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Abstract 

We study the effects of self-policing environmental regulations on the quantity of air 

pollutants released to the environment, as well as on the number of inspections that the 

regulatory agencies conduct. We find that audit privilege and self-policing policies have a 

negative and significant impact on the number of inspections, while immunity increases 

inspections in a significant way. Emissions are increased by immunity laws and 

decreased by audit privilege regulations. We find evidence that self-policing policies 

support what the theory predicts: self-policing regulations reduce inspections and, 

therefore, decrease enforcement costs (Kaplow and Shavell, 1994; Malik, 1993; Innes, 

1999a: Innes, 1999b; Innes, 2000; Innes, 2001). We also find that audit privilege and 

immunity laws that apply to administrative and civil penalties have a more significant 

effect on inspections, compared to audit privilege and immunity laws that apply to 

administrative, civil and criminal penalties. 
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Chapter 1. Introduction 

Over the last decade, several US states have adopted environmental regulations 

that provide incentives for self-policing.1 As more states in the country enact 

environmental laws that protect voluntary environmental audits, the concern of 

environmentalists and of the Environmental Protection Agency (EPA) about their effects 

on the environment is also growing.2 As of today, forty four US states have adopted some 

kind of regulation that protects environmental audits. Although the popularity of these 

regulations has grown in the last ten years, the empirical literature that analyzes their 

consequences to the environment and to the enforcement effort of regulatory agencies is 

quite limited.3  

Environmental audit regulations are of three types: self-policing policies, audit 

immunity laws and audit privilege laws. Self-policing policies and audit immunity reduce 

the penalties for voluntarily disclosed violations, whereas audit privilege protects the 

information contained in the environmental audits from any legal action. The existing 

theory is fairly comprehensive in the analysis of self-policing regulations that grant 

penalty reductions, such as immunity laws and self-policing policies; nevertheless, to our 

knowledge, there is no theoretical work that analyzes the effects of audit privilege laws 

on the environment and on the enforcement level of the regulator.  

According to the theoretical literature on self-policing, when an adequate set of 

incentives is in place to encourage firms to self-police, enforcement resources will be 

saved, since the regulator does not have to invest in enforcement resources to inspect 

firms that voluntarily disclose their violations (Kaplow and Shavell, 1994). According to 

                                                 
1 As used in Stafford (2006a), the term self-policing refers to the voluntary reporting of environmental 
violations to the regulator, through an environmental audit.   
2 In its Audit Policy, EPA opposes to the environmental audit regulations adopted by some states. See 
Chapter 2 for a detailed discussion.  
3 Main empirical work has been conducted by Stafford (2004), Stafford (2005), Stafford (2006b), Stretesky 
& Gabriel (2005) and Pfaff and Sanchirico (2004). 
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Kaplow and Shavell (1994), an adequate set of incentives is assured by setting the 

maximal feasible penalty for those firms that do not self-police and a penalty equal or 

less than the expected fine self-policing firms would face if caught in violation.4 Other 

theoretical studies stress the effectiveness of environmental audit regulations beyond 

saving in enforcement resources (Innes, 1999a: Innes, 1999b; Innes, 2000; Innes, 2001).  

The objective of this thesis is to estimate the effects of self-policing regulations on 

the environment and on the enforcement level of the regulatory agencies. Previous 

empirical studies use facility-level data to analyze the impact of these regulations on the 

probability of self-policing, the probability of violation and on the probability of being 

inspected in the future (Stafford, 2005; Stafford, 2006b; Stretesky and Gabriel, 2005). 

Our approach is different in that, rather than investigate the effects of environmental audit 

regulations on the probability of violation or inspection, we analyze the effects of 

environmental audit regulations on the number of inspections and the amount of 

pollutants released to the air from 1989 to 2003, using a panel dataset at the industry-

state-level. In order to test the effects of environmental audit regulations on the 

environment, we estimate an emissions equation, using quantity of air pollutants released 

to the environment as the dependent variable. We also estimate an inspection equation to 

measure the effects of these regulations on the enforcement level of the regulatory 

agencies, using the number of inspections conducted by the state and by EPA as the 

dependent variable. We control for industry, policy and state specifics in each equation.  

Since audit privilege, immunity and self-policing policies vary across states, we 

estimate an emissions and an inspection equation using a broader classification of the 

three regulations. More specifically, every regulation is divided into two different 

regulations. Audit privilege is divided into audit privilege that grants legal protection for 

                                                 
4 According to Kaplow and Shavell (1994), the maximal feasible penalty equals the firm’s wealth.  
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administrative and civil offenses and audit privilege that grants protection for 

administrative, civil and criminal offenses. Immunity is divided the same as audit 

privilege, whilst self-policing policies is divided in self-policing policies that apply to all 

business and self-policing policies that apply to business with less than 20 employees. 

Tables 3 and 4 present the differences and years of adoption of the environmental audit 

regulations that are in place in several US states. We find that there are significant 

differences between state regulations. In particular, audit privilege and immunity laws 

that apply to administrative and civil penalties have a more significant effect on 

inspections than those that apply to administrative, civil and criminal penalties.  

We also consider two specifications for the inspection equation: a non-dynamic 

and a dynamic model. In the dynamic model we introduce inspections lagged one period 

as a regressor to control for autocorrelation. Our results show that past inspections have a 

significant and positive effect on contemporaneous inspections.    

The outline of the thesis is as follows. The literature review is presented in 

Chapter 2, it includes two sections: a section on theoretical work and a section on 

empirical research. Chapter 3 presents a brief summary of the environmental audit 

regulations, their provisions and their differences between and within each other. Chapter 

4 summarizes the data and the expected effects of the independent variables on the 

emissions and on the inspection equations. Chapter 5 presents the models and the 

methods used to estimate both equations. Chapter 6 presents the results. In Chapter 7 we 

present conclusions and, finally, in the Appendix we present tables with all our results.    
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Chapter 2. Literature Review 

In the 1990s, the EPA published its Audit Policy, entitled “Incentives for Self-

Policing: Discovery, Disclosure, Correction and Prevention of Violations,” that provides 

incentives for firms that self-police their environmental violations. Besides the Federal 

Audit Policy, several US states have adopted laws and policies that encourage firms to 

self-police. Although the implementation of these policies has spread nationwide, the 

literature concerning the empirical analysis of such laws and policies is quite limited.  

This chapter presents a literature review on self-policing in environmental 

regulation. The first section reviews theoretical treatments of self-policing and the second 

section reviews existing empirical studies. 

