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Abstract

While the standard hedonic analyses on housing prices attempt to evaluate the impact of school
characteristics on house value capitalization, this paper is an attempt to evaluate the same based
on increasing open enrollment numbers in better school districts at a district level. It estimates
the standard models used in the literature and addresses the issue of bias due to unobserved
heterogeneity. This paper also attempts to disentangle the effects of open enrollment by taking a
difference model and removing the time invariant unobserved neighborhood characteristics. Also
it focuses on houses in the school district boundaries and evaluates the effect at the buffer zones
while controlling for other observed characteristics. I find that open enrollment significantly
increases housing prices in outer buffer zone at a declining rate and have varying effects in the
inner buffer zone and results depend on model specifications. Controlling for most of the possible
observed and unobserved characteristics, open enrollment has non-linear effects on housing prices
in the inner buffer zone.



Chapter 1

Introduction

Economic literature in real estate markets, especially on housing prices, show that single house
prices are higher in better school districts, all else equal. A number of researchers have quan-
tified the value of school quality, location in a better school district, and other neighborhood
characteristics by applying the hedonic method developed by Rosen (1974). Most of the research
has been focused in disentangling the effects of school characteristics from other neighborhood
and environmental characteristics. Other studies have relied on cross-sectional identification of
relationship between housing prices and variables that can be used as proxy for perceived school
quality in different school districts.

With the advent of charter schools and the change of public policies on open enrollment in
public school districts, it is interesting to evaluate the impact of schools on housing prices in and
around a good school district. In 1993, the State of Arizona approved open enrollment in all
school districts, contingent upon availability of classroom space (A.R.S. § 15-816.01). Arizona
schools started enrolling students from other neighboring districts and the immediate question
that arises is whether single house buyers continue to pay a premium for purchasing a house in
the best school districts. Also, it is important to figure out whether the effect of open enrollment
on single house prices has eroded over time. It would also be interesting to note what happens to
the houses in school boundaries. With open enrollment, people might choose houses outside the
boundaries of good school districts which are proximal to good schools and pay a lesser price.
Hence open enrollment might have implications not only for housing prices in better school
districts but also other neighboring districts.

In this study I have used housing sales data, house characteristics data and school districts
data for Pima County, Arizona. This study is restricted to ten school districts in and around the
Tucson Metropolitan Area using data from 2001 to 2012. Here, we use the standard approach
of estimations using log-linear models which has been used mostly in the literature of hedonic
analysis. To address the issue of controlling for unobserved heterogeneity this paper uses the
difference approach which washes out all the time-invariant unobserved characteristics. Here I
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also consider a buffer zone in and around Catalina Foothills School District (generally recognized
as the premier school district in the Tucson metropolitan area ) and evaluate the effect of open
enrollment in that district on 1 mile inside and 2 miles outside the boundary other things constant
(controlled for).

The paper is organized as follows: Chapter 2 gives a review of the existing literature on related
work in hedonic models, Chapter 3 discusses to the construction of dataset with a brief description
of the study area, Chapter 4 provides the variables description and the summary statistics
including the introduction of the buffer zones, Chapter 5 gives the premise of the estimation
procedure and methodology, Chapter 6 contains the results and their possible interpretations,
while Chapter 7 concludes.
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Chapter 2

Literature Review

2.1 Hedonic models of housing prices on school character-
istics

The introduction of hedonic models of housing prices on school characteristics dates back to
Oates’ (1969) seminal paper. Oates showed using data from 53 northern New Jersey municipal-
ities that there is a positive relationship between housing prices and school expenditures. There
have been numerous studies following that where researchers tried to explore this relationship
between school characteristics and housing prices and also how the prices are affected by location
of schools. The most important feature of these studies involved in disentangling the effect of
schools on housing prices from other implicit characteristics which determine the price of a house.

Bogart and Cromwell (2000) used data from Cleveland area to evaluate the effect of schools
on housing prices. They compared the sale prices of houses on either side of school-district
boundary where there were otherwise uniform taxes and other public services. In this way they
attributed the differences in prices across boundaries to better schools. However, they didn’t
specifically determine which attributes of schools home buyers valued. Also since the areas are
contiguous it might be possible that the variation in sale prices are not only due to difference in
quality of schools but also some other unobserved neighborhood quality variation.

While Black’s (1999) work is similar to Bogart and Cromwell, she controlled for neighborhood
quality by replacing the vector of observed characteristics with a full set of boundary dummies
that indicate houses which share a district boundary. All relevant neighborhood or house char-
acteristics are usually not observed and hence it is not possible to model and control for all
the unobserved neighborhood and house characteristics. Typically failing to control for these
unobserved characteristics lead to omitted variable bias and biased parameter estimates. Black
specifically mentions two biases: first those that vary at school district level, e.g. property tax
rates and public good provision; second, omitted variable bias both within and across school
district boundaries, such as differing neighborhood characteristics . She included that bound-
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ary dummies account for any unobserved characteristics shared by houses on either side of the
boundary. Hence, her resulting model looks like the following, where Kb is a vector of boundary
dummies and also, she uses a standard log-linear form for estimating the hedonic price model:

log(priceiab) = α+X
′

iabβ +K
′

bφ+ γtesta + εiab (2.1)

Black’s findings suggest that parents care and pay a premium for schools with better test
scores, attendance rates and other unobserved school quality characteristics.

Other similar studies include Kane and Staiger (2006) who also use differences in housing
prices along assignment zone boundaries to disentangle the effect of schools and other neigh-
borhood characteristics. Using data from Mecklenburg County, North Carolina from 1994-2001,
Kane and Staiger find significant differences in housing prices along school boundaries, implying
that better schools positively impact housing values. Their study also suggests that the effect of
schools on housing values operates through the characteristics of the population living in different
neighborhoods and the quality of housing stock in the neighborhood. Kane and Staiger also use
the standard log-linear form for estimation and their independent variables include elementary
school characteristics measured by averaged test score for grades 3-5 over 1993-1999, distance
to elementary schools, house characteristics, census tract characteristics, geographic fixed effects
and fixed effects for year, month, middle school, high school, and municipality.

Weimer and Wolkoff (2001) evaluated the relationship of school performance and housing
values using non-contiguous district and incorporation boundaries to identify the school effects.
Using data from Monroe County, NY their study confirms the importance of school outputs
on housing values controlling for other factors such as student body composition, high school
characteristics and other public services. Apart from using a standard log-linear form, Weimer
and Wolkoff use a multiplicative functional form that allows for separation of sale price into a
quality adjusted quantity and a locationally determined price of housing. Their multiplicative
functional form looks like the following:

log(SalePrice) = log(XLβL) + logXSβS + ε (2.2)

where XS includes the house characteristics and XL include the location-related characteristics
listed in neighborhood, town, elementary school, high school, and school tax panels.

Another related study by Downes and Zabel (2002) show similar results but using school level
data and not at district level. Using data from American Hosuing Survey and Illinois School-
Report Cards for Chicago from 1987-1991, they assign to each house school-level data for the
closest school and show that school level variables are significantly better in estimating house
values than district level data. In their study, Downes and Zabel include measures of input
and measures of output in the house price regression and correct for school quality endogeneity
by using instrumental variables. They have alleviated the problem of correlation of unobserved
individual error component with observed regressors by differencing the data. Their results also
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suggest that homeowners are valuing school outputs and not the inputs.

2.2 Related Hedonic Models of housing prices on other
non-school environmental characteristics

While almost similar approaches have been used by most of the studies in the literature on housing
prices the most concerning issue remains that how the effect of school can be disentangled from
other neighborhood characteristics while evaluating its impact on housing prices. While Black,
and Kane and Staiger used the differences approach on similar houses with district dummies to
address this issue, Downes and Zabel use time series differences to handle the same. In my study,
I use similar estimation procedures to remove the unobserved heterogeneity of neighborhood
characteristics and other school characteristics. This allows to obtain unbiased estimates of
parameters by using a log-linear specification on the naïve cross-sectional model by creating a
difference model. Subsequently, I use the theoretical concept that a fixed effects model which
results in within estimation given the panel nature of the dataset is no different from a difference
model if only two time periods are considered. But first let us look at other related literature
on hedonic models on housing prices, e.g. location within a certain geographical characteristics
and other environmental settings.

In a related study on the effect of riparian habitat on housing prices in Tucson, Arizona by
Bark et al. (2009), results show that homebuyers value quality riparian habitat and distinguish
between biologically significant riparian vegetation characteristics. This hedonic study also uses
a log-linear specification and controls for house and other neighborhood characteristics. They
also disaggregate the environmental quality and show that buyers pay premiums for wetness and
diversity and not for greenness per se. Bourne (2007) studied the effect of Santa Cruz riparian
corridor, Rio Rico, Arizona on single family houses. She rejected a standard log-linear form by
testing in favor of specification and ended using Liebig type distance equation for the econometric
specification. Her study also suggests that within a certain distance from the riparian vegetation,
homebuyers pay a premium for proximity to the riparian corridor. Hence, in related literature
also there is evidence of homebuyers valuing certain house characteristics and paying a premium
for the same. Also, it is empirically possible to disentangle the effect of some particular feature
associated with a house from others by adopting certain econometric tools.

2.3 Open Enrollment in School Districts and housing prices

There are many studies which try to evaluate the effect of open enrollment in school districts,
advent of charter schools, magnet schools and the expansion of private schools on several social is-
sues, viz. parental decision making, difference in education deliverance from public schools, equity
in the form of economic outcomes and other ethnic outcomes, and mobilization of homebuyers
(Goldhaber, 1999), goals of integration and open enrollment (Smith, 1995), supply and demand
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theory of educational choice (Funkhouser and Colopy, 1994), early effects of open-enrollment on
significant changes in district open enrollments (Rubenstein, 1992). Other studies indicated that
open enrollment resulted in transfer of students from one district to another based on higher
student performance and higher socio-economic status from the districts they left (Fossey, 1994).

