percentage abandoned is 38.28%. Meanwhile, there were 89,300 acres of 

irrigated cotton planted and only 4,300 acres abandoned; the percentage abandoned is only 

4.82%. However, as shown in Figure 6.7, the abandoned percentage signal is not very clear. The 

Pima cotton abandoned percentage in 2011 was relatively high, but it was insignificant 

comparing to the dramatic 67.39% in 1998. The non-irrigated Upland cotton abandoned 

percentage in 2011 increased significantly from 2010, but it was not the highest over 22 years. 

The irrigated Upland cotton abandoned percentage stayed low in the 22-year percent abandoned 

spectrum. 

 

 

Figure 6.7. Percent abandoned curves sorted by commodity over 22 years in Texas 

 

Of all the counties included in the full dataset, only 10 counties had grown non-irrigated Upland 

cotton in 2011. Six of them planted both non-irrigated and irrigated Upland cotton, the other 4 

only planted non-irrigated Upland cotton, and none of them grew Pima cotton. Table 6.7 shows 

the predicted acre abandoned versus actual acre abandoned of non-irrigated Upland and irrigated 

Upland for those counties. 
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Non-irrigated Actual Abandonment 

Conventional Expected 

Value 

Alternative Expected 

Value 

BEE 17.07 41.32 47.58 

BURLESON 37.50 41.32 47.58 

CAMERON 21.20 89.44 94.38 

FORT BEND 19.91 21.12 27.77 

GUADALUPE 12.90 41.32 47.58 

JIM WELLS 55.02 70.49 78.94 

NUECES 12.88 41.32 47.58 

TOM GREEN 96.17 90.21 97.12 

TRAVIS 52.50 41.32 47.58 

WHARTON 19.76 21.12 27.77 

Table 6.7.a. Predicted acre abandoned versus actual acre abandoned for non-irrigated Upland 

cotton 

Irrigated Actual Abandonment 

Conventional Expected 

Value 

Alternative Expected 

Value 

BEE 0 N/A N/A 

BURLESON 0 N/A N/A 

CAMERON 0.61 16.42 26.96 

FORT BEND 40 2.07 0 

TOM GREEN 12.41 15.20 27.75 

WHARTON 0 N/A N/A 

Table 6.7.b. Predicted acre abandoned versus actual acre abandoned for irrigated Upland cotton 

 

Because there was no crop abandoned in Bee County, Burleson County, and Wharton County, I 

could not get the prediction from OLS model for those counties, because of the restriction of the 

OLS model. In general, the model over predicts the percent abandoned, for both non-irrigated 

Upland cotton and irrigated Upland cotton.  
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Chapter 7 

Conclusions and Future Work 

This research attempts to capture the economic impact, and more importantly, weather impact on 

crop abandonment, considering irrigation practice. So far, most of the models evaluating the 

weather and/or economic impact on agriculture production used crop yield as dependent 

variable. Some models used acreage abandonment as dependent variable, but they ignored the 

reduction of crop abandonment due to irrigation. In this research, I have also used a binary 

variable for Pima cotton production as an additional curve shifter. So far, few researches have 

conducted empirical analysis of the effects of weather and economic variables on crop 

abandonment, considering irrigation. 

In this research, I have used a 2-tier hurdle model estimating crop abandonment on a county-

level dataset from 1990 through 2011. The first tier is to predict the possibility of abandonment, 

and the second tier is to predict the percentage of planted cotton fields abandoned for the 

counties observed positive abandonment. The model gives very promising results. Rainfall has a 

positive impact on reducing cotton field abandonment, but only to a certain point. Excess 

moisture can cause an increase in abandonment. Higher temperature creates a healthier condition 

for cotton growth, but abnormal high temperature, which is often correlated with reduction in 

rainfall, can increase abandonment as well. An increase in cotton price during the growing 

season gives farmers an incentive to keep the crop. The adoption of irrigation practice decreases 

the cotton abandonment. When measured at the mean weather conditions, the predicted 

probability to observe abandonment for non-irrigated upland cotton is 88.12% for full dataset 
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and 92.82% for census subset. The probability reduces to 43.41% for full dataset and 50.72% for 

census subset if irrigation is adopted. The probability of abandonment for Pima cotton is 23.12% 

and 20.24% for full dataset and census subset respectively. In addition, the predicted 

abandonment for non-irrigated upland cotton is 11.37% for full dataset and 7.94% for census 

subset. The abandonment reduces to 3.24% for full dataset and 4.66% for census subset if 

irrigation is adopted. The abandonment for Pima cotton is 2.49% and 3.64% for full dataset and 

census subset respectively. Non-irrigated upland cotton is the least elastic to the changes in 

weather, and it has the highest range of both the predicted probability and abandonment. 