 

2.1 Theoretical Studies 

With the exception of Stafford (2006a) and Livernois and McKenna (1999), the 

theoretical models developed so far to analyze self-policing are static. The static models 

presented in this section are Kaplow & Shavell (1994), Malik (1993), Innes (1999b), 

Innes (1999a), and Innes (2001) and Innes (2000).  

The first model that analyzes the implications of self-policing regimes on the 

enforcement effort of environmental agencies was developed by Kaplow and Shavell 

(1994). 

By establishing an expected penalty for firms caught in violation which is equal to 

the penalty they would face if they disclose their violations, Kaplow & Shavell (1994) 

show that enforcement costs can be saved. Since this penalty structure maintains the same 

level of deterrence as regimes without self-policing incentives, self-policing assures that 

firms that have committed a violation will report them to the regulator. Thus, the 

regulatory agency does not have to invest resources to inspect self-policing firms. 
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Moreover, when firms are risk-averse, additional costs are saved since the penalty for 

self-policing firms is certain, rather than probabilistic.  

In his model, Malik (1993) introduces stochastic pollution, social costs associated 

with the imposition of sanctions and errors in the monitoring technology used by 

regulators. In his model, self-policing is mandatory rather than voluntary, which is 

commonly referred as self-reporting. Self-reporting is only desirable when the regulator 

can not set the penalty at the maximum feasible level and when the quality of monitoring 

technology is erratic. In particular, in the presence of self-reporting, the regulator faces 

fewer incentives to improve its monitoring technology. 

These two studies stress the idea that enforcement costs are saved under self-

policing and self-reporting schemes, via less inspections. Kaplow & Shavell (1994) and 

Malik (1993) also state that under administrative costs, self-policing and self-reporting 

schemes could impose higher social costs.  

Innes (1999b) shows that when remediation is valuable,5 self-policing regimes are 

more efficient than non self-policing regimes since remediation can be achieved 

immediately after violation and enforcement resources are saved. According to Innes 

(1999b), by setting the expected fine that a firm would face if caught in violation equal to 

the remediation cost it would incur if it is self-policing, the same level of deterrence is 

achieved, remediation is promptly made and the monitoring effort can be set to a 

minimum yielding to an optimal level of remediation.  

In self-policing regimes remediation is assured ex-ante, which produces clean-up 

benefits. Innes (1999a) analyzes the social benefits of regimes with self-policing in the 

presence of positive ex-post gains of clean-up (when ex-post damages are greater than the 

cleaning costs plus the ex-ante damages). With self-policing, clean-up is assured, while 

                                                 
5 Remediation is valuable when there are economic gains obtained from the remediation of harm.  
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without self-policing, clean-up is only achieved with the probability of detection (when a 

firm is caught). Self-policing also saves enforcement costs, since the government can 

lower its monitoring effort and increase the penalty for non-reporters without altering the 

level of deterrence.  

Aside from the benefits identified when remediation is valuable in self-policing 

regimes, Innes (2001) analyzes the benefits of these regimes when violators engage in 

avoidance activities to reduce the probability of being caught. According to Innes (2001), 

enforcement costs, avoidance costs and deterrence costs are each saved under self-

policing schemes. Enforcement and avoidance costs are saved because violators are 

encouraged to self-police their violations, since the sanction they face if they self-police 

is less or equal to the expected costs they would face if caught.6 As stated before, 

deterrence costs can also be saved because the government can lower the monitoring 

costs and obtain the same level of deterrence by increasing the sanction for non-reporters.  

In another study, Innes (2000) examines the advantages of self-policing schemes 

when violators face heterogeneous probabilities of apprehension. In his model, the 

probability of detection depends on the government monitoring effort, denoted by r(g), 

and the “detectability” of a firm, denoted by δ; the latter one is exogenous and does not 

depend on firm characteristics. In a regime without self-policing, firms with high δ are 

overpenalized and firms with low δ are underpenalized, since the expected fine depends 

on the detectability factor. In a self-reporting scheme, the government sets a fine for self-

policing firms that equals the expected sanction that they would face if caught. In doing 

so, firms that have a high detectability will self-report; overcompliance by those firms 

will be reduced and efficiency will be enhanced overall.   

                                                 
6 In his model the expected costs comprise the expected fine as well as the avoidance costs. 
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 The models presented so far restrict the interaction between the regulator and the 

firm to one period. Dynamic models analyze strategic behavior of the regulator and the 

firms through time. In a dynamic setting, some firms will self-police because that will 

decrease the frequency of inspections in the future (Stafford, 2006a; Pfaff and Sanchirico, 

2004). There are two basic works concerning dynamic interactions reviewed here: 

Livernois and McKenna (1999) and Stafford (2006a).  

In the context of self-reporting, Livernois and McKenna (1999) analyze the 

paradox of high compliance rates and low expected fines, which are commonly observed 

in the real world. According to their model, setting the penalty for non-compliance to a 

minimum and the penalty for false reporting to its maximum carries the effect that some 

firms in the continuum will find non-compliance more cost effective. These firms will 

then report truthfully and the compliance rate will be higher, since detection is promptly 

made.   

Stafford (2006a) analyzes the effects of self-policing regulations using Harrington’s 

targeting enforcement model (Harrington, 1988).7 In Stafford’s model, there are two 

sources of non-compliance: probabilistic events and deliberate events, and there is a 

trade-off between policies that enhance pollution abatement and those that increase audits 

and disclosures. Whether self-policing regimes improve environmental protection 

depends on setting the proper combination of fines and on the policy objectives of the 

regulator.  

 

 

    

                                                 
7 In Harrington’s model, the regulator classifies and targets firms according to past compliance. “Good” 
firms are those ones that have complied with environmental regulations in the past, while “bad” firms have 
a history of violations. Firms can switch groups with a given probability, depending on recent inspections 
and the level of cooperation with the regulator through voluntary disclosures. 
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2.2 Empirical Studies 

The articles presented in this section are Stafford (2005), Stafford (2006b), Stretesky & 

Gabriel (2005), Pfaff and Sanchirico (2004) and Stafford (2004). 

Stafford (2005) studies the effects of EPA Audit Policy and state regulations on 

the probability of being inspected, as well as on the probability of violating hazardous 

waste regulations. Using a panel dataset for the period 1992-2001 from EPA’s Resource 

Conservation and Recovery Act (RCRA) database, Stafford estimates a Probit model for 

the inspection equation and a censored Probit model for the violation equation.  