Seminal work by Reback (2005) was the first attempt to capture the effect of school choice
program on housing prices. Using data from inter-district choices in Minnesota, Reback finds
that residential properties appreciate significantly in those school districts where students are
able to transfer while house values decline in those districts which accept transfer students.
Reback uses percentage change in equalized, assessed value of all residential property in a school
district between 1989-1990 and 1997-1998 as the dependent variable. This variable reflects annual
changes in actual sale prices controlling for the fixed effects of differences in assessment practices.
The right hand side variables include percentage change in number of students who transfer into
a district, percentage change in number of students who transfer out of a district, a dummy for a
district where no students have transferred and other house and resident characteristics. Reback
uses a percent change in the dependent variable and hence it is a deviation from the standard
log-linear form used in most hedonic analyses. He also controlled for changes in school quality
by including the district level test score measure as an independent variable. For biases that
might be present due to nonrandom sample attrition, he uses maximum-likelihood estimation of
a Heckman (1976) selection model. His results suggest that both incoming and outgoing transfer
rates have large statistically significant effects on the future growth rate of residential properties
of a school district. The signs of the effects on those districts which accept incoming students have
a significant decline in property values whilst the school districts which have outgoing students
have an appreciation in assessed values of houses.

2.4 Contribution to literature

In this paper I explore a rich dataset available for Pima County, Arizona to assess the effect of
open enrollment on housing prices using a log-linear specification, the standard model used in the
literature on hedonic analysis. The first deviation from the most related work by Reback would
be the use of actual prices and not assessed prices and hence I don’t need to control for assessment
practices which presumably would reduce any bias which was not controlled for. Second, I use the
Case-Schiller price index to control for business cycles in the economy to eliminate that source of
estimation bias. Third, a stark difference from Reback’s work is that all school districts have open
enrollment policy in place and hence no separate analysis is required for outgoing and incoming
students in any particular district. Also the nature of the unbalanced panel dataset allows for
houses which have been sold more than once in the study period and hence a difference model
is evident. This resolves the issue of controlling for unobserved neighborhood characteristics as
a first difference washes out the endogeneity of time invariant variables with other regressors
in the model. A final sophistication is introduced by considering houses within a buffer zone
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around the district boundaryof the best school district and a separate analysis is done for those
houses which were sold in the buffer zone to evaluate the effect of open enrollment on houses
which have almost similar characteristics separated by a school boundary. I also tested whether
the parameter estimates are robust if the buffer zone is changed both within and outside the
boundaries of the best school district.
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Chapter 3

Description of Data

3.1 Study Area

The area studied in this paper is Pima County, Arizona which is the most populous county in
southern Arizona. Pima County has 18 school districts which in total have 241 non-charter public
schools. Figure 3.1 shows the Pima County school district map and the boundaries of all school
districts. Out of these 18 school districts 14 are unified, 2 are transportation districts, 1 is an
accommodation district and 1 is the Joint Technical Education District (JTED). All the school
districts in Pima County have open enrollment policies. Arizona State (A.R.S. § 15-816.01)
stipulates:

“School district governing boards shall establish policies and shall implement an open enroll-
ment policy without charging tuition. A school district may give enrollment preference to and
reserve capacity for pupils who are children of persons who are employed by or at a school in the
school district. A copy of the district policies for open enrollment shall be posted on the district’s
website and shall be available to the public on request.”

This means that with the open enrollment policies in place, parents have the choice of enrolling
their school-aged children in a different school district than their district of residence.

For this study I considered only 10 school districts for the analysis as the effect of schools on
the housing prices will be different for all the districts in Pima County and hence systematically 6
of the school districts were not considered (see below). The two other districts which were ignored
in this analysis were the Pima Accommodation district and the Pima JTED as preferences for
houses probably do not depend on these two districts.

The other six school districts which were not considered in the study area are: Ajo Unified
School District (District 15), San Fernando Elementary School District (District 35), Empire
Elementary School District (District 37), Continental Elementary School District (District 39),
Indian-Oasis Baboquivari School District (District 40), and Redington Elementary School Dis-
trict (District 44). All of these are ‘out-lying’ districts (not part of Tucson Metropolitan Area).
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Figure 3.1: School District Map of Pima County, Arizona

Hence the focus of study narrows down to the districts in and around Tucson Metropolitan area.
Figure 3.2 provides us with the map of school districts which has been considered in this paper.

The study area analyzed in this paper consists of the following 10 school districts: Tucson
Unified School District (TUSD, Dist. 1), Marana Unified School District (Dist. 6), Flowing Wells
Unified District (Dist. 8), Amphitheater Unified School District (AUSD, Dist. 10), Sunnyside
Unified School District (Dist. 12), Tanque Verde Unified District (TVUD, Dist. 13), Catalina
Foothills Unified District ( CFSD, Dist. 16), Vail Unified School District (Dist. 20), Sahuarita
Unified School District (Dist. 30), and Altar Valley Elementary District (Dist. 51).

Catalina Foothills School District is considered to be the best school district among all the
others considered and the boundary of CFSD is marked in red in Fig. 2.2.

3.2 Description of Data Sources

3.2.1 House Characteristics by School Districts

The data on house characteristics come from Pima County Assessor’s Office and are available
on their website publicly. The data used here is in their library under the label Tax Year
2013. Three datasets taken from this folder were: Mas.zip, Notice.zip and EDNPI.zip. Mas.zip
contains individual house’s data on house characteristics, viz., living area (in sq. ft.), number
of bedrooms, garage, year built etc. There are 279,332 observations in this dataset. The unique
identifier is given by the variable “Parcel” and this variable is used for merging the other datasets
with Mas.zip. Notice.zip has house level data on each house’s address, their area code and
has 441,635 observations. The area code variable in this dataset is used to assign each house
to a school district which also falls within the same area code. Finally, EDNPI.zip contains
information on latitudinal and longitudinal location and the total land area (in sq. ft.) of each
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Figure 3.2: Study Area considered in Pima County

house. EDNPI.zip has 417,034 observations. These three datasets were merged using the unique
identifier of each house, Parcel. Before merging the houses, the three datasets were cleaned and
houses with missing Parcel IDs were deleted. After merging the three datasets we have 255,890
observations on the final merged dataset. But clearly all these houses were not sold even once
within last 12 years.

3.2.2 Home Sales, Housing Price Index and Fixed Rate Mortgage

The sales data on all the houses in Pima County is collected for 12 years starting from 2001 to 2012
and this data is also available from Pima County Assessor’s Office under the label Miscellaneous
Data Files in their data library. The twelve zip files each representing sales data for each year
were merged together and an unbalanced panel data of sales was created and cleaned. The
cleaning included deleting houses without parcel Ids and duplicate sales data with same sale
price within a month in a given year were also removed resulting in 188,584 observations.

The housing price index used for the analysis in this paper is the "Case-Schiller Price index
(CSPI)" which is used as a standard index for normalizing sales prices. Data on monthly CSPI is
available from Standard and Poor Dow Jones Indices website. Seasonally adjusted Home Price
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Index levels as of January, 2013 was collected to account for seasonality in sales price and this
was merged with the unbalanced panel of sales data using month of sales and sale year as a
merging variable. CSPI used is the index for Phoenix, AZ metro area and is the best available
to use as a proxy for Pima County.

Fixed rate mortgage (FRM) data comes from hsh.com and the monthly national average for
30 year FRM was collected and used as a proxy for the study area.

This unbalanced panel data on sales now with the CSPI and FRM was finally merged with
the merged dataset available on house characteristics using Parcel Id as the unique identifier for
each household.

3.2.3 Enrollment and Charter School Data

The open enrollment in CFSD is proprietary data which was available upon request from the
CFSD’s Superintendent. This data contains information not only on the district 16’s open
enrollment from 2001-2012 but also on total enrollment in District 16. The data on enrollment
in charter schools comes from publicly available Arizona Department of Education’s Research
and Evaluation group’s October 1st enrollment information for the entire state of Arizona. This
contains charter enrollment data from 2006 onwards for the entire state of Arizona and this
variable is used as a proxy for the study area.

3.3 Final Dataset

The final unbalanced panel dataset was obtained upon merging the data on house characteristics
from Mas.zip, Notice.zip and EDNPI.zip; sales datasets for 12 years along with FRM and CSPI;
and data on open enrollment in CFSD and charter schools enrollment. Also as indicated earlier,
the final dataset contains “single houses” only in the 10 districts considered in the study area.
This dataset was cleaned and resulted in 113,239 houses with 170,291 observations. Since some of
the houses were sold more than once within this twelve years time period we have the unbalanced
panel nature of this dataset. Table 3.1 gives the description of number of houses and how many
times they were sold.

Number of times sold Number of houses Observations
1 69,873 69,873
2 32,117 64,234
3 9,137 27,411
4 1,814 7,256
5 273 1,365
6 23 138
7 2 14

TOTAL 113,239 170,291

Table 3.1: House Sales Information
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Chapter 4

Variables and Summary Statistics

4.1 House Characteristics and School Districts

4.1.1 Description of Variables

The key variables that were included in the analysis on house characteristics and school districts
are given in the Table 4.1.

The dummy variables on house characteristics were created additionally which included the
dummies for pool, covered garage, patio, air conditioned cooling, evaporative cooling and the
four dummies for assessed qualities given by the assessors’ office. The unique identifier variable is
a 9-digit unique number which has been used to merge and identify unique houses. The dummy
variables on each school district have also been generated in order to capture the fixed effects of
school districts in the analysis.

In this study I have also considered a buffer zone around the CFSD boundaries. This buffer
zone was carefully constructed to identify those houses located in this zone. All houses in the
dataset had information on their exact latitude and longitude, both measured in degrees and upto
four decimal points. All the houses were plotted using ArcGIS software and were superimposed
on the school district map from Pima County GIS website. The school district map from Pima
County GIS is proprietary and needed special access for this study. After plotting the houses
in the school district map, a two-mile stretch outside and a one-mile stretch inside the CFSD
boundary was constructed and the houses only within this zone were identified. Fig 4.1 provides
us with the generated map of the buffer zones. The boundary is shown by the black border and
each house that falls within this buffer zone is given by a green dot. Since the north eastern
boundary of CFSD is covered by the Catalina Mountains, we have not considered any houses
in the north eastern buffer zone as they are not indicative of a boundary house. Also, there
are no houses outside northern boundary of CFSD and hence all the houses north of 32.3076
degrees latitude and east of -110.9104 degrees longitude were systematically removed from the
buffer zone. This leaves with houses in the outer buffer zone in Tucson Unified School District
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Variable Name Description
Parcel Unique Identifier of each house (9-digit code)
Rooms Total number of rooms in the house
SQFT Livable Area (measured in square foot)
Landsqft Total Area of the Plot (measured in square foot)
Bathfixtur Number of total Bath Fixtures
d_pool Dummy variable for pool
d_garage Dummy variable for covered garage
d_patio Dummy variable for patio
d_ac_cool Dummy variable for air conditioned cooling
d_ev_cool Dummy variable for evaporative cooling
d_min_quality Dummy variable if assessed quality is minimum
d_fair_quality Dummy variable if assessed quality is fair
d_good_qualtiy Dummy variable if assessed quality is good
d_excellent_quality Dummy variable if assessed quality is excellent
d_new Dummy if house is sold within 5 years of construction
d_tucson Dummy if house in Tucson Unified School District
d_marana Dummy if house in Marana Unified School District
d_flowingwells Dummy if house in Flowing Wells Unified District
d_amphitheather Dummy if house in Amphitheater Unified School District
d_sunnyside Dummy if house in Sunnyside Unified School District
d_tanque Dummy if house in Tanque Verde Unified District
d_cat Dummy if house in Catalina Foothills Unified District
d_vail Dummy if house in Vail Unified School District
d_sahuarita Dummy if house in Sahuarita Unified School District
d_altar Dummy if house in Altar Valley Unified District

Table 4.1: Variable Description of House characteristics School Districts

from south and east, and Amphitheater School District in the west. Two separate dummies
were constructed: d_outer_buffer and d_inner_buffer for a house located outside and inside
the CFSD boundary respectively.