Irrigated upland cotton has a smaller range of the predicted probability and abandonment, when 

the Pima cotton has the smallest.  

The model predicts fairly well for the full dataset, but not as well for the census subset. The 

census subset has some limitations. The census data are collected every 5 years, so the cotton 

planted/harvested record in the census subset only includes the observations in 1992, 1997, 2002, 

and 2007. The reduction in sample size significant reduces the variation in the dataset. However, 

the census data has the records of numbers of farms growing irrigated or non-irrigated cotton, 

which turns out to be an important variable. Interestingly, farm count variable has a positive 

coefficient in the probit model, and a negative coefficient in the OLS model. This suggests that it 

is more likely to observe abandonment in counties with more farms growing cotton, but the 

predicted abandonment decreases with the increase of farm count. Possible explanations might 

be higher diversification in counties having more farms growing cotton, or the possibility of 

those counties located in the marginal cotton production areas. 
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The results of the Texas special case study suggest the model‟s prediction is not as accurate at 

the extreme conditions. Texas suffered a severe yearlong drought in 2011, and the model tends to 

over-predict the abandonment given the abnormal weather behaviors.  

Future work remains to be done in terms of adjusting the data generating method. For example, 

creating categorical variables or using other methods to control for spatial correlation. 

Meanwhile, other factors can be considered for the model, such as initial cost of planting the 

crop, the adoption of genetic modified seeds, or government programs, insurance policies and 

strategic behaviors. In addition, the model prediction of using county-level weather data, rather 

than climate division level weather data, can be an interesting topic. At last, it would be of great 

use to adopt this model in order to predict the damage of extreme climate events on crop field. 

What‟s more, full marginal effect analysis can be done on both the direct weather variables and 

the dry/wet indirect weather variables.  
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APPENDIX 

Appendix A 

State-Level Planted Acres of All Sates, 1990 – 2011 

1. Planted Acres: Irrigated Upland summed from Full Dataset 

Year AR AZ CA LA MS NM OK TX 

1990 331,000 350,000 1,099,500 253,600 373,700 61,900 84,200 1,906,100 

1991 416,700 360,000 979,500 268,900 358,000 63,400 81,000 2,244,000 

1992 413,200 325,000 999,500 284,700 353,500 49,750 69,000 1,698,700 

1993 414,000 316,000 1,049,500 259,600 413,000 51,100 68,000 1,959,800 

1994 467,000 312,300 1,098,400 259,050 359,300 49,150 67,900 2,025,000 

1995 567,000 364,200 1,168,100 350,000 389,700 56,450 74,600 2,332,800 

1996 493,000 315,000 998,200 270,000 315,400 54,800 69,100 2,191,800 

1997 619,000 325,000 878,800 155,000 294,900 59,400 74,300 2,032,600 

1998 590,500 249,000 649,300 155,000 304,700 60,100 63,600 2,054,900 

1999 511,000 269,300 609,500 155,000 401,400 79,000 77,500 2,236,900 

2000 547,000 280,000 774,900 150,000 492,100 68,500 88,400 2,436,500 

2001 528,000 295,000 629,700 289,900 716,800 68,000 69,700 2,213,000 

2002 486,000 215,000 479,900 180,000 493,600 54,000 63,800 2,139,000 

2003 519,700 214,400 549,700 176,000 446,800 53,000 74,300 2,187,900 

2004 528,200 239,300 559,800 157,900 451,300 68,000 84,600 2,222,400 

2005 621,100 227,700 429,800 228,600 518,800 56,000 92,300 2,212,300 

2006 832,400 188,000 285,000 245,000 597,800 50,000 94,500 2,179,600 

2007 402,600 164,000 193,500 71,100 296,700 34,800 55,100 1,744,700 

2008 250,600 128,900 116,600 38,400 109,400 30,800 48,000 1,415,200 

2009 271,700 137,800 53,500 25,000 90,600 24,000 - 1,623,200 

2010 219,600 183,700 108,000 - 136,900 41,200 - 1,952,600 

2011 158,700 233,800 172,200 - 193,100 44,000 - 76,900 
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2. Planted Acres: Irrigated Upland from QuickStats, USDA 

