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Abstract
We study the effects of self-policing environmental regulations on the quantity of air
pollutants released to the environment, as well as on the number of inspections that the
regulatory agencies conduct. We find that audit privilege and self-policing policies have a
negative and significant impact on the number of inspections, while immunity increases
inspections in a significant way. Emissions are increased by immunity laws and
decreased by audit privilege regulations. We find evidence that self-policing policies
support what the theory predicts: self-policing regulations reduce inspections and,
therefore, decrease enforcement costs (Kaplow and Shavell, 1994; Malik, 1993; Innes,
1999a: Innes, 1999b; Innes, 2000; Innes, 2001). We also find that audit privilege and
immunity laws that apply to administrative and civil penaties have a more significant
effect on inspections, compared to audit privilege and immunity laws that apply to

administrative, civil and criminal penalties.



Chapter 1. Introduction

Over the last decade, several US states have adopted environmental regulations
that provide incentives for self-policing.* As more statesin the country enact
environmental laws that protect voluntary environmental audits, the concern of
environmentalists and of the Environmental Protection Agency (EPA) about their effects
on the environment is also growing.? As of today, forty four US states have adopted some
kind of regulation that protects environmental audits. Although the popularity of these
regulations has grown in the last ten years, the empirical literature that analyzes their
consequences to the environment and to the enforcement effort of regulatory agenciesis
quite limited.?

Environmental audit regulations are of three types: self-policing policies, audit
immunity laws and audit privilege laws. Self-policing policies and audit immunity reduce
the penalties for voluntarily disclosed violations, whereas audit privilege protects the
information contained in the environmental audits from any legal action. The existing
theory isfairly comprehensive in the analysis of self-policing regulations that grant
penalty reductions, such asimmunity laws and self-policing policies, nevertheless, to our
knowledge, there is no theoretical work that analyzes the effects of audit privilege laws
on the environment and on the enforcement level of the regulator.

According to the theoretical literature on self-policing, when an adequate set of
incentivesisin place to encourage firms to self-police, enforcement resources will be
saved, since the regulator does not have to invest in enforcement resources to inspect

firmsthat voluntarily disclose their violations (Kaplow and Shavell, 1994). According to

! Asused in Stafford (2006a), the term self-policing refers to the voluntary reporting of environmental
violations to the regulator, through an environmental audit.

2|nits Audit Policy, EPA opposes to the environmental audit regulations adopted by some states. See
Chapter 2 for a detailed discussion.

3 Main empirical work has been conducted by Stafford (2004), Stafford (2005), Stafford (2006b), Stretesky
& Gabridl (2005) and Pfaff and Sanchirico (2004).



Kaplow and Shavell (1994), an adequate set of incentivesis assured by setting the
maximal feasible penalty for those firms that do not self-police and a penalty equal or
less than the expected fine self-policing firms would face if caught in violation.* Other
theoretical studies stress the effectiveness of environmental audit regulations beyond
saving in enforcement resources (Innes, 1999a: Innes, 1999b; Innes, 2000; Innes, 2001).
The objective of thisthesisis to estimate the effects of self-policing regulations on
the environment and on the enforcement level of the regulatory agencies. Previous
empirical studies use facility-level data to analyze the impact of these regulations on the
probability of self-policing, the probability of violation and on the probability of being
inspected in the future (Stafford, 2005; Stafford, 2006b; Stretesky and Gabriel, 2005).
Our approach is different in that, rather than investigate the effects of environmental audit
regulations on the probability of violation or inspection, we analyze the effects of
environmental audit regulations on the number of inspections and the amount of
pollutants released to the air from 1989 to 2003, using a panel dataset at the industry-
state-level. In order to test the effects of environmental audit regulations on the
environment, we estimate an emissions equation, using quantity of air pollutants released
to the environment as the dependent variable. We aso estimate an inspection equation to
measure the effects of these regulations on the enforcement level of the regulatory
agencies, using the number of inspections conducted by the state and by EPA as the
dependent variable. We control for industry, policy and state specifics in each equation.
Since audit privilege, immunity and self-policing policies vary across states, we
estimate an emissions and an inspection equation using a broader classification of the
three regulations. More specifically, every regulation is divided into two different

regulations. Audit privilegeisdivided into audit privilege that grants legal protection for

* According to Kaplow and Shavell (1994), the maximal feasible penalty equals the firm’s wealth.



administrative and civil offenses and audit privilege that grants protection for
administrative, civil and criminal offenses. Immunity is divided the same as audit
privilege, whilst self-policing policiesis divided in self-policing policies that apply to all
business and self-policing policies that apply to business with less than 20 employees.
Tables 3 and 4 present the differences and years of adoption of the environmental audit
regulationsthat arein place in several US states. We find that there are significant
differences between state regulations. In particular, audit privilege and immunity laws
that apply to administrative and civil penalties have a more significant effect on
inspections than those that apply to administrative, civil and criminal penalties.

We also consider two specifications for the inspection equation: a non-dynamic
and adynamic model. In the dynamic model we introduce inspections lagged one period
as aregressor to control for autocorrelation. Our results show that past inspections have a
significant and positive effect on contemporaneous inspections.

The outline of the thesisis asfollows. The literature review is presented in
Chapter 2, it includes two sections: a section on theoretical work and a section on
empirical research. Chapter 3 presents a brief summary of the environmental audit
regulations, their provisions and their differences between and within each other. Chapter
4 summarizes the data and the expected effects of the independent variables on the
emissions and on the inspection equations. Chapter 5 presents the models and the
methods used to estimate both equations. Chapter 6 presents the results. In Chapter 7 we

present conclusions and, finally, in the Appendix we present tables with all our results.
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Chapter 2. Literature Review

In the 1990s, the EPA published its Audit Policy, entitled “ Incentives for Self-
Policing: Discovery, Disclosure, Correction and Prevention of Violations,” that provides
incentives for firms that self-police their environmental violations. Besides the Federal
Audit Policy, several US states have adopted laws and policies that encourage firms to
self-police. Although the implementation of these policies has spread nationwide, the
literature concerning the empirical analysis of such laws and policiesis quite limited.

This chapter presents aliterature review on self-policing in environmental
regulation. The first section reviews theoretical treatments of self-policing and the second

section reviews existing empirical studies.

2.1 Theoretical Studies

With the exception of Stafford (2006a) and Livernois and McKenna (1999), the
theoretical models developed so far to analyze self-policing are static. The static models
presented in this section are Kaplow & Shavell (1994), Malik (1993), Innes (1999h),
Innes (1999a), and Innes (2001) and Innes (2000).

Thefirst model that analyzes the implications of self-policing regimes on the
enforcement effort of environmental agencies was developed by Kaplow and Shavell
(1994).

By establishing an expected penalty for firms caught in violation which is equal to
the penalty they would face if they disclose their violations, Kaplow & Shavell (1994)
show that enforcement costs can be saved. Since this penalty structure maintains the same
level of deterrence as regimes without self-policing incentives, self-policing assures that
firms that have committed a violation will report them to the regulator. Thus, the

regulatory agency does not have to invest resources to inspect self-policing firms.
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Moreover, when firms are risk-averse, additional costs are saved since the penalty for
self-policing firmsis certain, rather than probabilistic.

In his model, Malik (1993) introduces stochastic pollution, social costs associated
with the imposition of sanctions and errors in the monitoring technology used by
regulators. In his model, self-policing is mandatory rather than voluntary, which is
commonly referred as self-reporting. Self-reporting is only desirable when the regulator
can not set the penalty at the maximum feasible level and when the quality of monitoring
technology is erratic. In particular, in the presence of self-reporting, the regulator faces
fewer incentives to improve its monitoring technol ogy.

These two studies stress the idea that enforcement costs are saved under self-
policing and self-reporting schemes, vialess inspections. Kaplow & Shavell (1994) and
Malik (1993) also state that under administrative costs, self-policing and self-reporting
schemes could impose higher social costs.

Innes (1999b) shows that when remediation is valuable,® self-policing regimes are
more efficient than non self-policing regimes since remediation can be achieved
immediately after violation and enforcement resources are saved. According to Innes
(1999h), by setting the expected fine that afirm would face if caught in violation equal to
the remediation cost it would incur if it is self-policing, the same level of deterrenceis
achieved, remediation is promptly made and the monitoring effort can be set to a
minimum yielding to an optimal level of remediation.

In self-policing regimes remediation is assured ex-ante, which produces clean-up
benefits. Innes (1999a) analyzes the social benefits of regimes with self-policing in the
presence of positive ex-post gains of clean-up (when ex-post damages are greater than the

cleaning costs plus the ex-ante damages). With self-policing, clean-up is assured, while

® Remediation is valuable when there are economic gains obtained from the remediation of harm.
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without self-policing, clean-up is only achieved with the probability of detection (when a
firmis caught). Self-policing aso saves enforcement costs, since the government can
lower its monitoring effort and increase the penalty for non-reporters without altering the
level of deterrence.