4.1.2 Summary Statistics

The summary of the key house characteristics variables are given in Table 4.2. Figure 4.2 shows
how the number of observations from each school district.

4.2 Housing Sales and Open Enrollment

4.2.1 Description of Variables

The sales price for all the houses obtained from 2001-2012 were normalized by using the Case-
Schiller Price Index (CSPI) to take into account the business cycles in the economy and to control
for seasonality in prices. CSPI is the US national index for housing prices that tracks the value

14



Figure 4.1: buffer zone in and around CFSD boundary

of single family housing within the U.S. and is calculated monthly using a three-month moving
average algorithm. I used the following index for convenience of interpretation. This index is
used for normalizing the sales price and is defined as the following:

Index = CSPI
100 (4.1)

Figure 4.3 provides the graph showing how the yearly median values of CSPI fluctuated in
the last twelve years considered in my study.

The other variables of interest in this study are: the open enrollment in Catalina Foothills
School District from 2001 onwards; and the charter school enrollment in the state of Arizona
that has been used as a proxy for Pima County. Table 4.3 defines the sales prices and open
enrollment variables.

4.2.2 Summary Statistics

Figure 4.4 plots the median sale prices, the normalized sale prices overall and the normalized
sale prices in CFSD.
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Variable Mean Min Max Standard Deviation
Rooms 6.9 1 50 1.5602
SQFT 1833.4 224 10901 662.0775
Landsqft 13279.2 140 2006163 26139.5
Bathfixtur 7.23 3 30 2.3812
d_pool 0.2058 0 1 0.4043
d_garage 0.7461 0 1 0.4353
d_patio 0.8215 0 1 0.3829
d_ac_cool 0.8186 0 1 0.3853
d_ev_cool 0.1813 0 1 0.3853
d_min_quality 0.0139 0 1 0.1170
d_fair_quality 0.5961 0 1 0.4907
d_good_quality 0.3868 0 1 0.4869
d_excellent_quality 0.0038 0 1 0.0613
d_new 0.4211 0 1 0.4937

Table 4.2: Summary Statistics on House Characteristics

Variable Name Description
SalePrice Sales Price of each house
Price Sales Price normalized by the index given in equation 4.1
ln_Price Natural logarithm of Price
Price_liv_area Price per square feet of livable area
ln_Price_liv_area Natural logarithm of Price_liv_area
Cat_Op_Enroll Open enrollment numbers in CFSD in each year
Charter_Enroll Yearly Charter School Enrollment in Arizona from 2006

Table 4.3: Description of Variables on Housing Sales and Open Enrollment

Table 4.4 shows the summary statistics of the key variables described in Table 4.3. Finally
Figure 4.5 provides us with the total number of in-district students and open-enrolled students
in CFSD.
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Figure 4.2: Total Number of Sales for all 10 school districts

Variable Mean Median Min Max Standard Deviation
SalePrice 223,412.24 180,000 10,000 8,000,000 267,699.4
Price 158,428.81 124,634 4,532.48 7,643,799 235,780.1
ln_Price 11.787 11.733 8.419 15.85 0.533
Price_liv_area 83.75 75.11 2.428 6,306.76 128.884
ln_Price_liv_area 4.331 4.319 0.887 8.75 0.356
Cat_Op_Enroll 388.414 165 113 1408 400.496
Charter_Enroll 112,993.05 100,701 93,213 145,273 18,195.08

Table 4.4: Summary Statistics on variables in Table 4.3

Figure 4.3: Case Schiller Price Index
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Figure 4.4: Median Sale Price, Normalized Sale Price (overall) & CFSD normalized Sale Prices
by years

Figure 4.5: Resident and Open Enrollment in CFSD
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Chapter 5

Empirical Models and
Methodology

5.1 Conceptual Framework

The main approach of this paper is to identify the changes in single house values owing to a
change in open enrollment numbers in these districts. For this purpose, I have considered how
housing values have changed from 2001-2012 in the 10 districts of Pima County due to increase in
open-enrollment numbers in Catalina Foothills School District (CFSD). While it is not possible
to delineate the exact change of policy as all the school districts have adapted open enrollment
regime slowly over this period it would not be possible to capture the pre and post effects of
this policy change on housing prices, however, as we have open enrollment numbers in CFSD for
the entire time period, we might attribute changes in housing prices owing to increase in open
enrollment over the years.

The critical challenge for this kind of a hedonic analysis is to disentangle the effects of school
districts open enrollment policies from neighborhood and other unobserved characteristics. Also
since in this study we are restricted at the district level effects, I do not need to control for every
school characteristics as we might safely assume that school effects matter within a district but
the district is representative of all the school characteristics. Hence by using dummies to control
for, we will be able to capture most of the school characteristics in our analysis at the district
level.

A hedonic regression analysis model for estimating the value of residential houses on various
attributes of housing properties has the general form:

SalePriceit = f(Xi, Di, Ni, FRMt, Di ∗OEt, ui,t) (5.1)
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where, i = 1(1)N, t = 1(1)T

SalePriceit : Sales Price of House i in time t

Xi : Vector of time invariant House i’s characteristics

Di : Vector of School District dummy for each i

FRMt : Fixed Rate Mortgage in time t

Ni : Vector of time invariant neighborhood dummy for each i

Di ∗OEt : District dummy interacted with Open Enrollment (OE) in time t

ui,t : Measurement Error for each house in each time period

In this paper I have considered two approaches: one which has been mostly used in the
literature for estimation of hedonic models on housing prices; second is a difference model which
has been adapted to delineate the effects of school district open enrollment from other unobserved
characteristics which are difficult to control for otherwise and hence might lead to biased estimates
in the first approach. We can use the second approach because this dataset has many houses
which were sold more than once in the time period of our study.

5.2 Standard Log-linear Model

The log-linear approach has been a standard procedure of estimation used in the housing price
literature to estimate housing prices. This approach involves estimation of log of prices on all the
possible right hand side variables which, for our purposes would include the house characteristic
variables, school district dummies and other variables. In this approach, we will consider our
unbalanced panel data as a cross-sectional data and analyze. This in effect means that each
house which has been sold more than once in this time period will be considered as separate
observations and the panel nature of the dataset be ignored in this analysis. Hence the basic
framework of regression model for this paper would like the following:

log(priceit) = α+X ′iβ1 + β2FRMt +D′iβ3 + (Di ∗OEt)′β4 + uit (5.2)

where, i = 1(1)N, t = 1(1)T anduit ∼ N(0, σ2
t ), and all variables are defined as above.

Also of additional interest to us would be the effect of open enrollment around the borders of
CFSD, i.e., the effect on the buffer zone given in Figure 4.1. Hence we interact open enrollment
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numbers on the dummies for outer buffer zone and inner buffer zone. From equation (5.2) it is
quite clear that the vector of house characteristics, district and buffer dummies are time invariant
while the 30 year fixed rate mortgage, dummies interacted with open enrollment numbers and
the unobserved errors are time varying and some of them vary across cross-section.

5.3 Difference Model

The panel nature of the dataset has been used to exploit the possible removal of unobserved
heterogeneity across households by the implementation of a difference model. The underlying
assumption is that the house characteristics and other observed and unobserved characteristics
which don’t change over time get washed away when a difference is taken of the same house in a
different time period with itself. Hence the contributing factors to the change of sale prices would
thus be attributable to only the time-varying characteristics. Some of these variables might also
be varying across cross-section but the essence of such an approach removes the unobserved
characteristics which cannot otherwise be controlled for.

Hence the framework of a difference approach in a log-linear model would be the following:

log
(

priceit

pricei,t−ki

)
= β2(FRMt − FRMt−ki

) + [(Di ∗OEt) − (Di ∗OEt−ki
)]′ β4 + (uit − ui,t−ki

)

(5.3)
where i = 1(1)N , t = 1(1)T ;
ki = 1(1)11 is the difference between the years of sale for each house;
εit = (uit − ui,t−ki

) ∼ N(0, σ2
t + σ2

t−ki
− 2cov(uit, ui,t−ki

)).
One important correction that needs to be made because ki varies for each house if it has been

sold more than once. So in order to control for these differences, I include the difference in years
of sale for each house as a right hand side variable in equation (5.3). Finally in my difference
model, I also include dummies for each year of last sale to capture for any other correction due
to time trends.

As given in Table 3.1, this dataset has 32,117 houses which were sold twice and 9,137 houses
which were sold thrice in between 2001-2012. I considered only these 41,254 houses for our
difference model. For houses which were sold thrice, I took the difference between the third sale
and the first sale for constructing single differences. Hence all these houses in the difference
model will have a single observation which would be a differenced value for the normalized price
and all the time-varying right hand side variables. The time-invariant variables as suggested
would drop out.
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Chapter 6

Results and Implications

6.1 Regression Results

As discussed in Chapter 5, I have considered two basic frameworks for estimating housing prices
and house capitalization. The first is the standard log-linear model which has been used in most
of the studies so far. The second approach is an attempt to remove possible unobserved hetero-
geneity across houses in different school districts. This approach as described in the previous
chapter involves taking difference of those houses which were sold more than once. Regression
results of the eight estimated models are presented in the appendix. Four of these models are
done using the log-linear framework and the remaining four uses a first difference of the natu-
ral logarithms of the dependent variables used in the first four models respectively. Hence, as
defined, the last four are the difference models. A brief discussion of the parameter estimates
are given in the next subsection. The only variant in the first two models is that in the first
log-linear model I have used natural logarithm of normalized prices as the dependent variable
and in the second one a natural logarithm of normalized prices per square footage of livable
area as the dependent variable using all observations. The third and the fourth models have the
same respective dependent variables but with observations from 2006 onwards as we can now
use the data available on Charter Enrollments and see their effects when interacted with district
and buffer dummies while controlling for them. All the estimates reported are heteroscedasticity
consistent and standard errors are reported in parenthesis with the corresponding p-values.