Year AR AZ CA LA MS NM OK TX 

1990 331,000 350,000 1,100,000 254,000 373,700 61,900 85,000 1,915,000 

1991 416,700 360,000 980,000 269,200 430,000 63,400 82,000 2,255,000 

1992 413,200 325,000 1,000,000 285,000 385,000 49,750 70,000 1,710,000 

1993 415,000 316,000 1,050,000 260,000 440,000 51,200 69,500 1,970,000 

1994 470,000 313,000 1,100,000 260,000 370,000 49,150 70,000 2,035,000 

1995 570,000 365,000 1,170,000 350,000 400,000 56,600 76,000 2,350,000 

1996 499,000 315,000 1,000,000 270,000 320,000 55,200 70,000 2,210,000 

1997 626,500 325,000 880,000 155,000 309,500 59,900 75,000 2,050,000 

1998 595,500 250,000 650,000 155,000 324,600 60,100 65,000 2,070,000 

1999 639,000 270,000 610,000 155,000 431,000 79,000 80,000 2,250,000 

2000 658,000 280,000 775,000 150,000 507,600 68,500 90,000 2,452,000 

2001 689,000 295,000 630,000 290,000 731,000 68,000 72,000 2,238,000 

2002 693,000 215,000 480,000 180,000 506,000 54,000 70,000 2,150,000 

2003 732,000 215,000 550,000 176,000 457,000 53,000 82,000 2,250,000 

2004 722,000 240,000 560,000 160,000 497,500 68,000 94,000 2,265,000 

2005 864,000 230,000 430,000 230,000 567,600 56,000 100,000 2,300,000 

2006 972,000 190,000 285,000 245,000 613,000 50,000 105,000 2,365,000 

2007 723,000 170,000 195,000 101,000 320,000 43,000 80,000 1,840,000 

2008 521,000 135,000 120,000 82,200 149,000 - 85,000 1,712,000 

2009 459,000 145,000 71,000 54,000 123,700 29,000 90,000 1,756,000 

2010 476,500 195,000 124,000 - 171,500 - - 2,051,000 

2011 606,000 250,000 182,000 - 277,000 - - 2,476,000 



60 

 

 

3. Planted Acres: Non-irrigated Upland summed from Full Dataset 

Year AR AZ CA LA MS NM OK TX 

1990 437,900 - - 553,000 854,400 7,100 293,000 3,573,500 

1991 580,800 - - 600,000 802,030 5,600 307,900 4,032,400 

1992 583,800 - - 599,300 958,600 5,250 195,300 3,776,900 

1993 573,000 - - 624,000 875,200 2,300 155,000 3,567,600 

1994 502,000 - - 635,050 889,900 5,850 141,500 3,401,100 

1995 595,000 - - 733,000 1,036,300 4,400 137,100 4,034,800 

1996 491,000 - - 617,600 550,200 3,800 155,650 3,476,100 

1997 345,500 - - 499,700 360,500 10,100 54,300 3,435,700 

1998 316,500 - - 378,900 317,900 6,200 41,900 3,567,400 

1999 309,000 - - 455,100 438,700 5,000 76,500 3,885,900 

2000 282,000 - - 555,100 521,700 3,500 108,700 3,417,600 

2001 358,000 - - 573,000 640,300 - 129,700 3,458,900 

2002 250,500 - - 337,900 434,200 - 80,200 3,150,900 

2003 238,300 - - 346,100 476,400 - 61,200 2,999,600 

2004 181,900 - - 325,900 374,800 - 87,300 3,108,700 

2005 178,800 - - 366,100 328,300 - 117,200 3,152,200 

2006 192,900 - - 372,800 519,900 - 167,500 3,324,700 

2007 123,600 - - 180,200 172,300 - 16,400 2,652,500 

2008 83,100 - - 86,800 116,700 - 8,000 2,163,700 

2009 54,300 - - 102,600 114,600 - - 2,493,100 

2010 48,900 - - - 147,700 - - 2,703,500 

2011 52,200 - - - 115,600 - - 479,900 
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4. Planted Acres: Non-irrigated Upland from QuickStats, USDA 