According to her results, all environmental audit regulations are significant 

determining the probability of inspection. Those facilities that are located in states that 

adopted self-policing policies or audit privilege laws are less likely to be inspected. In 

contrast, there is a higher probability that facilities located in states that adopted 

immunity laws are inspected with more frequency. After the implementation of EPA’s 

Audit Policy, facilities are also more likely to be inspected. Interestingly, the effects of 

environmental audit regulations on the violation equation are similar to the effects they 

had on the probability of inspection: self-policing policies and privilege laws decrease the 

probability of violation, while immunity laws increases it. Except for EPA’s Audit 

Policy, the rest of the regulations were significant. Another relevant result is that facilities 

that were inspected more intensely in the past five years are more likely to be inspected in 

the present. This result indicates that EPA uses a targeting strategy to inspect facilities, 

according to Harrington’s hypothesis.   

 If privilege laws and self-policing policies are used by the regulatory agencies as 

substitutes for inspections, one would expect that they have a positive effect on the 

probability of disclosure. Using RCRA data, Stafford (2006b) shows that self-policing 

policies and immunity laws have a significant and positive effect on the probability of 
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disclosure, while privilege laws have a positive but insignificant effect. She also shows 

that those facilities that self-disclose a violation and are located in states that enacted 

audit privilege or self-policing policies are “rewarded” with a lesser probability of 

inspection. As in the inspection case, inspection history plays an important role in 

determining the probability of disclosure: facilities that were inspected more frequently in 

the past five years have a higher probability of disclosure.        

 According to Stafford (2005 & 2006b) the fact that some facilities are inspected 

more often than others is based on past inspections and past environmental performance. 

Whether or not this targeting strategy is based upon industry and company specifics is 

addressed by Stretesky and Gabriel (2005). In their study, they compare a control group 

(companies that were found in violation by EPA) with an event group (companies that 

under EPA’s Audit Policy disclosed a violation) to study the motivation for a company to 

disclose its violations. After controlling for company size, market structure, credit 

performance, property regime (public or privately owned) and past enforcement actions 

taken against the company, the probability of disclosure is positive and significantly 

explained by past inspections, variety of laws violated in the past and regional inspection 

levels. Neither company size nor market concentration are significant in explaining the 

probability of disclosure. 

 The fact that company specifics do not affect the probability of disclosure might 

be influenced by the nature of the violations disclosed to EPA. If disclosed violations are 

related to filing oversights rather than failing to comply with emissions standards, an 

audit can be done at a reasonably low cost, regardless of the size of the company. On the 

other hand, if disclosed violations are related to failure to comply with emissions 

standards, it is more likely that an audit to detect such a violation will require investing in 

more advanced monitoring equipment, which only larger companies are willing to do.  
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Pfaff and Sanchirico (2004) compare the differences between violations self-

disclosed under EPA’s Audit Policy and violations found as a result of an inspection. The 

majority of the violations disclosed to EPA from 1994 to 1999 are related to failure to 

report required information relating to substances transported or failure to record and 

keep track of hazardous materials. In contrast, the violations most commonly found by 

EPA are associated with non-compliance with emission standards. This fact supports the 

results found by Stretesky and Gabriel (2005), in which company size is not significant in 

determining the probability of disclosure.  

Using fines as a proxy for the severity of violations, Pfaff and Sanchirico (2004) 

also find that, in general, violations disclosed to EPA are less severe than violations 

found as a result of an inspection.8 

In another study, Stafford (2004) analyzes the political, environmental and 

institutional factors that influence states decision to adopt a given environmental audit 

regulation; namely, audit privilege, immunity or self-policing policies. The probabilities 

of adoption of a given regulation are influenced by different factors. For the adoption of 

self-policing policies, only the political context is significant; for immunity, political 

factors as well as the nature of the relationship between the state and the Federal 

government are important in determining its adoption; for audit privilege, a combination 

of political, environmental and institutional elements are relevant. This might explain the 

fact that some states adopted a combination of regulations 

 The differences found by Stafford (2004) on the factors that cause the adoption of 

different environmental audit regulations indicate that there are significant differences 

between these regulations. In the next Chapter, we summarize the different 

                                                 
8 This is not surprising since EPA’s Audit Policy explicitly limits the application of the policy to violations 
that do not “[…] resulted in serious actual harm, or may have presented an imminent and substantial 
endangerment, to human health or the environment.” For a further discussion, see Chapter 3. 
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environmental audit regulations that are in place at the federal and state level. The 

resulting comparison is the basis for the classification of regulations that is used in the 

empirical model.  
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Chapter 3. Environmental Audit Regulations 

The Federal Government published its Audit Policy for the first time in 1986. 

This was the first attempt to promote the implementation of environmental audit 

programs on a national basis. Since the first publication, the Audit Policy has been 

revised twice. The first revision, in 1995, lead to increased incentives for firms to conduct 

audits by reducing penalties for entities that voluntarily disclose a violation. The 1995 

EPA’s Audit Policy reduces the gravity-based penalty up to 100% of a violation found as 

a result of an internal audit. There are nine requirements that an entity must meet in order 

to qualify for the benefits of the policy.9 In general terms, the Audit Policy Conditions are 

as follows: 

1. The violation must be discovered as a result of an environmental audit. 

2. The environmental audit must be conducted voluntarily. 

3. The violation must be disclosed in a period of ten days after discovery. 

4. The violation was not found by a third party. 

5. The violation must be corrected no later than 60 days after the discovery. 

6. The firm must take preventive steps to avoid the recurrence of the violation. 

7. A similar or related violation must not have occurred in the past three years. 

8. The violation does not “result in serious actual harm” or represents an “imminent 

and substantial endangerment to public health or the environment.” 

9. The firm must cooperate with EPA to establish the application of the Policy. 

After an evaluation of its Policy in 1998, EPA amended its 1995 Audit Policy. In the 

third version of its Policy, the period of disclosure of a violation was extended from 10 to 

                                                 
9  See EPA’s “Incentives for Self-Policing: Discovery, Disclosure, Corrections and Prevention of 
Violations.”   
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21 days and the application of the Audit Policy Conditions when a firm is transferred to 

other owners was made explicit.     