6.1.1 Parameter Estimates of Log-linear Models

Let us first consider the standard log-linear results given in the appendix. These models include
natural logarithms of normalized prices regressed on all the house characteristics, FRM, yearly
dummies, district dummies and buffer dummies, and some interesting interactions of Open En-
rollment (OE) in CFSD with the district and buffer dummies. I have used Altar Valley School
District and the year 2001 as reference.
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In Model I, all the parameter estimates have expected signs. Here, I do not discuss the
estimates for all the variables we control for and thus focus on the variables of interest. Interesting
and intuitive estimates are those on the interaction of OE in CFSD with the outer buffer dummy.
It has a positive and significant coefficient of 0.0002063 suggesting that with increase in OE,
prices have increased in the outer buffer zone and has decreased after a certain number of open
enrollments as the quadratic coefficient is 6.19×10−8. Also, this model suggests that OE doesn’t
have any significant effect on the housing prices in the inner buffer zone since both the linear
and squared terms are statistically insignificant. But, a house which is in the inner zone is also
in CFSD and hence just the parameter estimates are not representative as we have to account
for the OE interaction with CFSD. Similar is true for outer buffer zone which is stretched out in
AUSD and TUSD. It is also interesting to note that OE when interacted with dummy for TUSD
gives a negative and significant coefficient of 6.06 × 10−5. This is difficult to interpret and one
possible intuition could be that with OE, home buyers are willing to pay higher to be on the
northern boundaries of TUSD rather than in the other parts of the district. Possibly, the higher
demands for houses on the boundaries of District No.1 are driving the prices down elsewhere in
the district.

Model II has the same regressors with log of normalized prices per square footage of livable
area as the dependent variable. This model gives similar results with almost all the interesting
interaction variables including the one with OE and outer buffer zone. We also find similar
results as in Model I with OE interacted with dummy for TUSD. But in this model we find that
OE has a positive and significant effect on the inner buffer zone and that effect is negative after
a certain number of open enrollments. This result is starkly different from Model I and hence
needs further attention.

Model III and Model IV provide regression results when I restricted the dataset to observa-
tions from 2006 onwards. The dependent variables are same as in the first two models respectively.
While all the parameter estimates have expected signs, most of these are insignificant. For Model
III, I obtain a 5% significant and positive estimate on the outer buffer zone when interacted with
OE in CFSD while a negative coefficient on the effect on inner buffer zone which is significant
at 10%. The effects on the non-linear terms for both these variables are not significant showing
expected linear effects on both the zones. Also we find that Charter Enrollments (CE) has a
negative effect on the outer buffer zone while has positive effects on inner zone and the remaining
district dummies. Model IV is similar to Model II but with observations from 2006 and we find
almost all insignificant impacts on key variables at 5% level of significance. Still effect of OE in
TUSD is negative and for the possible interpretation given above.

6.1.2 Parameter Estimates of Difference Models

By invoking the difference model we can wash away all the time invariant house characteristics
and the fixed effects of district dummies. Also it removes all the unobserved neighborhood
characteristics which are fixed over time and thus gives a model where the difference in logarithms
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of prices is just a function of the difference of time varying variables. I construct the difference
models based on the first four standard log-linear models. Hence Models V, VI, VII and VIII
are the differenced versions of Models I through IV respectively.

The parameter estimate on difference is sales years has a significant negative sign suggesting
that increase difference in sales year would reduce the difference in prices. This result is counter-
intuitive but explains a possible trend in falling normalized prices. The difference in FRM has
an expected significant positive sign which implies increased differences in interest rates have
negative effects on differences in prices. My linear models did not have expected sign on FRM
which is now captured in the first two difference models. Interestingly, although increase in OE
numbers in CFSD has positive and significant effects on the linear terms of both inner and outer
buffer zones while negative signs on the quadratic terms; I will show later the numbers of OE
which change the curvature for the two zones are different. Also the effects on differences in
prices are positive and significant for TUSD, AUSD, TVUD and CFSD.

For Model VII, which includes the Charter Enrollments and captures observations from 2006
has counter-intuitive signs for both difference in years of sale and FRM. But I obtain almost
significant and expected signs of the difference in OE numbers for both outer and inner buffer
zone. Also note that CE interacted with inner zone gives a positive effect on the difference in
house values.

Another interesting finding is that the difference models for the full dataset and the restricted
dataset give identical parameter estimates whether we use prices or prices per square footage as
an entry in the dependent variable. This is due to the fact that livable area hasn’t changed over
time and hence in the log-linear difference format gets washed away. Hence, we are essentially
considering Model V and VII in the first difference approach.

6.2 Marginal Effects

In this subsection I only present the marginal effects of OE in the two buffer zones considered
in this study. Other marginal effects are calculated similarly but are omitted. The method
implemented to calculate the marginal effects is given by the simplistic example of a dependent
variable log(y) which is a non-linear function of x:

log y = β0 + β1X ·D + β2X
2 ·D (6.1)

Marginal effect on log y :

∂ log y
∂X

= β1D + 2β2X ·D; whereD = 1, (6.2)

= β1 + 2β2X (6.3)
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Marginal effect on y:

∂y

∂X
= y [β1 + 2β2X] ; whereD = 1, (6.4)

Critical value of x:

xcritical = − β1

2β2
where whereD = 1, (6.5)

For this model, we are considering x to be OE in CFSD interacted with outer and inner
buffer dummies. The calculation of marginal effects on difference in prices for change in open
enrollment is difficult to evaluate as the log-difference model is a ratio of prices. The marginal
effects are calculated at median prices for each zone in the time-framework considered while an
average of OE in CFSD is considered which is rounded off to 489 students. Table 6.1 gives the
median home values in the buffer zones:

buffer zone All Observations Obs from 2006

Outer-buffer Median Sale Prices $209,110.60 $222,186.5
Median Sale Price per sq. ft. of
livable area

$97.96 $106.29

Inner-buffer Median Sale Prices $280,046.13 $309,898.24
Median Sale Price per sq. ft. of
livable area

$114.6 $125.45

Table 6.1: Median Prices in buffer zones for both Models

Using eqn 6.3 we calculate the marginal effects of OE on log (prices) in both the critical zones
considered in this paper, equation 6.4 gives the marginal effects on prices. While it is difficult to
calculate the marginal effects of difference in OE on actual changes in prices, but we can certainly
calculate the marginal effects on log of differences in prices. Fig 6.2 gives the marginal effects in
the standard log-linear framework. While all houses in the buffer zone are in CFSD, houses in
the outer buffer zone can either be in TUSD or AUSD. Hence, marginal effects on the outer zone
also depends if the house is in TUSD or AUSD. In Model I, we can conclude that an increase in
one more open enrolled student in CFSD would increase prices in outer buffer zone by $29 if the
house is in TUSD and $61 if the house is in AUSD. We also see that in inner buffer zone prices
increase by $44 in Model I which is counter-intuitive because we expect prices to go down in the
inner buffer zone. Similar results are observed for Model II where a price per square foot of living
area is considered as a dependent variable. Model III which uses the dataset from 2006 gives a
significant increase of $47 for AUSD while a decrease of $176 for TUSD (counter-intuitive). Also
a decrease in prices is observed for the inner buffer zone by $240. The additional variables of
interest in the models with dataset from 2006 are ones for Charter school enrollments and its
respective interactions. Once controlled for that, we find the expected sign for inner buffer zone
but not for outer zone in TUSD. While some of the effects don’t have expected signs, a general
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pattern is that whatever the direction of change is, inner buffer zone is most affected negatively
then outer zone in TUSD followed by outer zone in AUSD for positive changes in OE.

Figure 6.1: Marginal Effects of OE in buffer zones

Due to the non-linearity in the models it is also important to know the critical values of
OE which would change the curvature of housing price change. Another simple equation which
shows how I calculate the critical values of x is equation (6.5).

Equation (6.5) calculates the critical values of OE when the dependent variable changes its
curvature. We have observed significant non-linear entries in Models I II for the outer buffer
zone and none for the inner buffer zone in the log-linear models. For the differenced models we
observed non-linearity in both outer and inner buffer zones for both Models V and VII.

In Model I we can observe that OE will increase prices in the outer buffer zone till about
1,177 if the house is in TUSD and 2,405 if it is in AUSD respectively and then it would decline
the prices. It also shows that the critical number for inner zone would be 4391. Similarly, in
Model III we obtain that prices would go up perpetually in the outer buffer zone and go down
in the inner zone as the functional forms are linear. For the difference models, Models V the
similar numbers for outer buffers are 1,477 if house is in TUSD and 2026 if in AUSD. Model VII
gives 4144 and 2638 respectively for both these districts in the outer zone. While for the inner
buffer zone in the difference models we can obtain that prices go down significantly after 1562
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students in OE in CFSD from Model V and Model VII gives a critical value of 3915.
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Chapter 7

Conclusions and Future Work

This paper is a modest attempt to contribute to the existing literature on housing prices cap-
italization in the U.S. due to changes in public policies in the education sector. Considering a
twelve years dataset from 10 school districts of Pima County, Arizona this paper attempts to
evaluate the effect of Open Enrollment in the best school district on housing prices capitalization
in the neighborhood districts. In this paper I have addressed the issues usually considered in
hedonic models of housing prices by considering the standard log-linear approach and a differ-
ence methodology. The problem encountered in most of the studies is removal of unobserved
neighborhood characteristics which might bias the parameter estimates in a standard hedonic
analysis. Using the panel nature of the dataset this study explores the difference approach to
wash out the unobserved heterogeneity in houses which are time-invariant. Finally, I focused
on those houses which are in and around the boundary of CFSD by creating an outer buffer
zone which encompassed a 2 mile stretch outside its boundaries and a 1 mile stretch within the
boundary. It also included removal of houses in the north-eastern boundary which is covered
mostly by the Catalina Foothills for the inner buffer zone.