Year AR AZ CA LA MS NM OK TX 

1990 439,000 - - 556,000 856,300 7,100 295,000 3,585,000 

1991 583,300 - - 605,800 815,000 5,600 358,000 4,045,000 

1992 586,800 - - 605,000 965,000 5,250 300,000 3,790,000 

1993 575,000 - - 630,000 890,000 2,300 300,500 3,580,000 

1994 510,000 - - 640,000 910,000 5,850 290,000 3,415,000 

1995 600,000 - - 735,000 1,060,000 4,400 304,000 4,050,000 

1996 501,000 - - 620,000 800,000 3,800 220,000 3,490,000 

1997 353,500 - - 500,000 675,500 10,100 125,000 3,450,000 

1998 324,500 - - 380,000 625,400 6,200 95,000 3,580,000 

1999 331,000 - - 460,000 769,000 5,000 160,000 3,900,000 

2000 302,000 - - 560,000 792,400 3,500 190,000 3,948,000 

2001 391,000 - - 580,000 889,000 - 198,000 3,762,000 

2002 267,000 - - 340,000 664,000 - 130,000 3,450,000 

2003 248,000 - - 349,000 653,000 - 98,000 3,350,000 

2004 188,000 - - 340,000 612,500 - 126,000 3,585,000 

2005 186,000 - - 380,000 642,400 - 155,000 3,650,000 

2006 198,000 - - 390,000 617,000 - 215,000 4,035,000 

2007 137,000 - - 234,000 340,000 - 95,000 3,060,000 

2008 99,000 - - 217,800 216,000 - 85,000 3,288,000 

2009 61,000 - - 176,000 181,300 2,100 115,000 3,244,000 

2010 68,500 - - - 248,500 - - 3,499,000 

2011 74,000 - - - 353,000 - - 5,074,000 
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5. Planted Acres: Pima summed from Full Dataset 

Year AR AZ CA LA MS NM OK TX 

1990 - 124,700 25,600 - - 19,300 - 56,300 

1991 - 105,700 63,900 - - 19,600 - 55,900 

1992 - 102,700 109,900 - - 13,000 - 35,000 

1993 - 57,000 91,000 - - 10,900 - 28,700 

1994 - 47,400 80,700 - - 10,800 - 26,300 

1995 - 47,700 114,700 - - 14,800 - 33,900 

1996 - 42,000 164,700 - - 13,450 - 36,300 

1997 - 21,500 184,600 - - 10,700 - 31,000 

1998 - 14,100 199,900 - - 7,300 - 97,200 

1999 - 8,400 239,900 - - - - 31,500 

2000 - 4,200 144,700 - - 3,200 - 15,000 

2001 - 5,800 239,900 - - 5,200 - 16,500 

2002 - 6,300 209,800 - - 6,600 - 18,500 

2003 - - 150,000 - - 5,100 - 18,800 

2004 - 1,200 214,400 - - 7,700 - 20,500 

2005 - 2,800 229,100 - - 9,500 - 23,900 

2006 - 4,800 274,600 - - 11,150 - 30,100 

2007 - - 259,900 - - 3,900 - 24,200 

2008 - - 155,000 - - 2,600 - 15,600 

2009 - - 110,700 - - - - 18,000 

2010 - - 180,400 - - - - 17,000 

2011 - 6,400 274,000 - - - - 12,400 
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6. Planted Acres: Pima from QuickStats, USDA 