Aside from the benefits identified when remediation is valuable in self-policing
regimes, Innes (2001) analyzes the benefits of these regimes when violators engagein
avoidance activities to reduce the probability of being caught. According to Innes (2001),
enforcement costs, avoidance costs and deterrence costs are each saved under self-
policing schemes. Enforcement and avoidance costs are saved because violators are
encouraged to self-police their violations, since the sanction they face if they self-police
isless or equal to the expected costs they would face if caught.® As stated before,
deterrence costs can aso be saved because the government can lower the monitoring
costs and obtain the same level of deterrence by increasing the sanction for non-reporters.

In another study, Innes (2000) examines the advantages of self-policing schemes
when violators face heterogeneous probabilities of apprehension. In his model, the
probability of detection depends on the government monitoring effort, denoted by r(g),
and the “detectability” of afirm, denoted by o; the latter one is exogenous and does not
depend on firm characteristics. In aregime without self-policing, firmswith high ¢ are
overpenalized and firms with low ¢ are underpenalized, since the expected fine depends
on the detectability factor. In a self-reporting scheme, the government sets afine for self-
policing firms that equals the expected sanction that they would face if caught. In doing
so, firms that have a high detectability will self-report; overcompliance by those firms

will be reduced and efficiency will be enhanced overall.

® In his model the expected costs comprise the expected fine as well as the avoidance costs.
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The models presented so far restrict the interaction between the regulator and the
firm to one period. Dynamic models analyze strategic behavior of the regulator and the
firms through time. In a dynamic setting, some firms will self-police because that will
decrease the frequency of inspectionsin the future (Stafford, 2006a; Pfaff and Sanchirico,
2004). There are two basic works concerning dynamic interactions reviewed here:
Livernois and McKenna (1999) and Stafford (2006a).

In the context of self-reporting, Livernois and McKenna (1999) analyze the
paradox of high compliance rates and low expected fines, which are commonly observed
in the real world. According to their model, setting the penalty for non-compliance to a
minimum and the penalty for false reporting to its maximum carries the effect that some
firmsin the continuum will find non-compliance more cost effective. These firms will
then report truthfully and the compliance rate will be higher, since detection is promptly
made.

Stafford (2006a) analyzes the effects of self-policing regulations using Harrington’s
targeting enforcement model (Harrington, 1988).” In Stafford’s model, there are two
sources of non-compliance: probabilistic events and deliberate events, and thereisa
trade-off between policies that enhance pollution abatement and those that increase audits
and disclosures. Whether self-policing regimes improve environmental protection
depends on setting the proper combination of fines and on the policy objectives of the

regulator.

" In Harrington’s model, the regulator classifies and targets firms according to past compliance. “Good”
firms are those ones that have complied with environmental regulationsin the past, while “bad” firms have
ahistory of violations. Firms can switch groups with a given probability, depending on recent inspections
and the level of cooperation with the regulator through voluntary disclosures.
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2.2 Empirical Studies
The articles presented in this section are Stafford (2005), Stafford (2006b), Stretesky &
Gabrid (2005), Pfaff and Sanchirico (2004) and Stafford (2004).

Stafford (2005) studies the effects of EPA Audit Policy and state regulations on
the probability of being inspected, as well as on the probability of violating hazardous
waste regulations. Using a panel dataset for the period 1992-2001 from EPA’s Resource
Conservation and Recovery Act (RCRA) database, Stafford estimates a Probit model for
the inspection equation and a censored Probit model for the violation equation.

According to her results, all environmental audit regulations are significant
determining the probability of inspection. Those facilities that are located in states that
adopted self-policing policies or audit privilege laws are less likely to be inspected. In
contrast, thereis ahigher probability that facilities located in states that adopted
immunity laws are inspected with more frequency. After the implementation of EPA’s
Audit Policy, facilities are also more likely to be inspected. Interestingly, the effects of
environmental audit regulations on the violation equation are similar to the effects they
had on the probability of inspection: self-policing policies and privilege laws decrease the
probability of violation, while immunity laws increasesit. Except for EPA’s Audit
Policy, the rest of the regulations were significant. Another relevant result is that facilities
that were inspected more intensely in the past five years are more likely to be inspected in
the present. This result indicates that EPA uses atargeting strategy to inspect facilities,
according to Harrington’ s hypothesis.

If privilege laws and self-policing policies are used by the regulatory agencies as
substitutes for inspections, one would expect that they have a positive effect on the
probability of disclosure. Using RCRA data, Stafford (2006b) shows that self-policing

policies and immunity laws have a significant and positive effect on the probability of
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disclosure, while privilege laws have a positive but insignificant effect. She also shows
that those facilities that self-disclose a violation and are located in states that enacted
audit privilege or self-policing policies are “rewarded” with alesser probability of
inspection. Asin the inspection case, inspection history plays an important role in
determining the probability of disclosure: facilities that were inspected more frequently in
the past five years have a higher probability of disclosure.

According to Stafford (2005 & 2006b) the fact that some facilities are inspected
more often than othersis based on past inspections and past environmental performance.
Whether or not this targeting strategy is based upon industry and company specificsis
addressed by Stretesky and Gabriel (2005). In their study, they compare a control group
(companies that were found in violation by EPA) with an event group (companies that
under EPA’ s Audit Policy disclosed a violation) to study the motivation for acompany to
discloseits violations. After controlling for company size, market structure, credit
performance, property regime (public or privately owned) and past enforcement actions
taken against the company, the probability of disclosureis positive and significantly
explained by past inspections, variety of laws violated in the past and regional inspection
levels. Neither company size nor market concentration are significant in explaining the
probability of disclosure.

The fact that company specifics do not affect the probability of disclosure might
be influenced by the nature of the violations disclosed to EPA. If disclosed violations are
related to filing oversights rather than failing to comply with emissions standards, an
audit can be done at areasonably low cost, regardless of the size of the company. On the
other hand, if disclosed violations are related to failure to comply with emissions
standards, it is more likely that an audit to detect such aviolation will require investing in

more advanced monitoring equipment, which only larger companies are willing to do.
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Pfaff and Sanchirico (2004) compare the differences between violations self-
disclosed under EPA’s Audit Policy and violations found as aresult of an inspection. The
majority of the violations disclosed to EPA from 1994 to 1999 are related to failure to
report required information relating to substances transported or failure to record and
keep track of hazardous materias. In contrast, the violations most commonly found by
EPA are associated with non-compliance with emission standards. This fact supports the
results found by Stretesky and Gabriel (2005), in which company sizeis not significant in
determining the probability of disclosure.

Using fines as a proxy for the severity of violations, Pfaff and Sanchirico (2004)
also find that, in general, violations disclosed to EPA are less severe than violations
found as aresult of an inspection.®

In another study, Stafford (2004) analyzes the political, environmental and
institutional factors that influence states decision to adopt a given environmental audit
regulation; namely, audit privilege, immunity or self-policing policies. The probabilities
of adoption of agiven regulation are influenced by different factors. For the adoption of
self-policing policies, only the political context is significant; for immunity, political
factors as well as the nature of the relationship between the state and the Federal
government are important in determining its adoption; for audit privilege, a combination
of political, environmental and institutional elements are relevant. This might explain the
fact that some states adopted a combination of regulations

The differences found by Stafford (2004) on the factors that cause the adoption of
different environmental audit regulations indicate that there are significant differences

between these regulations. In the next Chapter, we summarize the different

8 Thisis not surprising since EPA’s Audit Policy explicitly limits the application of the policy to violations
that do not “[...] resulted in serious actual harm, or may have presented an imminent and substantial
endangerment, to human health or the environment.” For a further discussion, see Chapter 3.
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environmental audit regulations that are in place at the federa and state level. The
resulting comparison is the basis for the classification of regulations that is used in the

empirical model.
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Chapter 3. Environmental Audit Regulations
The Federal Government published its Audit Policy for the first time in 1986.

Thiswas the first attempt to promote the implementation of environmental audit
programs on a national basis. Since the first publication, the Audit Policy has been
revised twice. Thefirst revision, in 1995, lead to increased incentives for firms to conduct
audits by reducing penalties for entities that voluntarily disclose aviolation. The 1995
EPA’s Audit Policy reduces the gravity-based penalty up to 100% of aviolation found as
aresult of an internal audit. There are nine requirements that an entity must meet in order
to qualify for the benefits of the policy.® In general terms, the Audit Policy Conditions are
asfollows:

1. Theviolation must be discovered as aresult of an environmental audit.

2. The environmental audit must be conducted voluntarily.

3. Theviolation must be disclosed in aperiod of ten days after discovery.

4. Theviolation was not found by athird party.

5. Theviolation must be corrected no later than 60 days after the discovery.

6. Thefirm must take preventive stepsto avoid the recurrence of the violation.

7. A similar or related violation must not have occurred in the past three years.

8. Theviolation does not “result in serious actual harm” or represents an “imminent

and substantial endangerment to public health or the environment.”