My results suggest that in the standard log-linear model we observe that housing prices have
appreciated in the outer buffer zone significantly but OE might have a negative impact if the
number exceeds a certain critical value. It also suggests that OE has insignificant and mildly
negative impacts on houses which are within the inner boundary. The results varied slightly due
to model variations but mostly the standard log-linear approach could capture some positive
effect on the houses in the outer buffer zone. Also, I observed that appreciation in house values
due to OE is higher in AUSD than in TUSD.

Since the log-linear model can be criticized on the grounds of omitted variables bias due
to the inability to capture all the unobserved time invariant neighborhood characteristics, this
paper shows the results of difference models of the standard log-linear models estimated. This
second approach obtains concavity of the effect of OE in outer buffer zone which is consistent
with the findings of the original models and concavity in effect of OE in the inner buffer zone
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but with different critical values. Here I observe that prices will go down in the inner buffer zone
but with more OE than in TUSD, which is counter-intuitive. But, the results are expected if we
compare AUSD with TUSD. While it is difficult to choose the best model from the eight models
estimated, a general overview from most of the models is that housing prices appreciated in the
outer-buffer zone significantly but might decline after a certain critical enrollment; the inner-zone
might have had a decline but it is not consistent with all the models. It is quite evident that the
controlling for the charter school enrollments, we get different results.

First, the difference models might be preferred over the standard log-linear models because
it captures certain unobserved heterogeneity by washing them out. If we believe the results from
the difference models over the standard ones, including the charter enrollments provide different
results. Second, it is also interesting to note that if OE has increased housing prices in the inner
buffer zone but it decreases certainly after a threshold value. This indicates that OE might
initially increase prices in both the zones due to other unobserved factors such as awareness,
family composition etc. but it certainly decreases the prices in the inner buffer after a critical
enrollment which is much lesser for the outer buffer in AUSD. The trend of OE in CFSD shows
that the critical level of students has been reached while the critical level for the outer buffer
in AUSD is yet to be reached. I also find counter-intuitive results for TUSD. The decline in
the outer zone is difficult to explain but it might show that over time with expansion of charter
schools and magnet schools, OE might affect negatively.

Future work remains to be done in terms of coming up with estimation techniques such that
unobserved time varying characteristics can also be controlled for as the method implemented
here can only remove time-invariant characteristics. One might thus incline towards this approach
rather than the one used in the literature. Finally, to capture intra-district effects one might
try matching schools with houses and see how distance from a desired school to the outer-buffer
zone affects people’s decision on paying a premium for the boundaries outside the best school
districts.
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FULL MODEL (ALL OBSERVATIONS) 

Dependent Variable 
Model I Model II 

Log(Price) Log(Price/Livable Area) 

Variable Estimate 
Pr > 
|t| Estimate 

Pr > 
|t| 

Intercept 9.50271(0.20201) <.0001 3.13818(0.22461) <.0001 

d_new 0.03988(0.00173) <.0001 0.03934(0.00172) <.0001 

ROOMS -0.03733(0.00098996) <.0001 -0.05854(0.00108) <.0001 

SQFT 0.00043233(0.00000359) <.0001 -0.00000939(0.00000334) 0.0049 

LANDSQFT 0.00000147(0.0000001238727) <.0001 0.00000166(0.0000001325683) <.0001 

BATHFIXTUR 0.02216(0.00056102) <.0001 0.02301(0.00053205) <.0001 

d_pool 0.10336(0.00185) <.0001 0.09456(0.00179) <.0001 

d_patio 0.08447(0.002) <.0001 0.0656(0.00202) <.0001 

d_garage 0.11901(0.00251) <.0001 0.09928(0.0025) <.0001 

d_ev_cool 0.46321(0.20015) 0.0207 0.43892(0.22284) 0.0489 

d_ac_cool 0.59009(0.20014) 0.0032 0.53364(0.22282) 0.0166 

d_fair_quality 0.24278(0.01065) <.0001 0.1416(0.01043) <.0001 

d_good_quality 0.26607(0.01077) <.0001 0.16047(0.01053) <.0001 

d_excellent_quality 0.29133(0.01874) <.0001 0.3083(0.01743) <.0001 

FRM 0.02302(0.00289) <.0001 0.02439(0.00288) <.0001 

d_tucson 0.39266(0.03088) <.0001 0.42612(0.03002) <.0001 

d_marana 0.38385(0.0309) <.0001 0.40288(0.03004) <.0001 

d_flowingwells 0.35121(0.03113) <.0001 0.38358(0.03031) <.0001 

d_amphitheather 0.45946(0.03092) <.0001 0.48291(0.03005) <.0001 

d_sunnyside 0.16233(0.031) <.0001 0.20704(0.03016) <.0001 

d_tanque 0.57302(0.03122) <.0001 0.60167(0.02994) <.0001 

d_cat 0.7317(0.03188) <.0001 0.7877(0.03088) <.0001 

d_vail 0.35642(0.03095) <.0001 0.37191(0.0301) <.0001 

d_sahuarita 0.24727(0.03099) <.0001 0.27697(0.03015) <.0001 

d_outer_buffer 0.13624(0.00854) <.0001 0.13444(0.00856) <.0001 

d_inner_buffer -0.09662(0.01627) <.0001 -0.11639(0.01402) <.0001 

d_outer_buffer  * Cat_Op_Enroll  0.0002063(0.00004869) <.0001 0.00021977(0.00004894) <.0001 

d_inner_buffer  * Cat_Op_Enroll  0.00004397(0.00008429) 0.6019 0.0000583(0.00007061) 0.409 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures in parenthesis correspond to heteroskedasticity consistent standard errors 

 

 

 

 

 

 

Variable Estimate 
Pr > 
|t| Estimate 

Pr > 
|t| 

(d_outer_buffer  * Cat_Op_Enroll )2 -0.0000000619001(0.00000003521847) 0.0788 -0.0000000680579(0.0000000354374) 0.0548 

(d_inner_buffer  * Cat_Op_Enroll )2 -0.0000000178971(0.0000000584202) 0.7593 -0.0000000346907(0.00000004883915) 0.4775 

d_tanque* Cat_Op_Enroll  0.00007899(0.00001759) <.0001 0.00007915(0.00001527) <.0001 

d_tucson* Cat_Op_Enroll -0.00006064(0.00000465) <.0001 -0.00006365(0.00000463) <.0001 

d_cat* Cat_Op_Enroll 0.00015717(0.000017) <.0001 0.0001744(0.00001573) <.0001 

d_amphitheather* Cat_Op_Enroll 0.00009143(0.00000561) <.0001 0.00009219(0.00000549) <.0001 

d_2002 0.03124(0.00309) <.0001 0.03264(0.00307) <.0001 

d_2003 0.06013(0.00437) <.0001 0.06101(0.00435) <.0001 

d_2004 0.0577(0.00426) <.0001 0.05979(0.00424) <.0001 

d_2005 -0.03172(0.0043) <.0001 -0.02842(0.00428) <.0001 

d_2006 -0.13457(0.00319) <.0001 -0.1302(0.00319) <.0001 

d_2007 -0.12526(0.00342) <.0001 -0.12031(0.00344) <.0001 

d_2008 0.05729(0.00383) <.0001 0.05994(0.00386) <.0001 

d_2009 0.28757(0.00881) <.0001 0.2927(0.00878) <.0001 

d_2010 0.16251(0.00751) <.0001 0.16795(0.00748) <.0001 

d_2011 0.10656(0.00859) <.0001 0.11125(0.00854) <.0001 

d_2012 0.07555(0.01083) <.0001 0.07818(0.01078) <.0001 

F-value 9768.00 2243.40 

R-squared 0.7163 0.3670 

Adj R-squared 0.7162 0.3668 

Observations 170291 170291 



MODEL WITH CHARTER SCHOOL DATA (OBSERVATIONS FROM 2006) 

Dependent Variable 
Model III Model IV 

Log(Price) Log(Price/Livable Area) 

Variable Estimate Pr > |t| Estimate Pr > |t| 

Intercept 9.01457(0.2307) <.0001 2.64945(0.24214) <.0001 

d_new 0.0179(0.00293) <.0001 0.01655(0.00298) <.0001 

ROOMS 0.00151(0.00011412) <.0001 0.0013(0.00010972) <.0001 

SQFT 0.00037175(0.00000396) <.0001 -0.00009689(0.00000402) <.0001 

LANDSQFT 0.00000171(0.0000001823236) <.0001 0.00000202(0.0000002079231) <.0001 

BATHFIXTUR 0.01978(0.00086411) <.0001 0.01903(0.00085598) <.0001 

d_pool 0.11458(0.00312) <.0001 0.10646(0.00311) <.0001 

d_patio 0.09087(0.00353) <.0001 0.06947(0.00357) <.0001 

d_garage 0.12971(0.00412) <.0001 0.10462(0.00411) <.0001 

d_ev_cool 0.1756(0.22659) 0.4384 0.08528(0.2384) 0.7205 

d_ac_cool 0.34379(0.22658) 0.1292 0.22038(0.23838) 0.3552 

d_fair_quality 0.27636(0.01656) <.0001 0.16768(0.01653) <.0001 

d_good_quality 0.29043(0.01673) <.0001 0.17435(0.01666) <.0001 

d_excellent_quality 0.37826(0.03021) <.0001 0.40147(0.02972) <.0001 

FRM 0.08183(0.00534) <.0001 0.08479(0.00537) <.0001 

d_tucson -1.6412(0.14495) <.0001 -1.60983(0.14661) <.0001 

d_marana 0.43994(0.04714) <.0001 0.45249(0.04657) <.0001 

d_flowingwells 0.39362(0.04777) <.0001 0.414(0.04727) <.0001 

d_amphitheather -0.58304(0.1657) 0.0004 -0.56948(0.16743) 0.0007 

d_sunnyside 0.16743(0.04732) 0.0004 0.19984(0.0468) <.0001 

d_tanque 0.26828(0.55284) 0.6275 -0.05508(0.48) 0.9086 

d_cat -0.10618(0.43303) 0.8063 -0.02824(0.42004) 0.9464 

d_vail 0.42907(0.04731) <.0001 0.43662(0.04676) <.0001 

d_sahuarita 0.25442(0.04733) <.0001 0.26901(0.04681) <.0001 

d_outer_buffer 0.23951(0.35318) 0.4977 -0.01322(0.3695) 0.9715 

d_inner_buffer -1.13694(0.68078) 0.0949 -0.45987(0.61021) 0.4511 

outer_eff_Op 0.00029538(0.00014216) 0.0377 0.00020791(0.00014836) 0.1611 

inner_eff_Op -0.00046877(0.00028307) 0.0977 -0.00014075(0.00026319) 0.5928 

d_outer_buffer  * Cat_Op_Enroll  -0.0000000800006(0.0000000529332) 0.1307 -0.000000101674(0.00000005442398) 0.0617 