Some authors claim that EPA’s Audit Policy does not give the proper incentives 

to disclose violations, since the information obtained from the audits is not legally 

protected and can be used to the detriment of the disclosing firm (Hawks, 1998; Stafford, 

2005). The current legislation provides limited protection for self-audits in the form of 

privilege. Firms can get protection from three legal sources: the attorney-client privilege, 

the attorney-work product privilege and the privilege of self-critical analysis (Hawks, 

1998). The principal limitation of these privileges is that they do not protect the 

information disclosed in the audit (Hawks, 1998; Frey and Johnson, 2000). Although 

companies might find some legal resources to protect disclosed information, this 

protection is rather limited. 

 In 1993, Oregon enacted its Environmental Audit Privilege, which aims to give 

protection to the information disclosed as a result of a self-audit. Since then, half of the 

states in the country have adopted similar laws. Moreover, some states took an additional 

step and enacted audit immunity laws.  

An environmental audit, as defined by EPA, is a “[…] systematic, documented, 

periodic and objective review by regulated entities of facility operations and practices 

related to meeting environmental requirements.” In general, states that adopted 

environmental audit laws use a similar definition in their statutes. While audit privilege 

laws prohibit the use of environmental audit reports as evidence in any administrative, 

civil, and criminal or enforcement action, immunity laws waive the penalty resulting 

from a violation voluntarily disclosed to the environmental agency. Although 

environmental audit state laws are similar in their provisions (Hawks, 1998), they differ 

in the type of penalties for which the privilege and the immunity apply (see Table 3). In 
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only eight states, environmental audit laws protect audits from administrative, civil and 

criminal legal actions. For the remaining states, environmental audit laws are more 

limited in the sense that they only apply to administrative and civil proceedings (see 

Table 3). Thus, we might expect a higher number of disclosures in states that also protect 

audits from criminal acts. 

In its third version of its Audit Policy, EPA explicitly declares its opinion 

regarding state environmental audit laws: 

 The Agency remains firmly opposed to statutory and regulatory audit 
privileges and immunity […]. Audit privilege and immunity laws are unnecessary, 
undermine law enforcement, impair protection of human health and the 
environment, and interfere with the public’s right to know of potential and existing 
environmental hazards. 
 

In response to EPA’s opposition to privilege and immunity regulations, some of the states 

have made some amendments to their legislation regarding their environmental audit 

regulations. For example, audit privilege laws in Texas, South Carolina, Mississippi and 

Oregon were changed to only provide evidentiary privilege to administrative and civil 

penalties, excluding criminal offenses (see Table 3).  

Given the strong opposition of EPA to audit privilege and immunity laws and the 

growing interest of the public and the government in promoting self-policing regulations, 

the policies and laws that that some states have adopted so far differ in their applicability 

as well as in their scope (see Tables 3 and 4).  

In general, the self-policing policies that some states have incorporated to their 

environmental regulations are very similar to EPA’s Audit Policy in terms of definitions, 

conditions and incentives (Frey and McCollough, 2003). However, a relevant distinction 

comes from the scope of the policy in place. Maine and New York are the only US states 

where self-policing policies are valid for small businesses (with 20 or less employees) 

alone (see Table 4). Since it is possible that administrative costs of inspecting small firms 
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are higher compared to the benefits of deterring them from committing a violation, it is 

possible that these two states are using self-policing policies as direct substitutes for 

inspections. 

 In the next Chapter we present the data and the variables used in our estimations.  
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Chapter 4. The Data and the Variables 

This thesis uses a panel dataset from the period 1989-2003 to test the implications 

of self-policing policies. Table 2 presents a description of the variables, their sources, 

class and level of aggregation.10 Data on emissions and inspections, which are the 

dependent variables, are aggregated at the industry-state-level.11 These variables were 

obtained from EPA’s Toxics Release Inventory (TRI) and the Integrated Data for 

Enforcemet Analysis (IDEA) databases, respectively. Emiss contains total onsite air 

emissions registered in the TRI.12 Inspec measures the total number of inspections 

conducted by EPA and state environmental agencies related to air programs. 

The independent variables are classified as policy, industry or state variables. 

Industry variables were obtained from Compustat, a database with financial information 

on publicly traded companies. The industry pool contains expenses on R&D (randt), age 

of the assets (age), Herfindahl Index (hfin), annual sales growth (growth), number of 

employees (emplsc) and sales (salesct). These variables are intended to control for 

industry characteristics, such as market structure and size. Unfortunately, there is no 

information industry-state-level for a large number of companies recorded in Compustat, 

therefore, all of the industry variables are at the industry-level with the exception of 

salesc and emplscale, which were scaled by the ratio 
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10 All prices are real (100=1995).  
11 The level of aggregation of the industry variables is at the three-digits SIC code. 
12 Individuals for which total on site air emissions are less than one pound or more than ten million pounds 
were eliminated from the sample.  
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where the ith and jth indexes refer to industry and state, respectively and f denotes 

number of facilities.13  

randt is expected to have a negative impact on emissions and inspections, since 

part of the R&D expenses might be intended to develop cleaner technologies. As argued 

by Innes and Bial (2002), firms competing in oligopolistic markets overcomply with 

environmental regulations to pressure the government to tighten environmental standards. 

Tighter environmental standards impose a higher cost on their rivals. On the inspections 

equation, randt is expected to have a negative impact since the government expects 

overcompliance in industries with high R&D expenses. To measure industry 

concentration, we calculated a Herfindahl Index by adding up the squared sales shares of 

the companies for each industry.14 We expect hfin to have a negative impact on emissions 

since higher levels of market concentration imply higher incentives for innovation in 

cleaner technologies (Innes and Bial, 2002).  

On the inspections side, the sign of hfin can go either way. On one side, 

concentrated industries provide more incentives to overcomply with environmental 

standards (Innes and Bial, 2002). Since the regulators expect concentrated industries to 

incur fewer violations, regulators will inspect these industries less frequently. On the 

other side, concentrated industries are easier to target for the regulator since they are 

composed of only one or two firms. Thus, these firms can expect higher inspection 

frequencies. Age was calculated by dividing net assets by gross assets, where gross assets 

is the sum of net assets plus depreciation.15 Growth measures annual growth in sales in a 

                                                 
13 In order to have industry variables at the industry-state-level we decided to adjust the number of 
employees and total sales by the scale factor Sij, since those variables measure economies of scale. 
14 The sale share was computed by taking the percentage of sales made by the ith company with respect to 
the sales made by the four companies with more sales obtained in a given year. 
15 In the estimations where we control for endogeneity, we use age as the instrument for emissions, since 
we expect it to increase emissions (Helland, 1998), but not to have any impact on the number of 
inspections. 
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given industry.16 We do not expect any particular sign on this variable. On one hand, 

following the Environmental Kuznets Curve hypothesis, companies in early stages of 

economic expansion might disregard environmental performance, while companies that 

have passed the expansion stage overcomply with environmental regulations to take 

advantage of “green” markets (Arora and Gangopadhyay, 1995). Emplsc measures the 

number of employees. It is expected to have a positive impact on emissions since it is a 

proxy for the physical size of a company. Following Gray and Dely (1996), the physical 

size of a company also determines the political power of the firm. Bigger companies 

expect fewer inspections since the regulator wants to assure political support from them. 