9. The firm must cooperate with EPA to establish the application of the Policy.

After an evaluation of its Policy in 1998, EPA amended its 1995 Audit Policy. In the

third version of its Policy, the period of disclosure of aviolation was extended from 10 to

® See EPA’s “Incentives for Self-Policing: Discovery, Disclosure, Corrections and Prevention of
Violations.”
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21 days and the application of the Audit Policy Conditions when afirm istransferred to
other owners was made explicit.

Some authors claim that EPA’s Audit Policy does not give the proper incentives
to disclose violations, since the information obtained from the audits is not legaly
protected and can be used to the detriment of the disclosing firm (Hawks, 1998; Stafford,
2005). The current legislation provides limited protection for self-audits in the form of
privilege. Firms can get protection from three legal sources: the attorney-client privilege,
the attorney-work product privilege and the privilege of self-critical analysis (Hawks,
1998). The principal limitation of these privileges is that they do not protect the
information disclosed in the audit (Hawks, 1998; Frey and Johnson, 2000). Although
companies might find some legal resources to protect disclosed information, this
protection is rather limited.

In 1993, Oregon enacted its Environmental Audit Privilege, which aimsto give
protection to the information disclosed as aresult of a self-audit. Since then, half of the
statesin the country have adopted similar laws. Moreover, some states took an additional
step and enacted audit immunity laws.

An environmental audit, as defined by EPA, isa“[...] systematic, documented,
periodic and objective review by regulated entities of facility operations and practices
related to meeting environmental requirements.” In general, states that adopted
environmental audit laws use asimilar definition in their statutes. While audit privilege
laws prohibit the use of environmental audit reports as evidence in any administrative,
civil, and criminal or enforcement action, immunity laws waive the penalty resulting
from aviolation voluntarily disclosed to the environmental agency. Although
environmental audit state laws are similar in their provisions (Hawks, 1998), they differ

in the type of penalties for which the privilege and the immunity apply (see Table 3). In
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only eight states, environmental audit laws protect audits from administrative, civil and
criminal legal actions. For the remaining states, environmental audit laws are more
limited in the sense that they only apply to administrative and civil proceedings (see
Table 3). Thus, we might expect a higher number of disclosuresin states that also protect
audits from criminal acts.

Initsthird version of its Audit Policy, EPA explicitly declaresits opinion

regarding state environmental audit laws:

The Agency remains firmly opposed to statutory and regulatory audit
privileges and immunity [...]. Audit privilege and immunity laws are unnecessary,
undermine law enforcement, impair protection of human heath and the
environment, and interfere with the public’s right to know of potential and existing
environmental hazards.

In response to EPA’ s opposition to privilege and immunity regulations, some of the states
have made some amendments to their legislation regarding their environmental audit
regulations. For example, audit privilege laws in Texas, South Carolina, Mississippi and
Oregon were changed to only provide evidentiary privilege to administrative and civil
penalties, excluding criminal offenses (see Table 3).

Given the strong opposition of EPA to audit privilege and immunity laws and the
growing interest of the public and the government in promoting self-policing regulations,
the policies and laws that that some states have adopted so far differ in their applicability
aswell asin their scope (see Tables 3 and 4).

In general, the self-policing policies that some states have incorporated to their
environmental regulations are very similar to EPA’s Audit Policy in terms of definitions,
conditions and incentives (Frey and McCollough, 2003). However, arelevant distinction
comes from the scope of the policy in place. Maine and New Y ork are the only US states
where self-policing policies are valid for small businesses (with 20 or less employees)

aone (see Table 4). Sinceiit is possible that administrative costs of inspecting small firms
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are higher compared to the benefits of deterring them from committing aviolation, itis
possible that these two states are using self-policing policies as direct substitutes for
inspections.

In the next Chapter we present the data and the variables used in our estimations.
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Chapter 4. The Data and the Variables

Thisthesis uses a panel dataset from the period 1989-20083 to test the implications
of self-policing policies. Table 2 presents a description of the variables, their sources,
class and level of aggregation.'® Data on emissions and inspections, which are the
dependent variables, are aggregated at the industry-state-level.** These variables were
obtained from EPA’s Toxics Release Inventory (TRI) and the Integrated Data for
Enforcemet Analysis (IDEA) databases, respectively. Emiss contains total onsite air
emissions registered in the TRI.* Inspec measures the total number of inspections
conducted by EPA and state environmental agenciesrelated to air programs.

The independent variables are classified as policy, industry or state variables.
Industry variables were obtained from Compustat, a database with financial information
on publicly traded companies. The industry pool contains expenses on R&D (randt), age
of the assets (age), Herfindahl Index (hfin), annual sales growth (growth), number of
employees (emplsc) and sales (salesct). These variables are intended to control for
industry characteristics, such as market structure and size. Unfortunately, thereis no
information industry-state-level for alarge number of companies recorded in Compustat,
therefore, all of theindustry variables are at the industry-level with the exception of

salesc and emplscale, which were scaled by the ratio

S =1 41

19 All prices are real (100=1995).

" Thelevel of aggregation of the industry variables is at the three-digits SIC code.

12 | ndividuals for which total on site air emissions are less than one pound or more than ten million pounds
were eliminated from the sample.
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where the ith and jth indexes refer to industry and state, respectively and f denotes
number of facilities™

randt is expected to have a negative impact on emissions and inspections, since
part of the R& D expenses might be intended to develop cleaner technologies. As argued
by Innes and Bia (2002), firms competing in oligopolistic markets overcomply with
environmental regulations to pressure the government to tighten environmental standards.
Tighter environmental standards impose a higher cost on their rivals. On the inspections
eguation, randt is expected to have a negative impact since the government expects
overcompliance in industries with high R& D expenses. To measure industry
concentration, we calculated a Herfindahl Index by adding up the squared sales shares of
the companies for each industry.** We expect hfin to have a negative impact on emissions
since higher levels of market concentration imply higher incentives for innovation in
cleaner technologies (Innes and Bial, 2002).

On the inspections side, the sign of hfin can go either way. On one side,
concentrated industries provide more incentives to overcomply with environmental
standards (Innes and Bial, 2002). Since the regulators expect concentrated industries to
incur fewer violations, regulators will inspect these industries less frequently. On the
other side, concentrated industries are easier to target for the regulator since they are
composed of only one or two firms. Thus, these firms can expect higher inspection
frequencies. Age was calculated by dividing net assets by gross assets, where gross assets

is the sum of net assets plus depreciation.'® Growth measures annual growth in salesin a

31 order to have industry variables at the industry-state-level we decided to adjust the number of
employees and total sales by the scale factor S, since those variables measure economies of scale.

14 The sale share was computed by taking the percentage of sales made by the ith company with respect to
the sales made by the four companies with more sales obtained in a given year.

%3 1N the estimations where we control for endogeneity, we use age as the instrument for emissions, since
we expect it to increase emissions (Helland, 1998), but not to have any impact on the number of
inspections.
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given industry.*® We do not expect any particular sign on this variable. On one hand,
following the Environmental Kuznets Curve hypothesis, companiesin early stages of
economic expansion might disregard environmental performance, while companies that
have passed the expansion stage overcomply with environmental regul ations to take
advantage of “green” markets (Arora and Gangopadhyay, 1995). Emplsc measures the
number of employees. It is expected to have a positive impact on emissionssinceitisa
proxy for the physical size of acompany. Following Gray and Dely (1996), the physical
size of acompany also determines the political power of the firm. Bigger companies
expect fewer inspections since the regul ator wants to assure political support from them.
As aresult, emplsc is expected to impact negatively to the number of inspections. Salesct
is expected to have a negative impact on emissions since wealthier companies might
expend more resources in pollution abatement (Henriques and Sadorsky, 1996). On the
inspection side, we expect salesct to have a negative impact since it can also be a proxy
for political influence.