Variable Estimate Pr > |t| Estimate Pr > |t| 

d_inner_buffer  * Cat_Op_Enroll  -0.0000000266389(0.00000009379542) 0.7764 -0.0000000153085(0.00000007676806) 0.8419 

(d_outer_buffer  * Cat_Op_Enroll )2 -0.00008199(0.00027108) 0.7623 -0.00025486(0.00023451) 0.2771 

(d_inner_buffer  * Cat_Op_Enroll )2 -0.00109(0.0000662) <.0001 -0.00109(0.00006723) <.0001 

d_tanque* Cat_Op_Enroll  -0.00030406(0.00020529) 0.1386 -0.00028432(0.0002001) 0.1554 

d_tucson* Cat_Op_Enroll -0.00046446(0.00007636) <.0001 -0.00046403(0.00007744) <.0001 

d_outer_buffer  * Charter_Enroll  -0.00000131(0.00000402) 0.7442 0.00000166(0.00000421) 0.6932 

d_inner_buffer  * Charter_Enroll  0.00001233(0.00000774) 0.1109 0.00000406(0.00000698) 0.5611 

d_Amphitheather  * Charter_Enroll  0.00001296(0.00000185) <.0001 0.00001298(0.00000187) <.0001 

d_Tanque  * Charter_Enroll  0.00000392(0.00000648) 0.545 0.00000795(0.00000562) 0.1569 

d_Tucson * Charter_Enroll  0.00002464(0.0000016) <.0001 0.00002454(0.00000162) <.0001 

d_Cat  * Charter_Enroll  0.00001063(0.00000502) 0.0342 0.00001042(0.00000488) 0.0326 

d_2008 0.17803(0.00341) <.0001 0.17558(0.00351) <.0001 

d_2009 0.48847(0.0095) <.0001 0.49102(0.00954) <.0001 

d_2010 0.40599(0.00933) <.0001 0.40969(0.00941) <.0001 

d_2011 0.33764(0.01074) <.0001 0.34017(0.0108) <.0001 

d_2012 0.33128(0.01453) <.0001 0.3331(0.01462) <.0001 

F-value 3759.58 1005.74 

R-squared 0.6781 0.3605 

Adj R-squared 0.678 0.3601 

Observations 80343 80343 

Figures in parenthesis correspond to heteroskedasticity consistent standard errors 

 

The model presented in the next page is an appended model which captures an additional effect of Open Enrollment in CFSD at outer buffer houses only in TUSD. Since the 

results are not much different, the interpretations remain similar to those from the ones already discussed. 

 

 

 

 



 

Dependent Variable Log(Price) 

Variable Estimate t-value Pr >|t| 

Intercept 9.50718 47.04 <.0001 

d_new 0.04161 24.01 <.0001 

ROOMS -0.03721 -37.7 <.0001 

SQFT 0.000432 120.51 <.0001 

LANDSQFT 1.47E-06 11.86 <.0001 

BATHFIXTUR 0.02185 39.01 <.0001 

d_pool 0.10196 55.31 <.0001 

d_patio 0.08363 41.86 <.0001 

d_garage 0.11588 46.14 <.0001 

d_ev_cool 0.46322 2.31 0.0207 

d_ac_cool 0.58911 2.94 0.0033 

d_fair_quality 0.24275 22.83 <.0001 

d_good_quality 0.26586 24.74 <.0001 

d_excellent_quality 0.29598 15.86 <.0001 

FRM 0.0231 8.02 <.0001 

d_tucson 0.39318 12.72 <.0001 

d_marana 0.38577 12.48 <.0001 



d_flowingwells 0.35089 11.26 <.0001 

d_amphitheather 0.46105 14.9 <.0001 

d_sunnyside 0.16189 5.22 <.0001 

d_tanque 0.5773 18.48 <.0001 

d_cat 0.73589 23.07 <.0001 

d_vail 0.35844 11.57 <.0001 

d_sahuarita 0.24867 8.02 <.0001 

d_outer_buffer 0.13791 16.88 <.0001 

d_inner_buffer -0.0964 -5.94 <.0001 

d_outer_buffer  * Cat_Op_Enroll 1.06E-05 0.23 0.8216 

d_inner_buffer  * Cat_Op_Enroll 4.45E-05 0.53 0.5963 

(d_outer_buffer  * Cat_Op_Enroll )2 -6.12E-08 -1.85 0.0642 

(d_inner_buffer  * Cat_Op_Enroll )2 -1.86E-08 -0.32 0.7495 

d_tucson*d_outer_buffer*Cat_Op_Enroll 0.000344 23.61 <.0001 

d_tanque* Cat_Op_Enroll 7.85E-05 4.47 <.0001 

d_tucson* Cat_Op_Enroll -7E-05 -14.88 <.0001 

d_cat* Cat_Op_Enroll 0.000157 9.26 <.0001 

d_amphitheather* Cat_Op_Enroll 0.000119 21.06 <.0001 

d_2002 0.03129 10.15 <.0001 

d_2003 0.0602 13.82 <.0001 



 

 

 

 

d_2004 0.05793 13.64 <.0001 

d_2005 -0.03139 -7.32 <.0001 

d_2006 -0.13413 -42.12 <.0001 

d_2007 -0.12496 -36.56 <.0001 

d_2008 0.05766 15.07 <.0001 

d_2009 0.28811 32.74 <.0001 

d_2010 0.16301 21.74 <.0001 

d_2011 0.10788 12.59 <.0001 

d_2012 0.07649 7.07 <.0001 

F-value 9609.04 

R-squared 0.7175 

Adj R-squared 0.7174 

Observations 170291 



 

Difference Model with All Observations (Model V) 

 

Figures in parenthesis correspond to heteroskedasticity consistent standard errors.  

As clarified, Model VI estimates are identical to Model V and hence are not reported. 

 

 

 

 

 

 

 

 

Dependent Variable 
Model V 

Log(Price) 

Variable Estimate Pr > |t| 

dif_cat_yr -0.02632(0.00164) <.0001 

dif_FRM -0.01671(0.00293) <.0001 

dif_(d_outer_buffer*Cat_Op_Enroll) 0.00027007(0.00005147) <.0001 

dif_(d_inner_buffer*Cat_Op_Enroll) 0.0002157(0.00008347) 0.0098 

dif_(d_outer_buffer*Cat_Op_Enroll)
2 

-0.000000101673(0.00000003759459) 0.0068 

dif_(d_inner_buffer*Cat_Op_Enroll)
2 

-0.000000178431(0.0000000591559) 0.0026 

dif_(d_Tucson*Cat_Op_Enroll)
 

0.00003029(0.00000545) <.0001 

dif_(d_Cat*Cat_Op_Enroll)
 

0.00028737(0.00001544) <.0001 

dif_(d_Tanque*Cat_Op_Enroll)
 

0.00016282(0.00002008) <.0001 

dif_(d_Amphitheather*Cat_Op_Enroll)
 

0.00014187(0.00000617) <.0001 

d_2002 0.14091(0.01351) <.0001 

d_2003 0.11517(0.00675) <.0001 

d_2004 0.09407(0.00517) <.0001 

d_2005 0.0319(0.0046) <.0001 

d_2006 -0.00767(0.00646) 0.2351 

d_2007 0.02145(0.00781) 0.0061 

d_2008 0.18525(0.00866) <.0001 

d_2009 0.31308(0.01034) <.0001 

d_2010 0.21945(0.01336) <.0001 

d_2011 0.17062(0.01302) <.0001 

d_2012 0.13711(0.0142) <.0001 

F-value 253.00 

R-squared 0.1143 

Adj R-squared 0.1138 

Observations 41254 



 

Difference Model with observations from 2006 (Model VII) 

 

Dependent Variable 
Model VII 

Log(Price) 

dif_cat_yr -0.0048(-0.00506) 0.343 

dif_FRM 0.12206(-0.01014) <.0001 

dif_(d_outer_buffer*Cat_Op_Enroll) 0.00064516(0.00026746) 0.0159 

dif_(d_inner_buffer*Cat_Op_Enroll) -0.00072173(0.00045272) 0.1109 

dif_(d_outer_buffer*Cat_Op_Enroll)
2 

-0.000000195873(0.00000009043613) 0.0303 

dif_(d_inner_buffer*Cat_Op_Enroll)
2 

-0.000000209206(0.0000001192419) 0.0794 

dif_(d_Tucson*Cat_Op_Enroll)
 

0.0003881(0.00011958) 0.0012 

dif_(d_Cat*Cat_Op_Enroll)
 

0.00236(0.00036152) <.0001 

dif_(d_Tanque*Cat_Op_Enroll)
 

0.0017(0.00046051) 0.0002 

dif_(d_Amphitheather*Cat_Op_Enroll)
 

0.00097805(0.00013759) <.0001 

dif_(d_inner_buffer*Charter_Enroll) 0.00002409(0.00001179) 0.0411 

dif_(d_outer_buffer*Charter_Enroll) -0.00000513(0.00000754) 0.4963 

dif_(d_Amphitheather*Charter_Enroll)
 

-0.0000201(0.00000334) <.0001 

dif_(d_Tanque*Charter_Enroll)
 

-0.00003556(0.00001102) 0.0013 

dif_(d_Tucson*Charter_Enroll)
 

-0.00000872(0.00000289) 0.0026 

dif_(d_Cat*Charter_Enroll)
 

-0.00005129(0.00000866) <.0001 

d_2007 0.20468(0.01225) <.0001 

d_2008 0.20057(0.01265) <.0001 

d_2009 0.44974(0.01485) <.0001 

d_2010 0.30459(0.02202) <.0001 

d_2011 0.31804(0.01906) <.0001 

d_2012 0.35857(0.01993) <.0001 

F-value 126.17 

R-squared 0.1729 

Adj R-squared 0.1715 

Observations 13303 

 

Figures in parenthesis correspond to heteroskedasticity consistent standard errors.  