As a result, emplsc is expected to impact negatively to the number of inspections. Salesct 

is expected to have a negative impact on emissions since wealthier companies might 

expend more resources in pollution abatement (Henriques and Sadorsky, 1996). On the 

inspection side, we expect salesct to have a negative impact since it can also be a proxy 

for political influence.     

State variables are intended to control for state specifics. Variables on population 

and income per capita were obtained from Economagic.17 Popt measures the population 

of a given state and is expected to decrease emissions and increase the number of 

inspections. Industries located in highly populated states might be exposed to higher 

levels of public scrutiny, as well as to a higher likelihood of being sued for environmental 

crimes. Regulators in those states might also be subject to more public pressure to make 

industries comply with environmental standards through more frequent inspections rates. 

Inpercapt measures income per capita. It is expected to decrease emissions and to 

increase the number of inspections since people in wealthier states might place more 

                                                 
16 Industries for which growth in sales was greater that 8000% were eliminated from the sample. 
17 See http://www.economagic.com/ 
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value on the environment (Helland, 1998). In order to control for state expenses in 

environmental programs, we include the variable nrexpt, which captures state 

expenditures in natural resources. This variable was obtained from US Statistical 

Abstracts. It is expected to decrease emissions and increase inspections, since it captures 

environmental preferences. Another variable that intends to capture environmental public 

awareness is sierraper, which measures Sierra Club members per capita. It is expected to 

decrease emissions and increase inspections. To control for state economic activity 

related to polluting sectors in the economy, we include gsp_m_mt, which measures gross 

state product of mining and manufacturing sectors. It is expected to increase emissions 

and increase inspections. Repvot measures the ratio of popular vote cast for the 

republican candidate to total votes in the most recent presidential election. It is intended 

to capture people’s political preferences and is expected to increase emissions and 

decrease inspections.18   

Policy variables are dummy variables that indicate whether or not a state has a 

particular environmental regulation in place. Data used to create these variables were 

obtained from several State Codes and Frey and McCollough (2003). Although audit 

privilege and immunity laws are similar on their conditions and provisions, their scope 

varies from state to state. In some states, audit privilege and immunity laws only apply to 

civil and administrative penalties, while in some others, these laws also apply to criminal 

penalties. According to the theory, immunity laws encourage firms to disclose their 

violations and therefore, they have a negative impact on the number of inspections. I_ac 

is a dummy variable that takes values of ‘1’ if a state has an immunity law that waives 

civil and administrative penalties. I_ac_o takes a value of ‘1’ if the immunity law waives 

                                                 
18 Alberini and Austin (2002) find that the percentage of votes for the democratic candidate decreases the 
occurrence of hazardous waste accidents. 
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civil, administrative and criminal penalties. Since i_ac_o also waives criminal penalties, 

we expect it to have a greater impact on the number of inspections. We expect immunity 

laws to have a positive effect on emissions. Imm is a variable that accounts for any kind 

of immunity (or i_ac_o or i_ac). P_ac is a dummy variable for audit privilege laws that 

apply to civil and administrative penalties, while p_ac_o is a dummy that indicates 

whether the audit privilege applies to criminal penalties as well. Priv is a dummy that 

accounts for any kind of audit privilege (or p_ac_o or p_ac). Whereas the theory predicts 

that immunity laws will decrease the number of inspections, to our knowledge, there is no 

theoretical framework that predicts the impacts of audit privilege laws on inspections or 

on emissions. According to past empirical research (Stafford, 2005, 2006a), audit 

privilege has shown to reduce the probability of inspections and violations of 

environmental regulations. However, since there is no theoretical work regarding the 

impact of audit privilege on the environment or on the number of inspections, there is no 

anticipated effect of audit privilege variables.  

Like immunity and audit privilege laws, self-policing policies are similar in their 

provisions, but they vary in their applicability. Sp_ab is a dummy variable that takes the 

value of ‘1’ if the self-policing policy applies to all business, regardless of their size. 

Sp_sb is a dummy that takes vales of ‘1’ if the self-policing policy is only applicable to 

small business (with less than 20 employees). Selfpol is a dummy variable that accounts 

for both types of self-policing policies (sp_ab or sp_sb). Given that self-policing policies 

are a special case of immunity,19 we expect these variables to have a negative effect on 

inspections and to have a significant and positive effect on emissions.  

                                                 
19 In general terms, self-policing policies waive the gravity-based part of a penalty, which is the part of the 
penalty that goes beyond the economic benefit.  
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Sliab is a dummy variable that indicates whether a state has a law that makes 

parties strictly liable for accidental hazardous waste spills. We expect this variable to 

have a negative effect on emissions and inspections, since it is intended to increase 

company’s care in managing hazardous waste.      
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Chapter 5. Models and Methods 

We estimate two equations: an emissions equation and an inspection equation. 

The emissions equation is intended to capture the effects of environmental audit 

regulations on the environment, while the inspection equation is intended to pinpoint the 

impacts of these regulations on the enforcement level of the environmental agencies.    

Given that inspections is a count variable, standard OLS cannot be implemented 

since it generates biased estimates (Winkelmann, 2000). Poisson and Negative Binomial 

models are more adequate to deal with this kind of dependent variables. By using a panel 

dataset, we control for unobserved heterogeneity, arising from industry and state specifics 

that are not captured by the exogenous variables. In order to control for those 

unobservable characteristics, we estimated fixed and random effects for Poisson and 

Negative Binomial models.  

 We also conduct t tests for differences in means of inspections and emissions, 

before and after the implementation of the different regulations.20 Table 5 presents the 

results of the t tests. According to the results, for almost all of the regulations inspections 

were decreased after the implementation of the policies. On the emissions side, immunity 

and self-policing policies decrease them, while audit privilege increases them.  