State variables are intended to control for state specifics. Variables on population
and income per capita were obtained from Economagic.'” Popt measures the population
of agiven state and is expected to decrease emissions and increase the number of
inspections. Industries located in highly populated states might be exposed to higher
levels of public scrutiny, aswell asto ahigher likelihood of being sued for environmental
crimes. Regulators in those states might also be subject to more public pressure to make
industries comply with environmental standards through more frequent inspections rates.
Inpercapt measures income per capita. It is expected to decrease emissions and to

increase the number of inspections since people in wealthier states might place more

18 | ndustries for which growth in sales was greater that 8000% were eliminated from the sample.
7 See http://www.economagic.com/
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value on the environment (Helland, 1998). In order to control for state expensesin
environmental programs, we include the variable nrexpt, which captures state
expenditures in natural resources. This variable was obtained from US Satistical
Abstracts. It is expected to decrease emissions and increase inspections, since it captures
environmental preferences. Another variable that intends to capture environmental public
awarenessis sierraper, which measures Sierra Club members per capita. It is expected to
decrease emissions and increase inspections. To control for state economic activity
related to polluting sectorsin the economy, we include gsp_m_mt, which measures gross
state product of mining and manufacturing sectors. It is expected to increase emissions
and increase inspections. Repvot measures the ratio of popular vote cast for the
republican candidate to total votes in the most recent presidential election. It isintended
to capture people s political preferences and is expected to increase emissions and
decrease inspections.’®

Policy variables are dummy variables that indicate whether or not a state hasa
particular environmental regulation in place. Data used to create these variables were
obtained from several State Codes and Frey and McCollough (2003). Although audit
privilege and immunity laws are similar on their conditions and provisions, their scope
varies from state to state. In some states, audit privilege and immunity laws only apply to
civil and administrative penalties, while in some others, these laws also apply to crimina
penalties. According to the theory, immunity laws encourage firms to disclose their
violations and therefore, they have a negative impact on the number of inspections. |_ac
isadummy variable that takes values of ‘1’ if a state has an immunity law that waives

civil and administrative penalties. |_ac _otakesavalueof ‘1’ if theimmunity law waives

18 Alberini and Austin (2002) find that the percentage of votes for the democratic candidate decreases the
occurrence of hazardous waste accidents.
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civil, administrative and criminal penalties. Sincei_ac_0 also waives criminal penalties,
we expect it to have a greater impact on the number of inspections. We expect immunity
laws to have a positive effect on emissions. Immis avariable that accounts for any kind
of immunity (ori_ac oori_ac). P_acisadummy variable for audit privilege laws that
apply to civil and administrative penalties, while p_ac o isadummy that indicates
whether the audit privilege appliesto crimina penalties aswell. Privisadummy that
accounts for any kind of audit privilege (or p_ac_o or p_ac). Whereas the theory predicts
that immunity laws will decrease the number of inspections, to our knowledge, thereis no
theoretical framework that predicts the impacts of audit privilege laws on inspections or
on emissions. According to past empirical research (Stafford, 2005, 2006a), audit
privilege has shown to reduce the probability of inspections and violations of
environmental regulations. However, since there is no theoretical work regarding the
impact of audit privilege on the environment or on the number of inspections, thereisno
anticipated effect of audit privilege variables.

Like immunity and audit privilege laws, self-policing policies are similar in their
provisions, but they vary in their applicability. So_ab is a dummy variable that takes the
valueof ‘1" if the self-policing policy appliesto all business, regardless of their size.
F_sbisadummy that takesvales of ‘1’ if the self-policing policy is only applicable to
small business (with less than 20 employees). Selfpol is a dummy variable that accounts
for both types of self-policing policies (sp_ab or sp_sh). Given that self-policing policies
are aspecial case of immunity,*® we expect these variables to have a negative effect on

inspections and to have a significant and positive effect on emissions.

91 general terms, self-policing policies waive the gravity-based part of a penalty, which isthe part of the
penalty that goes beyond the economic benefit.



Siab isadummy variable that indicates whether a state has alaw that makes
parties strictly liable for accidental hazardous waste spills. We expect this variable to
have a negative effect on emissions and inspections, since it isintended to increase

company’s care in managing hazardous waste.

27
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Chapter 5. Modelsand Methods

We estimate two equations: an emissions equation and an inspection equation.
The emissions equation is intended to capture the effects of environmental audit
regulations on the environment, while the inspection equation is intended to pinpoint the
impacts of these regulations on the enforcement level of the environmental agencies.

Given that inspections is a count variable, standard OLS cannot be implemented
since it generates biased estimates (Winkelmann, 2000). Poisson and Negative Binomial
models are more adequate to deal with this kind of dependent variables. By using a panel
dataset, we control for unobserved heterogeneity, arising from industry and state specifics
that are not captured by the exogenous variables. In order to control for those
unobservable characteristics, we estimated fixed and random effects for Poisson and
Negative Binomial models.

We also conduct t tests for differences in means of inspections and emissions,
before and after the implementation of the different regulations. Table 5 presents the
results of thet tests. According to the results, for aimost all of the regulations inspections
were decreased after the implementation of the policies. On the emissions side, immunity
and self-policing policies decrease them, while audit privilege increases them.

Although simplet tests can provide us with a preliminary criterion to evaluate the
effects of environmental audit regulations, we still have to control for industry, state and
policy characteristics to get a more accurate measure of the impacts of the environmental

audit regulations.

2 We detrended emissions by fitting a regression of emissions on atrend variable.
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5.1 The Emissions Equation
We have an unbal anced panel data of 22,408 observations and 2,489 cross-sectional
individuals. In order to account for unobserved heterogeneity usualy present on panel

data models, we estimate a fixed effects model specified by

Emi S§ =a; + psal esct, + ,/)’Zemplszt;]t + B, facil ityjt + B,a0e, + Shfin, + B,growthy +
Srandt, + £, popt, + ox npercapf, + Bo9sp_m_ mt;, + ,Bllnrexpgt + ,Blzrepvogt + 51
Bsierrapey, + 01, + B, priv, + Smm), + Scselfpol, + 5, sliah, +§;,

where the ith and jth indexes refer to industry and state, respectively.
All of the variables and their expected signs were discussed in Chapter 4, except

for T; which is avector of time dummies.

5.2 The inspection equation

We estimate fixed effects and random effects Poisson and Negative Binomial models for
the inspection equation. In order to compute the fixed effects models, we deleted
observations with only one cross-section and individuals for which the sum of the total
inspections across time equals cero, XV, ,-:0.22 The dataset for the fixed effects model has
16,918 observations and 1,714 cross-sectional individuals. The inspection equation is

specified by

Inspeg, = f (salesct,,emplsg,, facility,, hfin,, growth, randt,, popt,,inpercapt,,
gsp_m_mt,, nrexpt, , repvot, , sierrapex,, ot priv,,,imm,, selfpol,, sliab,)

2 We conducted a Hausman specification test to test fixed effects appropriateness and we could not reject
the null at 5% of significance level.
2 |nfra, p. 33.
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where the ith and jth indexes refer to industry and state, respectively. The variables and

their effects were discussed in Chapter 4.

5.2.1 Fixed Effects and Random Effects
In our model, the number of inspectionsis distributed as a Poisson
Yije | % ~ Poisson{ 4; %}
or as Negative Binomial
Yir | % ~ Negative Binomial{ 4,6, 4,6, (1+ &)}
where 6, = %
i

In both models Aij=exp(xiji), ijis the source of unobserved heterogeneity and g; is the
dispersion parameter. In general, Negative Binomial models are less restrictive than
Poisson models since they allow for overdispersion (variance greater than the mean).

Asin linear models, instead of estimating n different individual effects, we can
get rid of the o’ s and still be able to estimate 5. There are several ways in which this can
be done.”® The one we will briefly summarize here is the conditional maximum
likelihood proposed by Hausman, Hall and Griliches (1984). It consists of conditioning
the probability function of theith individual on the individual sum of the dependent
variable over time, X y;;. By doing so, the aji’ s are canceled out and the maximum
likelihood can be maximized. The shortcomings of the conditioned maximum likelihood
method is that we cannot have individuals in our sample for which X y;; = O, since it will
produce divisions by zero in the conditioned maximum likelihood function, and that time

invariant regressors can not be used.

% See Winkelmann (2000) for adetailed discussion.
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An dternative is to estimate a random effects model, where the disturbances a;;’ s
enter in the model as arandom variable.* Aslong as the distribution of the a;j’sis
correctly specified, random effects is more efficient than fixed effects, since the former
uses the full maximum likelihood function instead of a conditioned maximum likelihood
(Winkelmann, 2000). Problems of random effects arise when the unobservable aji’s are
correlated with regressors x;;' s, in which case fixed effects models are preferable. Given
that both models have advantages and disadvantages, we decided to estimate both for the

inspection equation.

5.3 Econometric Issues
There are two econometric issues that we consider in our estimations. The first one is that
emissions and inspections might be determined simultaneously, which indicates that we
have to account for endogeneity. The second one is that past inspections might be
correlated with present and future inspections, which violates the assumption of no
autocorrelation.