Year AR AZ CA LA MS NM OK TX 

1990 - 125,000 25,700 - 1,300 19,300 - 60,000 

1991 - 106,000 64,000 - 800 19,600 - 60,000 

1992 - 103,000 110,000 - 400 13,000 - 37,000 

1993 - 57,000 91,000 - - 11,000 - 31,000 

1994 - 48,000 81,000 - - 11,000 - 28,500 

1995 - 48,600 115,000 - - 15,000 - 36,000 

1996 - 42,000 165,000 - - 14,000 - 37,000 

1997 - 22,000 185,000 - - 11,000 - 32,000 

1998 - 15,900 200,000 - - 7,300 - 105,000 

1999 - 9,000 240,000 - - 7,500 - 33,000 

2000 - 5,000 145,000 - - 4,200 - 16,000 

2001 - 7,800 240,000 - - 5,200 - 17,000 

2002 - 8,300 210,000 - - 7,100 - 18,500 

2003 - 2,500 150,000 - - 6,100 - 20,000 

2004 - 3,000 215,000 - - 10,600 - 21,000 

2005 - 4,100 230,000 - - 11,500 - 24,800 

2006 - 7,000 275,000 - - 13,000 - 31,000 

2007 - 2,500 260,000 - - 4,700 - 25,000 

2008 - 800 155,000 - - 2,600 - 15,600 

2009 - 1,600 119,000 - - 2,800 - 18,000 

2010 - 2,500 182,000 - - 2,700 - 17,000 

2011 - 10,000 274,000 - - 3,400 - 20,000 
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Appendix B 

Marginal Effect Curves for Probit Model from Full Dataset and Census Subset 

1. Marginal effect curves of season 1 precipitation for the probit model from full dataset 

(top) and census subset (bottom) 
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2. Marginal effect curves of season 2 precipitation for the probit model from full dataset 

(top) and census subset (bottom) 
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3. Marginal effect curves of season 3 precipitation for the probit model from full dataset 

(top) and census subset (bottom) 
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4. Marginal effect curves of season 4 precipitation for the probit model from full dataset 

(top) and census subset (bottom) 
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5. Marginal effect curves of season 1 temperature for the probit model from full dataset 

(top) and census subset (bottom) 
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6. Marginal effect curves of season 2 temperature for the probit model from full dataset 

(top) and census subset (bottom) 
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7. Marginal effect curves of season 3 temperature for the probit model from full dataset 

(top) and census subset (bottom) 

 

 

 



71 

 

 

8. Marginal effect curves of season 4 temperature for the probit model from full dataset 

(top) and census subset (bottom) 
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9. Marginal effect curves of 9-month standard precipitation index value under dry 

conditions for the probit model from full dataset (top) and census subset (bottom) 
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10. Marginal effect curves of 9-month standard precipitation index value under wet 

conditions for the probit model from full dataset (top) and census subset (bottom) 
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Appendix C 

Marginal Effect Curves for OLS Model from Full Dataset and Census Subset 

1. Marginal effect curves of season 1 precipitation for the OLS model from full dataset (top) 

and census subset (bottom) 
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2. Marginal effect curves of season 2 precipitation for the OLS model from full dataset (top) 

and census subset (bottom) 
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3. Marginal effect curves of season 3 precipitation for the OLS model from full dataset (top) 

and census subset (bottom) 

 

 



77 

 

 

4. Marginal effect curves of season 4 precipitation for the OLS model from full dataset (top) 

and census subset (bottom) 
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5. Marginal effect curves of season 1 temperature for the OLS model from full dataset (top) 

and census subset (bottom) 
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6. Marginal effect curves of season 2 temperature for the OLS model from full dataset (top) 

and census subset (bottom) 
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7. Marginal effect curves of season 3 temperature for the OLS model from full dataset (top) 

and census subset (bottom) 
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8. Marginal effect curves of season 4 temperature for the OLS model from full dataset (top) 

and census subset (bottom) 
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9. Marginal effect curves of 9-month standard precipitation index value under dry 

conditions for the OLS model from full dataset (top) and census subset (bottom) 
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10. Marginal effect curves of 9-month standard precipitation index value under wet 

conditions for the OLS model from full dataset (top) and census subset (bottom) 
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Appendix D 

Marginal Effect Curves for Expected Values from Full Dataset 

1. Marginal effect curves of season 1 precipitation for expected values from full dataset 

 

 

 

2. Marginal effect curves of season 2 precipitation for expected values from full dataset 
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3. Marginal effect curves of season 3 precipitation for expected values from full dataset 

 

 

 

 

4. Marginal effect curves of season 4 precipitation for expected values from full dataset 
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5. Marginal effect curves of season 1 temperature for expected values from full dataset 

 

 

 

 

6. Marginal effect curves of season 2 temperature for expected values from full dataset 
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7. Marginal effect curves of season 3 temperature for expected values from full dataset 

 

 

 

 

 

8. Marginal effect curves of season 4 temperature for expected values from full dataset 
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9. Marginal effect curves of 9-month standard precipitation index value under dry 

conditions for expected values from full dataset 

 

 

 

 

10. Marginal effect curves of 9-month standard precipitation index value under wet 

conditions for expected values from full dataset 
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