As clarified, Model VIII estimates are identical to Model VII and hence are not reported. 

 

 

 

 

 

 

 

 



 

Since we are considering a difference model, it is important to look at the summary statistics of key 

variables for the different categories of single-houses sold: Sold Once, Sold Twice, Sold Thrice, and Sold 

more than three times. The following tables provide the summary statistics of these separate categories. 

 

Table: Houses Sold Once 

Variable N Mean Median Minimum Maximum Std Dev 

ROOMS 69,873 6.9 7 1 50 1.58 

SQFT 69,873 1,868.5 1727 224 9,949 689.5 

LANDSQFT 69,873 14,887.2 7755 140 1,718,375 29,651.8 

BATHFIXTUR 69,873 7.3 7 3 30 2.43 

Price 69,873 160,451.9 129,205.6 6,624.71 7,643,799 135,306 

Price_liv_area 69,873 82.57 76.47 4.1 4,065.9 44.5 

 

 

Table: Houses Sold Twice 

Variable N Mean Median Minimum Maximum Std Dev 

ROOMS 64,234 6.9 7 1 19 1.55 

SQFT 64,234 1,841.9 1,707 306 10,901 652.9 

LANDSQFT 64,234 12,693.4 7,526 1,152 2,006,163 257240.7 

BATHFIXTUR 64,234 7.28 7 3 28 2.36 

Price 64,234 166,396.4 124,873.8 4945.1 7,643,799 343,695.5 

Price_liv_area 64,234 88.35 74.68 3.6 6306.7 199 

 

Table: Houses Sold Thrice 

Variable N Mean Median Minimum Maximum Std Dev 

ROOMS 27,411 6.8 7 1 19 1.53 

SQFT 27,411 1,766.9 1,628 434 7977 617.7 

LANDSQFT 27,411 11,383.4 7,470 1,204 1,204,487 20944 

BATHFIXTUR 27,411 7.05 7 3 22 2.29 

Price 27,411 143,165.8 118,310.5 4,532.5 7,643,799 137,397.9 

Price_liv_area 27,411 78.77 73.83 2.4 5,168.2 70.34 

 

 

Table: Houses sold more than Thrice 

Variable N Mean Median Minimum Maximum Std Dev 

ROOMS 8,773 6.6 6 1 15 1.51 

SQFT 8,773 1,698.8 1,560 576 6,345 605.37 

LANDSQFT 8,773 10,683.8 7,517 1,768 216,245 13,568.6 

BATHFIXTUR 8,773 6.71 6 3 27 2.36 

Price 8,773 131,667.9 108,842.6 9,356.3 956,604.9 86,413.7 

Price_liv_area 8,773 74.96 71.66 4.9 292.6 28.25 
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Abstract

Last two decades have witnessed huge datasets in the fields of research, business and finance
with thousands of variables and billions of records. This presents difficulty in standard regression
analysis as the analysts face costs in terms of time constraint and computer memory size. In
this paper, I propose estimators using two procedures to estimate datasets of three different
sizes when the dependent variable is binary in nature. Both theoretically and empirically, this
paper shows how estimation time can be significantly reduced using the proposed techniques
resulting in linear unbiased estimators which have variances not much different from the classic
model. While the literature relied on splitting the entire dataset in blocks, I use replicates in
form of samples from the dataset using simple random sampling. Finally this paper endorses
one procedure above other on grounds of efficiency.



Chapter 1

Introduction

With the revolution in information technology, the last two decades have witnessed routine col-
lection of systematically generated data in fields of research, business and finance. Nowadays,
databases are attributed with hundreds of variables, billions of records and terabytes of informa-
tion. Information is increasing and more than 2.5 billion data are created everyday [Wikipedia].
In Information Technology the terminology of "BIG DATA" is used to designate those kinds of
datasets which grows so large that it becomes extremely difficult to capture, analyze and share
them. Barclaycard (UK) has more than 350 million transactions a year, Wal-Mart makes over 7
billion transactions a year, and AT&T carries over 70 billion long distance calls annually [Hand
et al.]. Scientists regularly face these problems in genomics, meteorology, complex physics, sim-
ulations, biological research and big corporate giants are spending huge sums to come up with
techniques and technology to handle such datasets. Oracle, IBM, Microsoft, SAP spent more
than $15 billion on data management and analytics [Economist, 2010]. The immediate conse-
quence of such databases is difficulties in storing, visualizing and analyzing, using classical data
analysis methods. The prime reason is limitation of computer memory and computational time
which hinders the ability to utilize the entire dataset.

The primary tasks in analyzing large datasets include data processing, classification, summa-
rization, visualization, association, correlation and regression. There is a rich literature on how
huge datasets can be aptly handled with little or no apologies in standard regression analysis.
Since regression analysis is not straightforward for massive datasets, the literature shows both
empirically and theoretically how splitting the datasets into appropriate blocks can be useful
in minimizing the computational time but still resulting optimal estimation results. The statis-
tical perspectives in analyzing massive datasets via Bayesian approach include works by Elder
Pregibon, Glymour et al., Ridgeway and Madigan, Jackman, Balakrishnan and Madigan. The
econometric approach can be found in the works of Fan et al. and Li et al. Literatures in the
econometric analysis include standard models using OLS procedure. For example, Fan et al.
shows using standard OLS estimation how a huge dataset can be split into several mutually
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exclusive blocks and then estimates from each block be combined to find out final parameter
estimates. They in particular combine the estimates by minimizing the variance of the final
estimator.

In this paper I use binary dependent variable model instead of standard continuous dependent
variable and use datasets of different sizes to study how we can handle them. Consequently, my
study differs from the previous work as it now needs to be treated as a linear probabilty model as
opposed to standard continuous variable model with OLS technique. I randomly generate data
of various sizes- 100 thousand observations, 1 million observations and 10 million observations
and use the model to come up with the parameter estimates. In all these models of different
sizes, I first regress using the entire data and then do the same by segregated portions of the
entire dataset. The portions of dataset chosen are different from the ones used in the literature.
In this study, replicates were formed by randomly choosing data from the existing dataset using
simple random sampling as opposed to just merely splitting them in parts. This paper is divided
into five sections. Section 2 describes how the data was generated and stored, section 3 focusing
on the methodology used, section 4 summarizing the results and final section concludes.
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Chapter 2

Data

Since the entire analysis and motivation for this kind of a study is pivoted crucially on the
computer used for the analysis, its specification is very important as results would vary from one
system to another. The computer used in this study is a DELL personal laptop with Intel (R)
Core(TM) 2 Duo CPU, a 3.00 GB DDR2 RAM and Windows Vista Home Premium as it OS.
All the regressions were run in the same computer to avoid any computer specific errors with
the same specification.

The dataset is randomly generated using SAS 9.2 (32) software and stored in SAS library
for all uses. The data includes four independent variables x1, x2, x3, x4 and an error term u

which were generated as normal random variables, v as standard normal to fit into the standard
assumptions of a probit model: x1 ∼ N(0.567, 1.577536), x2 ∼ N(1.936, 0.06589489),
x3 ∼ N(−2.986, 8.392609), x4 ∼ N(0.256, 0.183184),v ∼ N(0, 1)

The model is as follows:

yi = −2 + 0.8xi1 + 3.6xi2 + 1.3xi3 − 0.9xi4 + ui where i = 1(1)N (2.1)

yi =

0, if y∗i ≤ 0

1, if y∗i > 0
(2.2)

where yi is a latent variable.

y∗i = β′ixi + viwhere vi ∼ N(0, 1) (2.3)

First, data were generated for all the independent variables and the error term v. Using
all these the data I generated the latent variable and finally using the latent variable, data
on the binary variable y was generated using the above relationship between y and y∗. Three
different datasets of sizes 100 thousand, one million and ten million were generated separately
and analyzed. The set up of the model clearly shows that we should use probit model as the
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errors are normally distributed with mean 0 and equal variance of 1. All the usual assumptions
of the probit model have been satisfied and the theory is the standard one in the context of a
probit model. Given that the errors are normally distributed, we use the likelihood function of
the error coming from a standard normal distribution and maximize the log-likelihood to arrive
at the parameter estimates.
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Chapter 3

Methodology

This simple set up has been used to exploit how randomly selected replicates can be used to
arrive at parameter estimates which are then compared to the actual estimates found from the
results using the full dataset. There can three proposed approaches if the dataset cannot be
analyzed using all the observations. As opposed to the ones available in the literature where
dataset has been segregated into parts using mutually exclusive and exhaustive blocks, I have
randomly selected samples from the dataset which has been replicated to form several samples
of equal size. The sampling technique used is simple random sampling with replacement. So,
for example, if ’N’ is the population size, ’n’ is the sample size, we can choose ’R’ such samples.
These are the three approaches that can be utilized:

1. Create mutually exclusive and exhaustive blocks from the population such that all the
observations are utilized. Such kind of segregation has been adopted by Fan et al. and Li
et al. in standard linear regression models.

2. Samples of size ’n’, where n≤N, can be chosen ’R’ times such that nR = N. This is the
approach that has been exploited in this paper.

3. Samples can be chosen such that nR < N. The argument against such a technique would be
that if the computer memory is not constrained, one might want to implement the second
approach and use replicates to exhaust N.

Once the parameter estimates are available from all these samples/blocks, the important
concern would be to aggregate them and obtain final estimators for all the parameters. The
aggregation at this stage can be done in two possible ways:

• Procedure 1 (P1): The aggregate estimate for each parameter would be the just a simple
average of all the estimates for that parameter as obtained from the samples. I call these
estimators as the "simple mean estimators".
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• Procedure 2 (P2): The aggregate estimate in this second procedure is obtained by taking
a weighted average of the estimates of all the samples. These can be called as the "variance
minimized estimators".

I will first theoretically represent the above two proposed procedures and briefly discuss their
pros and cons in terms of their appropriateness in this context.