We use two econometric estimation techniques to account for endogenous
variables and autocorrel ation: two-stage Poisson and Negative Binomial models and
dynamic models.”> On the next sections we provide their methodol ogies, advantages and

disadvantages.

* In our Poisson Random Effects estimations, each o;; has a gamma distribution.

% \We also estimated a Linear Feedback Model by Generalized Method of Moments (GMM), as proposed
by Blundell, R., R. Griffith and F. Windmeijer (2002). This model isintended to correct for autocorrelation
and endogenous variables and it was estimated using ExpEnd Gauss program (Windmeijer, 2002). We
discarded the results of this model because of two reasons: first, for none of our specifications past
inspections resulted significant explaining contemporaneous inspections and, second, since the program
does not alow for gaps in the individual time-series, the sample got reduced from 17,857 observations to
only 9,382, which barely represents all of the industries and the US states.
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5.3.1 Two-Stage Mode
One approach to deal with endogenous variablesin this context is to estimate a two-stage
regression model. In the first stage one of the endogenous variablesis regressed on a set
of instruments that includes the instruments and all of the exogenous variables. In the
second stage the other dependent variable is regressed on the exogenous variables and on
the predicted values of the dependent variable used in the first stage. This approach
produces consistent estimates, although the standard errors need to be corrected
(Mullahy, 1997).%°

Since we could find a good instrument for emissions, but not for inspections, in
the first stage we estimate the emissions equation and in the second stage, we estimate the
inspections equation. The instrument for emissionsis age of the assets, whichis
correlated with emissions, but uncorrelated with inspections.”’

Given that we did not find significant coefficients in the two-stage models for the
variable instrumented emissions, the results of the two-stage method are not reported.
Instead, Tables 13 and 14 report the instrumented emissions bootstrapped and non-

bootstrapped t-statistics for each model specification, respectively.?®

5.3.2 Dynamic Model
In order to control for autocorrel ation we estimate a dynamic specification for the

inspection equation, where the variable In(inspecij..1+0.5) isincluded as a regressor. Since

% |n order to correct the Standard errors each model was bootstrapped 500 times.

" Our basic argument to use age as instrument for emissionsis that regulators will inspect more regularly
plants with older assets because they expect those plants to pollute more.

8 The specifications we estimated were dynamic and non-dynamic models with contemporaneous or
lagged emissions instrumented. The reason for which emissions instrumented is not significant explaining
inspections might be that other scale variables such as sales or employees are capturing its effect.
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inspec is acount variable, it is more appropriate to include the logarithm of the lagged
variable, instead of the lagged variableitself (Hill, Rothchild and Cameron, 1998).

Tables 8 and 10 show the results for the dynamic models.

5.4 Extensions
Since the environmental audit regulations vary from state to state, we also estimate an
emissions and an inspection equation using a broader classification of audit regulationsin
theregressorsset: p_acand p_ac o areincluded in place of priv,i_ac oandi_acin
place of imm, and sp_ab and sp_sb in place of selfpol. Tables 6, 9 and 10 show the results
for the models with six regulations.

A reduced model is also estimated for the emissions and the inspection equations,
where the only explanatory variable included, besides policy variables, isthe number of
facilities. Table 11 presents the results of the reduced model for the inspection equation

and Table 6 presents the results of the reduced specification for the emissions equation.

? The constant 0.5 is added to avoid infinity values.



Chapter 6. Results

6.1 The Emissions Equation

Table 6 presents the results for the emissions equation. First, as expected,
industries with older assets pollute more. Second, concentrated industries and industries
that expend morein R& D pollute less. Thisresult is consistent with therival’s cost
hypothesis (Innes and Bial, 2002), which states that competing firmsin oligopolistic
markets expend more in R& D to overcomply with environmental standards, in order to
prompt the government to tighten environmental standards thus gaining an advantage
over their rivals. Third, the physical size of the industry, as measured by emplsc has a
positive and significant impact on the level of pollutants released to the air. Fourth,
industries with more facilities have fewer emissions. Two reasons underpin this result:
first, those industries are subject to a stronger scrutiny as can be noticed by the results on
the inspection equation and, second, industries with more facilities might have larger
companies, which usually have better technologies to control emissions. Fifth, income
per capita and percentage vote for the republican candidate have a significant and
positive impact on emissions. Income per capita captures the extent of industrial activity
in the state, while percentage vote for the republican candidate revea s the effects of
peopl€e’ s political preferences on the environment. Sixth, states that have strict liability
aso have higher emissions levels, which suggest that states that adopted strict liability
face tougher environmental problems (Alberini and Austin, 2002). Finally, our results
show that privilege and immunity have a significant impact on emissions, while self-
policing has a non-significant effect. On one hand, audit privilege encourages firmsto
conduct audits that reduce emissions. On the other hand, audit immunity increases

emissions, which suggest that violations disclosed under immunity raise the level of
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emissions. More specifically, states with audit privilege reduced their emissionsin 94,000
pounds, whilst states with immunity increased their emissions in 69,000 pounds.

When we disaggregate the effects of the three environmental audit regulations
into six, we obtain that self-policing policies for small businessis significant and negative
determining emissions. This result implies that self-policing policies have significant

differences between each other.

6.2 The Ingpection Equation

Results for the different models specified for the inspection equation are presented in
Tables 7 to 12. In general, our results are consistent for the different specifications of the
inspection equation. In order to tests the robustness of our results, we estimated the
inspection equation excluding regions that are conformed by states with relatively small
industrial activity. We created five regions:. the first region was Arizona, New Mexico,
Colorado, Utah and Wyoming; the second region was conformed by Louisiana,
Mississippi, Arkansas and Oklahoma; the third one was North Carolina, South Carolina,
Georgia and Alabama; the fourth one was Vermont, Maine, New Hampshire,
Massachusetts and Rhode Island; and the fifth one was conformed by North Dakota,
South Dakota, Minnesota, Wisconsin, Nebraska and lowa. Our results showed to be very
consistent excluding one region at atime: the signs and significance of the independent
variables did not change.

More evidence of the robustness of our results comes from the fact that dynamic
models produce similar outcomes than non-dynamic ones. For all our dynamic models,
lagged inspections resulted positive and significant determining contemporaneous
inspections. This result suggests that contemporaneous errors in non-dynamic models are

correlated with past errors.
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On the industry variables, the variables that are consistently significant through all
the specifications are number of facilities, size of the industry as measured by number of
employees, membership to the Sierra Club, income per capita and ratio of republican
votes to total votesin the most recent presidential election. Number of facilities and size
of the industry have a positive impact on the number of inspections. Contrary to what we
expected, we do not find evidence of the political influence of larger industries, as
evidenced from the effect of the variable emplsc. Another interesting result is that
variables that measure industry concentration and expensesin R&D, which have a
significant impact on emissions, do not have a consistent and significant impact in the
different specifications for the inspection equation.

On the state variables, there are several interesting results. First, membership to
Sierra Club, as measured by the variable sierraper, has a consistent negative and
significant effect on inspections. This result indicates that environmental organizations
are used as indirect substitutes for enforcement by regulatory agencies. Second, income
per capita has a consistent negative and significant impact on inspections. This may be
due to the fact that wealthier states use prevention pollution programs, rather than direct
enforcement to reduce pollution. Third, percentage of republican votesis also negatively
consistent and significant, reflecting the effect of people s political preferences on the
environment.

On the policy side, we also find interesting results. When controlling for three
regulations, our results are similar to what we obtain on the emissions equation. Audit
privilege and self-policing policies have a consistent negative and significant impact on
inspections, while immunity has a consistent positive and significant effect on
inspections. These results suggest that self-policing policies are consistent to what the

theory predicts: they decrease the number of inspections. Our results also suggest that the
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incentives that immunity laws provide for self-policing firms are decreasing the level of
deterrence, which, ultimately, raises inspection rates. Since regulatory agencies have to
verify that violations disclosed under immunity are indeed corrected, inspections are
increased in states that adopted audit immunity laws. Audit privilege has a negative
impact on inspections, implying that the regulatory agencies use it as a direct substitute
for inspections (Stafford, 2005).

In order to have a more accurate measure of the effect of these regulations on the
number of inspections, we calculate the marginal effects for the models specified in Table
8. Table 12 shows the marginal effects. Depending on the model, privilege reduces the
average inspection from 0.24 to 0.67;* self-policing reduces it from 0.21 to 0.44; and
immunity increasesit from 0.32 to 0.77.

Tables 9 and 10 present the results for models with 6 regulations. In general,
environmental regul ations that apply to administrative and civil penalties alone have

stronger impacts than those that aso apply to criminal sanctions.