Although simple t tests can provide us with a preliminary criterion to evaluate the 

effects of environmental audit regulations, we still have to control for industry, state and 

policy characteristics to get a more accurate measure of the impacts of the environmental 

audit regulations.      

 

 

 

                                                 
20 We detrended emissions by fitting a regression of emissions on a trend variable.  
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5.1 The Emissions Equation 

We have an unbalanced panel data of 22,408 observations and 2,489 cross-sectional 

individuals. In order to account for unobserved heterogeneity usually present on panel 

data models, we estimate a fixed effects model specified by21 
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where the ith and jth indexes refer to industry and state, respectively. 

All of the variables and their expected signs were discussed in Chapter 4, except 

for Tt which is a vector of time dummies.  

 

5.2 The inspection equation 

We estimate fixed effects and random effects Poisson and Negative Binomial models for 

the inspection equation.  In order to compute the fixed effects models, we deleted 

observations with only one cross-section and individuals for which the sum of the total 

inspections across time equals cero, Σt yij=0.22 The dataset for the fixed effects model has 

16,918 observations and 1,714 cross-sectional individuals. The inspection equation is 

specified by 
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21 We conducted a Hausman specification test to test fixed effects appropriateness and we could not reject 
the null at 5% of significance level. 
22 Infra, p. 33. 
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where the ith and jth indexes refer to industry and state, respectively. The variables and 

their effects were discussed in Chapter 4. 

 

5.2.1 Fixed Effects and Random Effects 

In our model, the number of inspections is distributed as a Poisson 
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or as Negative Binomial 
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In both models λijt=exp(xijtβ), αij is the source of unobserved heterogeneity and øij is the 

dispersion parameter. In general, Negative Binomial models are less restrictive than 

Poisson models since they allow for overdispersion (variance greater than the mean).  

As in linear models, instead of estimating n different individual effects, we can 

get rid of the αij’s and still be able to estimate β. There are several ways in which this can 

be done.23 The one we will briefly summarize here is the conditional maximum 

likelihood proposed by Hausman, Hall and Griliches (1984). It consists of conditioning 

the probability function of the ith individual on the individual sum of the dependent 

variable over time, Σt yij. By doing so, the αij’s are canceled out and the maximum 

likelihood can be maximized. The shortcomings of the conditioned maximum likelihood 

method is that we cannot have individuals in our sample for which Σt yij = 0, since it will 

produce divisions by zero in the conditioned maximum likelihood function, and that time 

invariant regressors can not be used. 

                                                 
23 See Winkelmann (2000) for a detailed discussion.  
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An alternative is to estimate a random effects model, where the disturbances αij’s 

enter in the model as a random variable.24 As long as the distribution of the αij’s is 

correctly specified, random effects is more efficient than fixed effects, since the former 

uses the full maximum likelihood function instead of a conditioned maximum likelihood 

(Winkelmann, 2000). Problems of random effects arise when the unobservable αij’s are 

correlated with regressors xij’s, in which case fixed effects models are preferable. Given 

that both models have advantages and disadvantages, we decided to estimate both for the 

inspection equation.  

 

5.3 Econometric Issues 

There are two econometric issues that we consider in our estimations. The first one is that 

emissions and inspections might be determined simultaneously, which indicates that we 

have to account for endogeneity. The second one is that past inspections might be 

correlated with present and future inspections, which violates the assumption of no 

autocorrelation.   

We use two econometric estimation techniques to account for endogenous 

variables and autocorrelation: two-stage Poisson and Negative Binomial models and 

dynamic models.25 On the next sections we provide their methodologies, advantages and 

disadvantages.  

 

 

                                                 
24 In our Poisson Random Effects estimations, each αij has a gamma distribution.  
25 We also estimated a Linear Feedback Model by Generalized Method of Moments (GMM), as proposed 
by Blundell, R., R. Griffith and F. Windmeijer (2002). This model is intended to correct for autocorrelation 
and endogenous variables and it was estimated using ExpEnd Gauss program (Windmeijer, 2002). We 
discarded the results of this model because of two reasons: first, for none of our specifications past 
inspections resulted significant explaining contemporaneous inspections and, second, since the program 
does not allow for gaps in the individual time-series, the sample got reduced from 17,857 observations to 
only 9,382, which barely represents all of the industries and the US states.  



 32 

5.3.1 Two-Stage Model 

One approach to deal with endogenous variables in this context is to estimate a two-stage 

regression model. In the first stage one of the endogenous variables is regressed on a set 

of instruments that includes the instruments and all of the exogenous variables. In the 

second stage the other dependent variable is regressed on the exogenous variables and on 

the predicted values of the dependent variable used in the first stage. This approach 

produces consistent estimates, although the standard errors need to be corrected 

(Mullahy, 1997).26 

Since we could find a good instrument for emissions, but not for inspections, in 

the first stage we estimate the emissions equation and in the second stage, we estimate the 

inspections equation. The instrument for emissions is age of the assets, which is 

correlated with emissions, but uncorrelated with inspections.27  

Given that we did not find significant coefficients in the two-stage models for the 

variable instrumented emissions, the results of the two-stage method are not reported. 

Instead, Tables 13 and 14 report the instrumented emissions bootstrapped and non-

bootstrapped t-statistics for each model specification, respectively.28    

 

5.3.2 Dynamic Model 

In order to control for autocorrelation we estimate a dynamic specification for the 

inspection equation, where the variable ln(inspecijt-1+0.5) is included as a regressor. Since 

                                                 
26 In order to correct the Standard errors each model was bootstrapped 500 times.   
27 Our basic argument to use age as instrument for emissions is that regulators will inspect more regularly 
plants with older assets because they expect those plants to pollute more.  
28 The specifications we estimated were dynamic and non-dynamic models with contemporaneous or 
lagged emissions instrumented. The reason for which emissions instrumented is not significant explaining 
inspections might be that other scale variables such as sales or employees are capturing its effect.  
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inspec is a count variable, it is more appropriate to include the logarithm of the lagged 

variable, instead of the lagged variable itself (Hill, Rothchild and Cameron, 1998). 29 

 Tables 8 and 10 show the results for the dynamic models.  

 

5.4 Extensions 

Since the environmental audit regulations vary from state to state, we also estimate an 

emissions and an inspection equation using a broader classification of audit regulations in 

the regressors set: p_ac and p_ac_o are included in place of priv, i_ac_o and i_ac in 

place of imm, and sp_ab and sp_sb in place of selfpol. Tables 6, 9 and 10 show the results 

for the models with six regulations. 