Simple Mean Estimators

This procedure is fairly easy to comprehend and carry out but it has some major flaws in terms
of interpretation. The proposition in this procedure is that the final parameter estimates can
be obtained by just taking the simple arithmetic mean of all estimates from the replicates for
each parameter. Hence, if β̂1

i , β̂
2
i , . . . , β̂

p
i are the estimates obtained for parameter βi from each

replicate j, where j = 1(1)p then the simple means estimator would be given by,

β̂i =
Σp

j=1β̂j

p
(3.1)

where j = 1(1)p, i = 1(1)k.
Clearly, this final estimator is linear and unbiased. The variances of β̂l can be obtained by

taking the simple average of variances obtained from each replicates, i.e.,

V
(
β̂i

)
=

Σp
j=1V

(
β̂j

)
p

(3.2)

where j = 1(1)p, i = 1(1)k.
and hence the variance obtained will not be a true representative of the actual variance of the

simple mean estimator. But since this procedure is fairly easy to carry out, we shall the results
obtained from this procedure to the results from variance minimized estimators as well as the
results obtained after using the entire observations.

Variance Minimized Estimators

In this procedure, the final estimate is a weighted average of the estimates from each replicate,
the weights being found by minimizing the variance of the final estimate. Also, we want the final
variance minimized estimate, β̃l, to be linear and unbiased. The weights for each replicate are
hence obtained:

Minimize V ar(β̃i) =
p∑

j=1
w2

jV ar(β̂i
j) (3.3)

where j = 1(1)p, i = 1(1)k.
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subject to

p∑
j=1

wj = 1 (3.4)

We need the constraint to make the estimator unbiased. The weights for each replicate of a
parameter is given as,

wj,i =
∏p

j=1 V ar(β̂i
j)

V ar(β̂i
j)
∑p

h=1

(∏
−h V ar(β̂i

j)
) (3.5)

where j, h = 1(1)p, i = 1(1)k.
Proof: To find out the final weights for each replicate, the Lagrangian function is first set

up,

L =
p∑

j=1
w2

jV ar(β̂i
j) + λ

1−
p∑

j=1
wj

 (3.6)

The first-order necessary conditions are given as,

∂L
∂wj

= 2wjV ar(β̂i
j)− λ = 0 (3.7)

∂L
∂λ

=

1−
p∑

j=1
wj

 = 0 (3.8)

By solving these (p + 1) equations, (3.5) is obtained. The second order sufficient conditions
are very easy to verify and hence has not been shown in this paper. This completes the proof. �

Hence, the resulting estimates are β̃i =
∑p

j=1 wj β̂
i
j with the final variances being equal to

V ar(β̃i) =
∑p

j=1 w
2
jV ar(β̂i

j), where the weights are obtained from the exercise above. It is easy
to note that the variance minimized estimator is not only linear but also unbiased by virtue of
the fact that all weights add up to 1.

We will compare the results obtained from this procedure to the first simple means procedure
as wells as the results from all the observations.
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Chapter 4

Results

In this section I discuss and compare the results found out from the two procedures mentioned
above and finally compare them with the estimates found from the regressions using the entire
dataset. There are two important aspects that motivate this study: first, if the proposed es-
timators are good enough instead of the ones found from the regression of the entire dataset
in terms of their estimated values and the variances; second, if the proposed procedures are
fairly less time consuming than the classical technique used in regression analysis, i.e., using all
observations available. The time components of the results are important because if computer
memory is constrained such that it cannot perform the regression using all observations, the
other proposed procedures can come handy due to reasons stated later.

This study comprises of analysis using randomly generated datasets on the probit model dis-
cussed above with three different sets of observations: 100000 (one hundred thousand), 1000000
(one million) and 10000000 (ten million). In procedures 1(simple means) & 2 (variance mini-
mized weighted average), I have varied the number of replications (R) and also the number of
observations in each replication (n) such that N = nR for each dataset. Fig 4.1 shows the time
taken by each of the two procedures for ’one hundred thousand’ observations along with the
probit regression using all observations. I report both the "Real time" and "CPU time" taken by
the computer to run the programs where the first denotes the elapsed time, i.e., the time taken
by ’wall clock’ and the later denotes the time taken by the processor to execute the written code
respectively (Fullstimer SAS option).

In fig 4.2 and fig. 4.3, similar results for datasets of ’one million’ and ’ten million’ are shown
respectively.

It is quite evident from the results presented above that both the proposed procedures take
longer time (except once) to execute the program when N = 100000 (Fig 4.1) no matter what
the replication number is chosen. But, time taken by both the procedures is significantly lesser
than the classical approach if N gets larger and if we choose n and R appropriately. So, for
example, time elapsed in executing the regression using 10 million observations is 16 minutes
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Figure 4.1: Time taken by different procedures for ‘One hundred thousand’ observations

Figure 4.2: Time taken by different procedures for ‘One million’ observations

and 3.6 seconds while Procedure 1 and Procedure 2 takes 5 minutes 26.4 seconds and 5 minutes 6.7
seconds respectively when number of replications is 20 with each having half million observations.
Thus, the gains in terms of time become evident from the procedures if the dataset is larger than
usual. From Fig 4.1, we see that if dataset is as large as one hundred thousand observations,
the proposed procedures fail in terms of saving the costs of longer time. As the dataset size goes
larger, there is considerable time difference between the proposed estimators and the estimators
using all observations but it crucially depends also on the number of replications chosen and
observations in each replication. The following graphs show how the elapsed time varies with
the ’R’ and ’n’:

It is quite evident from the above plots that time depends on the replication numbers and
also on the number of observations in both P1 and P2. When the dataset is large enough, in
this case of 1 million and 10 million observations, as R is increased time taken decreases, attains
a minimum and then again increases. Also, the time taken is minimized by P2 despite the fact
that P1 is fairly easier to carry out as a process. This feature is not quite obvious from the
first dataset as both P1 and P2 are claimed to have failed in terms of minimizing time due to
its smaller size. With large datasets, it may be hypothesized that time would exhibit almost
a U-shaped curve with R. So in order to minimize time with any of the proposed procedures,
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Figure 4.3: Time taken by different procedures for ‘Ten million’ observations

choosing optimal ’R’ and ’n’ is crucial as otherwise it would fail to reduce time.
Now I revert back to the first important aspect of the results which come in the form of

appropriateness of use of the estimators from the proposed procedures, viz. the simple mean
estimator and the variance minimized estimator. In this paper, the parameter estimates found
from P1 and P2 are compared to estimates from classical approach and the variances of these
guide us to choose among P1 and P2. The results are again shown for the three different cases
with observations one hundred thousand, one million and ten million. First, let us compare the
results for our first dataset of 100000 observations. The model is again,

yi = −2 + 0.8xi1 + 3.6xi2 + 1.3xi3 − 0.9xi4 + ui where i = 1(1)N (4.1)

It is important to note here that the given R, n is so chosen such that nR = 100000. Now, from
Figure 4.7 it is evident that there is not a significant difference between the parameter estimates
and the standard errors from P2 are smaller than the standard errors obtained from P1, the
simple means procedure. When R = 1, i.e., all the observations are selected with probability
1 in the replication, it gives the same parameter estimates and the standard errors. But, as R
is increased to 10, the standard errors from P2 are not much different from the standard errors
obtained from the classical approach while the standard errors from P1 are almost 10 times,
i.e., the resulting variances would be almost 100 times the original variances for most of the
parameters.

Similar results for the other two datasets are attached in the appendix. Since the time taken
by both the procedures is almost the same and results show that for the two larger datasets,
minimum time is achieved by P2 in both the cases and also variances are closer to the ones found
by using the entire dataset. Hence P2 can be considered to produce reasonable estimators and
better than the ones found from P1.
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Figure 4.4: Plot of time against different replication numbers (R) and observations (n) in case
of N =100000
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Figure 4.5: Plot of time against different replication numbers (R) and observations (n) in case
of N = 1000000

13



Figure 4.6: Plot of time against different replication numbers (R) and observations (n) in case
of N = 10000000

Figure 4.7: Comparing Estimates and Standard Errors from all procedures when N = 100000
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Chapter 5

Conclusions

In the era of information technology advancement when massive datasets are no longer rare in
the fields of research and science, business and finance, internet and retailing, statistical methods
are available for data mining but not typically available for analysis of such huge datasets. While
there is a substantial literature on how huge data can be analyzed for estimation in regression
analysis of continuous variables, this paper is an attempt to come up with reasonable estimators
in regression analysis of a probit model. The paper discusses about two proposed procedures in
both of which the entire dataset is segregated in parts by randomly selecting observations by SRS
technique and repeating the process to select replicates each having same number of observations.
The first procedure P1 gives us a simple technique to aggregate the information from all replicates
by simply taking the arithmetic mean of the parameter estimates from each replicate. It has
been shown to be linear and unbiased. The variance for such an estimate is different from the
arithmetic mean of variances from the replicates and hence is not a good proxy for the former.
Finally, the second procedure P2 provides both theoretically and empirically results which give
rise to linear unbiased estimators by minimizing the variance of the weighted estimate. This
procedure is shown to be optimal in the sense of minimizing the variances of the estimates as
well as reducing a significant amount of time in the estimation using randomly generated data.

While it has been shown using datasets of various sizes that as the data size grows larger,
there is a significant amount of time that can be saved using both the procedures, but regression
results show that variance minimized estimators have variances as low as the ones from the
regression of full dataset. It has also been argued that the mean of variances are not a proxy for
the variances of the simple means estimator and are hence P1 is a better procedure than P2 in
terms of precision of proposed estimators. This proposed procedure gives estimators which can
come very handy with extremely large datasets. Also when a researcher is choosing dependent
variables to fit a probit model and hence has to run several regressions, the variance minimized
estimators might be used instead of the classical estimator as it would significantly reduce the
process time in presence of a very large data.
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Further research is needed for applying these techniques in probit models with extremely
large datasets. The asymptotic properties of these estimators are yet to be verified and it might
be useful to see how these estimators behave if nR < N. Also, it might be a good exercise to
compare these results to the ones in which the entire dataset is segregated into equal blocks
by partitioning the data as has been done in the literature. The optimal number of blocks ’R’
needs to be found out analytically for a dataset of a particular size given the specifications of
a computer. Finally, since all the results pertaining to time depends a lot on the memory of a
computer, the optimal size of R is supposed to vary for different specification and hence would
require further research.
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Appendix

Figure 5.1: Comparing estimates and standard errors from all procedures when N=1 million

Figure 5.2: Comparing estimates and standard errors from all procedures when N=10 million

* Note that the variance from P2 is less than that obtained from all observations due to round-
ing off after six decimals; otherwise it is statistically not possible. It also shows the proximity of
the variances obtained by P2 when compared to the actual ones.
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