% The average inspection is 4.48 and was cal culated from the original sample (see Table 2).
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Chapter 7. Conclusions

Thisthesis analyzes the effects of environmental audit regulations on the number
of inspections conducted by the regulatory agencies, as well ason the level of air
pollutants released to the environment.

Using state, industry and policy controls we find that audit privilege has a
negative and significant effect on emissions and inspections; immunity is positive and
significant explaining emissions and inspections; and self-policing policies have a
significant and negative effect on inspections, though a non-significant effect on
emissions.

Our findings regarding self-policing policies support the hypothesis we were
testing: self-policing regimes save enforcement resources through decreasing inspections.
The fact that immunity reduces the number of inspections and rai ses emissions suggests
that the incentives that immunity laws place for self-policing affect the level of
deterrence. The results for the audit privilege variable imply that is used by the regulators
as an efficient substitute for inspections (Stafford, 2005).

Industry characteristics have significant effects on inspections and emissions. We
find consistent evidence supporting the raising rival’ s cost hypothesis (Innes and Bidl,
2002): firmsin oligopolistic markets invest in cleaner technologies to prompt regulatory
agencies to stiffen environmental standards.

Thiswork also shows that membership in environmental organizations, as
measured by per capita membership to Sierra Club, is used by the regulatory agencies as

an indirect substitute for enforcement.
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Appendix
Table 1. Description of Variables
Level of
aggregation Variable Description Source
Sic-state emiss Millions of pounds of total on site air emissions TRI
(www.epa.gov/tri/)
Sic-state inspec State and EPA inspections IDEA Database
Sic-state facility Number of facilities registered in the IDEA Database IDEA Database
State popt Population (millions) Economagic
(www.economagic.com)
State inpercapt Income per capita (millions of dollars) Economagic
(Www.economagic.com)
State nrexpt State Expendituresin Natural Resources US Statistical Abstracts,
(trillions of dollars) various years
State gsp_m _mt Mining and manufacturing Gross State Product Bureau of Economic Analysis
(millions of dollars) (www.bea.gov/bealregional/gsp/)
State sierraper Per capita members of Sierra Club SierraClub
State repvot Ratio of popular vote cast for republican candidate US Statistical Abstracts,
to total votesin the most recent presidential election  various years
Sic randt Expensesin R&D (billions of dollars) Compustat
Sic age Age of assets calculated as (Net assets/Gross Assets)  Compustat
Sic hfin Herfindahl Index (X(Si)*2)/1000, where Si isthe Compustat
share of the ith company with respect to the total sold
by the 4 companies with more salesin a given year
Sic growth Growth in sales Compustat
Sic-state emplsc Number of employees scaled by fac_sic (thousand) Compustat and IDEA
Sic-state salesct Total sales scaled by fac_sic (millons of dollars) Compustat and IDEA
State dliab Dummy variable indicating Strict liability Environmental Law Institute (ELI)
State p_ac o Dummy variable indicating Privilege applicable State Codes, various years
to administrative, civil and crimina penalties
State p_ac Dummy variable indicating Privilege applicable State Codes, various years
to administrative and civil penaties
State i_ac Dummy variable indicating Immunity applicable State Codes, various years
to administrative and civil penalties
State i_ac o Dummy variable indicating Immunity applicable State Codes, various years
to administrative, civil and crimina penalties
State sp_sb Dummy variable indicating Selfpolicing Policies State Codes, various years
only valid for small business
State sp_ab Dummy variable indicating Selfpolicing Policies State Codes, various years
applicable to al business
State selfpol Dummy variable indicating Self policing Policies State Codes, various years
(sp_sb or sp_ab)
State imm Dummy variable indicating Immunity (i_ac or State Codes, various years
i_ac 0)
State priv Dummy variable indicating Privilege (p_ac or State Codes, various years

p_ac 0)




Table 2. Descriptive Statistics

Variable Mean Std. Dev. Min Max
inspec 44830 10.3853 0 281
emiss 0.5896 1.2387 0.000001 9.9918
sliab 0.7393  0.4390 0 1
popt 71721 6.5033 0.4537 35.4845
nrexpt 0.3251 0.3848 0.0233 2.8944
gsp_m mt 0.0370 0.0314 0.0007 0.1720
repvot 0.4578 0.0899 0.1062 0.6789
sierraper 0.0019 0.0026 0.0003 0.0525
inpercapt 0.0233 0.0036 0.0153 0.0369
age 0.7639 0.1161 0.0736 1
facility 5.8297 9.4531 1 224
growth 0.2773  1.9820 -0.9748 29.3739
hfin 5.8939 2.3239 2.5139 10
salesct 0.0006  0.0024 0.00000000312 0.0722
emplsc 0.0018 0.0066 0.0000000345 0.2023
randt 0.6849 2.5698 0 18.1656
selfpol 0.1961 0.3970 0 1
imm 0.2168 0.4121 0 1
priv 0.2829 0.4504 0 1
p_ac o 0.1341 0.3408 0 1
p_ac 0.1488 0.3559 0 1
i_ac 0.1408 0.3478 0 1
i ac o 0.0760 0.2650 0 1
sp_sb 0.0113 0.1059 0 1

) ab 0.1848 0.3881 0 1
Obs 22408



Table 3. Audit Privilege and Immunity Laws Provisions and Y ears of Adoption

Provisions
Y ear Administrative and

State of adoption  Privilege Immunity Civil Penalties Other legal actions

Alaska 1997 X X X

Arkansas 1995 X X X

Colorado 1994 X X X X

Idaho 1996* X X X X

Illinois 1995 X X X

Indiana 1994 X X Criminal penalties
removed in the 1999
amendments

lowa 1998 X X X

Kansas 1995 X X X X

Kentucky 1996 X X X

Michigan 1996 X X X Criminal penalties
removed
in the 1997 amendments

Minnesota 1995 X X X X

Mississippi 1995 X X X Criminal penalties
removed
in the 2003 amendments

Montana 1997** X X X

Nebraska 1998 X X X X

Nevada 1997 X X X X

New

Hampshire 1996 X X X

New Jersey 1995 X X

Ohio 1997 X X X

Oregon 1993 X X Criminal penalties
adopted
in 1997 amendments
and removed in 2000

Rhode Idland 1997 X X

South Carolina 1996 X X X Crimina penalties
removed
in the 2000 amendments

South Dakota 1996 X X X

Texas 1995 X X X Criminal penalties
removed
in the 1997 amendments

Utah 1996 X X X

Virginia 1995 X X X

Wyoming 1995 X X X

Source: Frey and McCollough (2003)
*|n sunset since 1997
**|n sunset since 2001



Table 4. Self-policing Policies Provisions and Y ears of Adoption

Y ear of Appliesonly to

State adoption Small Business Appliesto All Business
Arizona 2002 X
Cdlifornia 1996 X
Connecticut 1996 X
Delaware 1994 X
Florida 1996 X
Hawaii 1998 X
Indiana 1999 X
Maine 1996 X

Maryland 1997 X
M assachusetts 1997 X
Minnessota 1995 X
New Mexico 1999 X
New York 1999 X

North Carolina 1995 X
Oregon 2002 X
Pennsylvania 1996 X
Tennessee 1996 X
Vermont 1996* X
Washington 1994 X

Source: Frey and McCollough (2003)
* In sunset from 1998 to 2000
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Tableb. t Test of Mean Differences: Before and After Regulation | mplementation

Self-Policing Policies

Emissions I nspections

Before Alter Before Alter
Mean 0.0085 -0.0349 4.4304 4.6987
Variante 1.6241 1.0981 93.1877 167.9552
Observations 18014 4394 18014 4394
t Stat 2.0976 -1.53
P one-tail 0.018 0.9376

Immunity

Emissions I nspections

Before Alter Before After
Mean 0.0087 -0.0314 4.8603 3.1202
Variante 0.000075 0.0009 124.6923 44.6625
Observations 17550 4858 17550 4858
t Stat 2.0091 10.3596
P one-tail 0.0223 0.0000