 A reduced model is also estimated for the emissions and the inspection equations, 

where the only explanatory variable included, besides policy variables, is the number of 

facilities. Table 11 presents the results of the reduced model for the inspection equation 

and Table 6 presents the results of the reduced specification for the emissions equation.  

                                                 
29 The constant 0.5 is added to avoid infinity values. 
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Chapter 6. Results 

6.1 The Emissions Equation 

Table 6 presents the results for the emissions equation. First, as expected, 

industries with older assets pollute more. Second, concentrated industries and industries 

that expend more in R&D pollute less. This result is consistent with the rival’s cost 

hypothesis (Innes and Bial, 2002), which states that competing firms in oligopolistic 

markets expend more in R&D to overcomply with environmental standards, in order to 

prompt the government to tighten environmental standards thus gaining an advantage 

over their rivals. Third, the physical size of the industry, as measured by emplsc has a 

positive and significant impact on the level of pollutants released to the air. Fourth, 

industries with more facilities have fewer emissions. Two reasons underpin this result: 

first, those industries are subject to a stronger scrutiny as can be noticed by the results on 

the inspection equation and, second, industries with more facilities might have larger 

companies, which usually have better technologies to control emissions. Fifth, income 

per capita and percentage vote for the republican candidate have a significant and 

positive impact on emissions. Income per capita captures the extent of industrial activity 

in the state, while percentage vote for the republican candidate reveals the effects of 

people’s political preferences on the environment. Sixth, states that have strict liability 

also have higher emissions levels, which suggest that states that adopted strict liability 

face tougher environmental problems (Alberini and Austin, 2002). Finally, our results 

show that privilege and immunity have a significant impact on emissions, while self-

policing has a non-significant effect. On one hand, audit privilege encourages firms to 

conduct audits that reduce emissions. On the other hand, audit immunity increases 

emissions, which suggest that violations disclosed under immunity raise the level of 
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emissions. More specifically, states with audit privilege reduced their emissions in 94,000 

pounds, whilst states with immunity increased their emissions in 69,000 pounds.  

When we disaggregate the effects of the three environmental audit regulations 

into six, we obtain that self-policing policies for small business is significant and negative 

determining emissions. This result implies that self-policing policies have significant 

differences between each other.  

 

6.2 The Inspection Equation 

Results for the different models specified for the inspection equation are presented in 

Tables 7 to 12. In general, our results are consistent for the different specifications of the 

inspection equation. In order to tests the robustness of our results, we estimated the 

inspection equation excluding regions that are conformed by states with relatively small 

industrial activity. We created five regions: the first region was Arizona, New Mexico, 

Colorado, Utah and Wyoming; the second region was conformed by Louisiana, 

Mississippi, Arkansas and Oklahoma; the third one was North Carolina, South Carolina, 

Georgia and Alabama; the fourth one was Vermont, Maine, New Hampshire, 

Massachusetts and Rhode Island; and the fifth one was conformed by North Dakota, 

South Dakota, Minnesota, Wisconsin, Nebraska and Iowa. Our results showed to be very 

consistent excluding one region at a time: the signs and significance of the independent 

variables did not change.         

More evidence of the robustness of our results comes from the fact that dynamic 

models produce similar outcomes than non-dynamic ones. For all our dynamic models, 

lagged inspections resulted positive and significant determining contemporaneous 

inspections. This result suggests that contemporaneous errors in non-dynamic models are 

correlated with past errors.  
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On the industry variables, the variables that are consistently significant through all 

the specifications are number of facilities, size of the industry as measured by number of 

employees, membership to the Sierra Club, income per capita and ratio of republican 

votes to total votes in the most recent presidential election. Number of facilities and size 

of the industry have a positive impact on the number of inspections. Contrary to what we 

expected, we do not find evidence of the political influence of larger industries, as 

evidenced from the effect of the variable emplsc. Another interesting result is that 

variables that measure industry concentration and expenses in R&D, which have a 

significant impact on emissions, do not have a consistent and significant impact in the 

different specifications for the inspection equation. 

 On the state variables, there are several interesting results. First, membership to 

Sierra Club, as measured by the variable sierraper, has a consistent negative and 

significant effect on inspections. This result indicates that environmental organizations 

are used as indirect substitutes for enforcement by regulatory agencies. Second, income 

per capita has a consistent negative and significant impact on inspections. This may be 

due to the fact that wealthier states use prevention pollution programs, rather than direct 

enforcement to reduce pollution. Third, percentage of republican votes is also negatively 

consistent and significant, reflecting the effect of people’s political preferences on the 

environment.  

On the policy side, we also find interesting results. When controlling for three 

regulations, our results are similar to what we obtain on the emissions equation. Audit 

privilege and self-policing policies have a consistent negative and significant impact on 

inspections, while immunity has a consistent positive and significant effect on 

inspections. These results suggest that self-policing policies are consistent to what the 

theory predicts: they decrease the number of inspections. Our results also suggest that the 
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incentives that immunity laws provide for self-policing firms are decreasing the level of 

deterrence, which, ultimately, raises inspection rates. Since regulatory agencies have to 

verify that violations disclosed under immunity are indeed corrected, inspections are 

increased in states that adopted audit immunity laws. Audit privilege has a negative 

impact on inspections, implying that the regulatory agencies use it as a direct substitute 

for inspections (Stafford, 2005).  

In order to have a more accurate measure of the effect of these regulations on the 

number of inspections, we calculate the marginal effects for the models specified in Table 

8. Table 12 shows the marginal effects. Depending on the model, privilege reduces the 

average inspection from 0.24 to 0.67;30 self-policing reduces it from 0.21 to 0.44; and 

immunity increases it from 0.32 to 0.77.   

Tables 9 and 10 present the results for models with 6 regulations. In general, 

environmental regulations that apply to administrative and civil penalties alone have 

stronger impacts than those that also apply to criminal sanctions.  

                                                 
30 The average inspection is 4.48 and was calculated from the original sample (see Table 2). 
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Chapter 7. Conclusions 

This thesis analyzes the effects of environmental audit regulations on the number 

of inspections conducted by the regulatory agencies, as well as on the level of air 

pollutants released to the environment.  

Using state, industry and policy controls we find that audit privilege has a 

negative and significant effect on emissions and inspections; immunity is positive and 

significant explaining emissions and inspections; and self-policing policies have a 

significant and negative effect on inspections, though a non-significant effect on 

emissions.  