Audit Privilege

Emissions I nspections

Before Alter Before After
Mean -0.0102 0.0258 4.6865 3.9674
Variante 1.5932 1.3384 120.1936 76.2218
Observations 16068 6340 16068 6340
t Stat -1.9736 4.6713
P one-tail 0.0242 0.0000
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Table 6. Emissions Equation

a7

Variables | 6 Regulations 3 Regulations Reduced Model
cons 0.3927* 0.3641* 0.9738**
(0.2181) (0.2164) (0.0158)
age -0.1352** -0.1348** -
(0.0488) (0.0488)
hfin -0.0111** -0.0111** -
(0.0034) (0.0034)
salesct 4.9251 5.0424 -
(7.4479) (7.4477)
randt -0.0441** -0.0441** -
(0.0044) (0.0044)
growth 0.0027 0.0027 -
(0.0019) (0.0019)
emplsc 4.8491** 4.8367** -
(2.4489) (2.4489)
sierraper -0.0927 -0.1375 -
(1.7006) (1.6975)
popt -0.0354** -0.0360** -
(0.0110) (0.0109)
inpercapt 38.4315** 39.3325** -
(8.3012) (8.2016)
nrexpt 0.0187 0.0290 -
(0.0619) (0.0615)
gsp._m mt 0.1734 0.5131 -
(1.1811) (1.12457)
repvot 0.2625** 0.2582** -
(0.1175) (0.1152)
diab 0.0415** 0.0401** -
(0.0197) (0.0196)
facility -0.0052** -0.0052** -0.0046**
(0.0011) (0.0011) (0.0010)
p_ac -0.1088**
priv (0.0267) -0.0940** -0.0937**
p_ac o -0.0825** (0.0202) (0.0201)
(0.0252)
i_ac 0.0819**
imm (0.0289) 0.0691** 0.0769**
i_ac o 0.0616** (0.0215) (0.0214)
(0.0300)
sp_ab -0.0034
selfpol (0.0178) -0.0140 -0.0199
sp_sb -0.1103** (0.0163) (0.0159)
(0.0562)
R-2 0.1075 0.1073 0.0999
F 70.44 77.12 122.65
P>F 0.0000 0.0000 0.0000
Obs 22408 22408 22408




Table 7. Inspection Equation: Non-Dynamic Model with 3 Regulations

Random Effects Fixed Effects
Variable Poisson NB Poisson NB
hfin 0.0150** 0.0162** 0.0151** 0.0166**
(0.0032) (0.0040) (0.0033) (0.0042)
salesct -14.3032** -7.2687 -14.8978** -6.9437
(5.0221) (6.5200) (5.0831) (6.7777)
randt -0.0046 -0.0060 -0.0035 -0.0050
(0.0047) (0.0057) (0.0050) (0.0061)
growth 0.0008 0.0003 0.0006 0.0003
(0.0015) (0.0021) (0.0015) (0.0021)
facility 0.0424** 0.0327** 0.0408** 0.0309**
(0.0006) (0.0007) (0.0006) (0.0007)
emplsc 17.0205** 16.3181** 17.1779** 16.1973**
(1.7499) (2.1981) (1.7668) (2.2662)
sierraper -7.1231** -3.9748** -6.2033** -5.0078**
(1.5648) (1.8972) (1.5556) (2.9279)
popt 0.0167** -0.0551** 0.1495** -0.0370**
(0.0077) (0.0078) (0.0136) (0.0085)
inpercapt -53.2179** -20.7077** -45.7642** -13.0388
(6.9219) (7.1357) (9.6078) (8.7038)
nrexpt 0.0693 0.0701 -0.2393** -0.2435**
(0.0627) (0.0792) (0.0698) (0.0873)
gsp_m_mt 4.7978** 14.6289** 5.5524** 15.0708**
(0.9809) (1.0551) (1.0763) (1.1353)
repvot -0.7756** -0.7446** -0.8032** -0.7801**
(0.1427) (0.1704) (0.1481) (0.1775)
priv -0.0592** -0.1658** -0.0719** -0.1950**
(0.0168) (0.0227) (0.0169) (0.0231)
imm 0.1052** 0.1668** 0.1585** 0.1979**
(0.0201) (0.0262) (0.0204) (0.0268)
selfpol -0.0944** -0.0569** -0.1267** -0.0580**
(0.0155) (0.0199) (0.0160) (0.0204)
diab -0.0081 -0.0541** -0.0046 -0.0387
(0.0199) (0.0236) (0.0209) (0.0251)
cons 2.0088** 2.6876** - 2.4261**
(0.1957) (0.2111) (0.2423)
Wald chi2(30) 14114.1 8279.63 13692.78 7563.06
Prob>chi2 0.0000 0.0000 0.0000 0.0000
Log likelihood -39276.277 -38023.619 -29760.645 -28425.409
Obs 22408 22408 16918 16918

Note: Standard Errors in parenthesis. ** Statistically significant at the 5% level. *Statistically
significant at the 10% level. Time Dummies included.



Table 8. Inspection Equation: Dynamic Model with 3 Regulations

Random Effects Fixed Effects
Variable Poisson NB Poisson NB
inspec(t-1) 0.4575** 0.4635** 0.3561** 0.2936**
(0.0088) (0.0116) (0.0083) (0.0110)
Hfin 0.0037 0.0061 0.0056 0.0096**
(0.0034) (0.0040) (0.0036) (0.0045)
salesct -5.3347 1.1922 -6.2245 1.4147
(5.4629) (6.5556) (5.5850) (7.0328)
randt -0.0114** -0.0090 -0.0115** -0.0067
(0.0049) (0.0056) (0.0055) (0.0065)
growth 0.0006 0.0001 0.0006 0.0003
(0.0017) (0.0021) (0.0017) (0.0022)
facility 0.0315** 0.0250** 0.0328** 0.0260**
(0.0007) (0.0008) (0.0007) (0.0008)
emplsc 12.1973** 11.0670** 12.7119**  12.1883**
(1.9093) (2.2315) (1.9492) (2.3694)
sierraper -7.2232** -4.7333** -6.8770** -5.7850**
(1.5960) (1.8333) (1.5985) (1.9140)
popt 0.0153** -0.0323** 0.1945** -0.0253**
(0.0072) (0.0081) (0.0175) (0.0100)
inpercapt -28.9897**  -26.3935** | -25,7811** -28.2731**
(6.5735) (6.7733) (10.6851) (9.9367)
nrexpt -0.0004 0.2361** -0.5460** -0.1972**
(0.0654) (0.0751) (0.0809) (0.0923)
gsp_m_mt -0.3216 5.6126** -0.2957 10.5026**
(0.9960) (1.1616) (1.1853) (1.3258)
repvot -0.9978** -1.0487** -1.0342** -1.1587**
(0.1544) (0.1772) (0.1659) (0.1948)
priv -0.0572** -0.1187** -0.0713** -0.1623**
(0.0178) (0.0218) (0.0181) (0.0231)
imm 0.0710** 0.1119** 0.1323** 0.1596**
(0.0215) (0.0259) (0.0222) (0.0274)
selfpol -0.0645** -0.0496** -0.1044** -0.0621**
(0.0168) (0.0201) (0.0174) (0.0212)
diab 0.0058 -0.0299 0.0192 -0.0124
(0.0216) (0.0243) (0.0237) (0.0275)
cons 1.3251** 2.7080** - 1.4685**
(0.1932) (0.2107) (0.3104)
Wald chi2(30) 14181.6 10201.48 13036.81 8287
Prob>chi2 0.0000 0.0000 0.0000 0.0000
Log likelihood -31446.018  -31002.022 | -23514.7 -22968.595
Obs 17857 17857 13473 13473
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Table 9. Inspection Equation: Non-Dynamic Model with 6 Regulations

Random Effects Fixed Effects
Variable Poisson NB Poisson NB
hfin 0.0150** 0.0162** 0.0151** 0.0166**
(0.0032) (0.0040) (0.0033) (0.0042)
salesct -15.1184** -7.7622 -15.7423**  -7.5010
(5.0410) (6.5426) (5.0938) (6.8044)
randt -0.0042 -0.0058 -0.0031 -0.0047
(0.0047) (0.0057) (0.0050) (0.0061)
growth 0.0007 0.0003 0.0006 0.0003
(0.0015) (0.0021) (0.0015) (0.0021)
facility 0.0425** 0.0328** 0.0408** 0.0310**
(0.0006) (0.0007) (0.0006) (0.0007)
emplsc 16.9265** 16.2510** | 17.1832**  16.1373**
(1.7558) (2.2050) (1.7701) (2.2739)
sierraper -6.3324** -3.5109* -5.8367**  -4.6051**
(1.5699) (1.9059) (1.5608) (1.9398)
popt 0.0106 -0.0575** 0.1448** -0.0394**
(0.0077) (0.0078) (0.0142) (0.0086)
inpercapt -52.3815** -20.7923** | -40.6229** -11.8785
(6.9956) (7.1963) (9.8221) (8.8134)
nrexpt 0.0703 0.0712 -0.2374**  -0.2463**
(0.0629) (0.0793) (0.0701) (0.0876)
gsp_m mt 5.3630** 14.9220** | 5.7351** 15.4227+*
(0.9921) (1.0673) (1.0910) (1.1495)
repvot -0.5727** -0.6490** -0.6155**  -0.6516**
(0.1463) (0.1750) (0.1516) (0.1826)
p_ac -0.1709** -0.2297** -0.1296**  -0.2577**
(0.0272) (0.0350) (0.0280) (0.0362)
p_ac o -0.0088 -0.1311** -0.0447**  -0.1607**
(0.0192) (0.0263) (0.0194) (0.0267)
i_ac 0.2744** 0.2577** 0.2812** 0.2953**
(0.0310) (0.0397) (0.0313) (0.0410)
i ac o -0.0187 0.1029** 0.0397 0.1239**
(0.0254) (0.0334) (0.0259) (0.0342)
sp_ab -0.0412** -0.0285 -0.0951**  -0.0312
(0.0176) (0.0220) (0.0184) (0.0227)
sp_sb -0.2851** -0.1642 -0.1329 -0.0383
(0.0967) (0.1104) (0.1006) (0.1161)
diab -0.0198 -0.0564** -0.0120 -0.0405
(0.0200) (0.0236) (0.0210) (0.0251)
cons 1.9065** 2.6499** - 2.3432**
(0.1978) (0.2137) (0.2460)
Wald chi2(33) | 14154.68 8340.58 13721.75 7621.7
Prob>chi2 0.0000 0.0000 0.0000 0.0000
Log likelihood | -39240.466 -38017.8 -29731.367 -28419.217
Obs 22408 22408 16918 16918

Note: Standard Errors in parenthesis. ** Statisticaly significant at the 5%
level. * Statistically significant at the 10% level. Time Dummies included.



Table 10. Inspection Equation: Dynamic Model with 6 Regulations

Random Effects Fixed Effects
Variable Poisson NB Poisson NB
inspec(t-1) 0.4562** 0.4626** 0.3549** 0.2949**
(0.0088) (0.0115) (0.0083) (0.0109)
hfin 0.0036 0.0060 0.0057 0.0095**
(0.0034) (0.0040) (0.0036) (0.0044)
salesct -6.2205 0.2684 -7.1984 0.3360
(5.4844) (6.5824) (5.5963) (7.0708)
randt -0.0109** -0.0086 -0.0109 -0.0062
(0.0049) (0.0056) (0.0055) (0.0065)
growth 0.0005 0.0001 0.0005 0.0002
(0.0017) (0.0021) (0.0017) (0.0022)
facility 0.0316** 0.0251** 0.0328** 0.0261**
(0.0007) (0.0008) (0.0007) (0.0008)
emplsc 12.0388**  10.9740** 12.6732** 12.0810**
(1.9155) (2.2391) (1.9519) (2.3799)
sierraper -6.5185** -4.2128** -6.6456** -5.2848**
(1.6015) (1.8397) (1.6038) (1.9282)
popt 0.0130** -0.0332** 0.1930** -0.0278**
(0.0072) (0.0081) (0.0183) (0.0100)
inpercapt -28.9529**  -26.7532** | -20.8362* -27.6153**
(6.6195) (6.8161) (10.8685) (10.0457)
nrexpt -0.0061 0.2269** -0.5437** -0.2044**
(0.0656) (0.0754) (0.0813) (0.0927)
gsp_m_mt -0.0851 5.7270** -0.3493 10.8249**
(1.0064) (1.1742) (1.2012) (1.3392)
repvot -0.8319** -0.9287** -0.8751** -0.9875**
(0.1578) (0.1815) (0.1693) (0.2001)
p_ac -0.1574** -0.1956** -0.1096** -0.2401**
(0.0286) (0.0341) (0.0297) (0.0364)
pac o -0.0136 -0.0810** -0.0525** -0.1225**
(0.0201) (0.0248) (0.0206) (0.0263)
i_ac 0.2175** 0.2232** 0.2319** 0.2850**
(0.0328) (0.0390) (0.0333) (0.0416)
i ac o -0.0320 0.0337 0.0255 0.0620*
(0.0273) (0.0328) (0.0281) (0.0347)
sp_ab -0.0148 -0.0123 -0.0811** -0.0253
(0.0192) (0.0226) (0.0203) (0.0239)
sp_sb -0.2656** -0.2015* -0.0492 -0.0468
(0.1048) (0.1170) (0.1140) (0.1290)
diab -0.0039 -0.0335 0.0160 -0.0148
(0.0218) (0.0243) (0.0239) (0.0276)
cons 1.2525** 2.6739** - 1.3778**
(0.1947) (0.2125) (0.3139)
Wald chi2(33) | 14196.37 10269.82 13042.27 8352.37
Prob>chi2 0.0000 0.0000 0.0000 0.0000
Log likelihood | -31422.405 -30992.57 -23493.666 -22957.899
Obs 17857 17857 13473 13473

Note: Standard Errors in parenthesis. ** Statistically significant at the 5%
level. * Statistically significant at the 10% level. Time Dummies included.
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Table 11. Inspection Equation: Reduced Model

52

Random Effects Fixed Effects
Variable Poisson NB Poisson NB
facility 0.0446** 0.0346** 0.0433** 0.0325**
(0.0005) (0.0007) (0.0006) (0.0007)
priv -0.0682** -0.1658** -0.0841** -0.1949**
(0.0166) (0.0232) (0.0167) (0.0241)
imm 0.1022** 0.1565** 0.1239** 0.1829**
(0.0198) (0.0265) (0.0199) (0.0274)
selfpol -0.0606%* -0.0338* -0.0586%* -0.0359*
(0.0148) (0.0195) (0.0149) (0.0201)
cons 0.8334** 2.0894** - 2.0027**
(0.0325) (0.0350) (0.0344)
Wald chi2(18) 13656.42 7782.36 13177.49 7009.43
Prob>chi2 0.0000 0.0000 0.0000 0.0000
Log likelihood -39464.658 -38227.301 -30006.077 -28622.429
Obs 22408 22408 16918 16918

Note: Standard Errors in parenthesis. **Statistically significant at the 5% level.
*Statistically significant at the 10% level. Time Dummies included.

Table 12. Marginal Effects with Respect to the Average Inspection

Random Effects Fixed Effects
Variable Poisson NB Poisson NB
Ininspeclag | 2.0498 2.0766 1.5952 1.3153
facility 0.1413 0.1119 0.1468 0.1163
emplsc 54.6438 49,5802 56.9494 54.6035
sierraper -32.3597 -21.2053 -30.8090 -25.9170
inpercapt -129.8737 -118.2429 -115.4992 -126.6634
repvot -4.4702 -4.6982 -4.6333 -5.1908
priv* -0.2493 -0.5014 -0.3081 -0.6712
imm* 0.3299 0.5302 0.6339 0.7753
selfpol* -0.2797 -0.2166 -0.4442 -0.2696

Note: Marginal Effects were computed using results in Table 8. The
average inspection is 4.48 and was calculated from the original sample.
*Discrete Marginal Effects: (exp(b)-1).
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Table 13. Bootstrapped t Statistics for Emissions Instrumented in the Inspection Equation

Random Effects Fixed Effects

Model Specification Poisson NB Poisson NB

Dynamic with lagged

instrumented emissions 0.1717 0.1166 0.1859 0.1718
(17857) (17857) (13473) (13473)

Dynamic with contemporaneous

instrumented emissions 0.1125 0.0716 0.1660 0.1177
(17857) (17857) (13473) (13473)

Inspections with lagged

emissions instrumented 0.2812 0.2152 0.2395 0.3127
(17857) (17857) (13473) (13473)

Inspections with contemporaneous

emissions instrumented 0.1714 0.2349 -0.1502 -0.0393
(22408) (22408) (16918) (16918)

Reduced Model with contemporaneous

emissions instrumented 0.1831 0.2307 0.1855 0.1799
(22408) (22408) (16918) (16918)

Note: Number of observationsin parenthesis

Table 14. Non-Bootstrapped t Statistics for Emissions Instrumented in the Inspection Equation

Random Effects Fixed Effects

Model Specification Poisson NB Poisson NB

Dynamic with lagged

instrumented emissions 1.1237 0.5740 0.5769 0.5341
(17857) (17857) (13473) (13473)

Dynamic with contemporaneous

instrumented emissions 1.1237 0.5740 0.5934 0.5240
(17857) (17857) (13473) (13473)

Inspections with lagged

emissions instrumented 1.9115* 1.2362 1.0759 0.8271
(17857) (17857) (13473) (13473)

Inspections with contemporaneous

emissions instrumented 0.4342 0.3592 -0.2594 -0.0643
(22408) (22408) (16918) (16918)

Reduced Model with contemporaneous

emissions instrumented 0.8112 0.6499 0.4188 0.2238
(22408) (22408) (16918) (16918)

Note: * Statistically significant at the 10% level. Number of observationsin parenthesis.