Our findings regarding self-policing policies support the hypothesis we were 

testing: self-policing regimes save enforcement resources through decreasing inspections. 

The fact that immunity reduces the number of inspections and raises emissions suggests 

that the incentives that immunity laws place for self-policing affect the level of 

deterrence. The results for the audit privilege variable imply that is used by the regulators 

as an efficient substitute for inspections (Stafford, 2005).  

 Industry characteristics have significant effects on inspections and emissions. We 

find consistent evidence supporting the raising rival’s cost hypothesis (Innes and Bial, 

2002): firms in oligopolistic markets invest in cleaner technologies to prompt regulatory 

agencies to stiffen environmental standards. 

This work also shows that membership in environmental organizations, as 

measured by per capita membership to Sierra Club, is used by the regulatory agencies as 

an indirect substitute for enforcement.  
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Appendix 
 

Table 1. Description of Variables 
Level of 
aggregation Variable Description Source 

Sic-state  emiss 

  

Millions of pounds of total on site air emissions TRI  
(www.epa.gov/tri/) 

Sic-state  inspec IDEA Database 

  

State and EPA inspections 

 

Sic-state  facility IDEA Database 

  

Number of facilities registered in the IDEA Database 

 

State popt 

  

Population (millions) Economagic  
(www.economagic.com) 

State inpercapt 

  

Income per capita (millions of dollars) Economagic  
(www.economagic.com) 

State nrexpt 

  

State Expenditures in Natural Resources  
(trillions of dollars) 

US Statistical Abstracts, 
 various years 

State gsp_m_mt 

  

Mining and manufacturing Gross State Product  
(millions of dollars) 

Bureau of Economic Analysis  
(www.bea.gov/bea/regional/gsp/) 

State sierraper Sierra Club 

  

Per capita members of Sierra Club 

 

State repvot 

  

Ratio of popular vote cast for republican candidate  
to total votes in the most recent presidential election  

US Statistical Abstracts,  
various years 

Sic randt Compustat 

  

Expenses in R&D (billions of dollars) 

 

Sic age Compustat 

  

Age of assets calculated as (Net assets/Gross Assets) 

 

Sic hfin Compustat 

  

Herfindahl Index  (Σ(Si)^2)/1000, where Si is the  
share of the ith company with respect to the total sold  
by the 4 companies with more sales in a given year  

 

Sic growth Compustat 

  

Growth in sales  

 

Sic-state  emplsc Compustat and IDEA 

  

Number of employees scaled by fac_sic (thousand) 

 

Sic-state  salesct Compustat and IDEA 

  

Total sales scaled by fac_sic (millons of dollars) 

 

State sliab Dummy variable indicating Strict liability  

   

Environmental Law Institute (ELI) 

State p_ac_o Dummy variable indicating Privilege applicable  
to administrative, civil and criminal penalties  

State Codes, various years 

State p_ac Dummy variable indicating Privilege applicable  
to administrative and civil penalties  

State Codes, various years 

State i_ac Dummy variable indicating Immunity applicable  
to administrative and civil penalties  

State Codes, various years 

State i_ac_o Dummy variable indicating Immunity applicable  
to administrative, civil and criminal penalties  

State Codes, various years 

State sp_sb Dummy variable indicating Selfpolicing Policies  
only valid for small business 

State Codes, various years 

State sp_ab Dummy variable indicating Selfpolicing Policies  
applicable to all business 

State Codes, various years 

State selfpol Dummy variable indicating Self policing Policies  
(sp_sb or sp_ab) 

State Codes, various years 

State imm Dummy variable indicating Immunity (i_ac or 
i_ac_o) 

State Codes, various years 

State priv Dummy variable indicating Privilege (p_ac or 
p_ac_o) 

State Codes, various years 
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Table 2. Descriptive Statistics     

Variable Mean Std. Dev. Min Max 

inspec 4.4830 10.3853 0 281 
emiss 0.5896 1.2387 0.000001 9.9918 
sliab 0.7393 0.4390 0 1 
popt 7.1721 6.5033 0.4537 35.4845 
nrexpt 0.3251 0.3848 0.0233 2.8944 
gsp_m_mt 0.0370 0.0314 0.0007 0.1720 
repvot 0.4578 0.0899 0.1062 0.6789 
sierraper 0.0019 0.0026 0.0003 0.0525 
inpercapt 0.0233 0.0036 0.0153 0.0369 
age 0.7639 0.1161 0.0736 1 
facility 5.8297 9.4531 1 224 
growth 0.2773 1.9820 -0.9748 29.3739 
hfin 5.8939 2.3239 2.5139 10 
salesct 0.0006 0.0024 0.00000000312 0.0722 
emplsc 0.0018 0.0066 0.0000000345 0.2023 
randt 0.6849 2.5698 0 18.1656 
selfpol 0.1961 0.3970 0 1 
imm 0.2168 0.4121 0 1 
priv 0.2829 0.4504 0 1 
p_ac_o 0.1341 0.3408 0 1 
p_ac 0.1488 0.3559 0 1 
i_ac 0.1408 0.3478 0 1 
i_ac_o 0.0760 0.2650 0 1 
sp_sb 0.0113 0.1059 0 1 
sp_ab 0.1848 0.3881 0 1 
Obs 22408    
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Table 3. Audit Privilege and Immunity Laws Provisions and Years of Adoption 
         Provisions  
    
State 

Year 
of adoption Privilege Immunity  

Administrative and  
Civil Penalties Other legal actions  

Alaska 1997 x x x  
Arkansas 1995 x  x x 
Colorado 1994 x x x x 
Idaho  1996* x x x x 
Illinois 1995 x  x x 
Indiana 1994 x  x Criminal penalties 

removed in the 1999 
amendments 

Iowa 1998 x x x  
Kansas 1995 x x x x 
Kentucky 1996 x x x  
Michigan 1996 x x x 

     

Criminal penalties 
removed 
in the 1997 amendments 

Minnesota 1995 x x x x 
Mississippi 1995 x x x 

     

Criminal penalties 
removed 
in the 2003 amendments 

Montana 1997** x x x  
Nebraska 1998 x x x x 
Nevada 1997 x x x x 
New 
Hampshire 1996 x x x  
New Jersey 1995  x x  
Ohio 1997 x x x  
Oregon 1993 x  x 
     

     

Criminal penalties 
adopted 
in 1997 amendments 
and removed in 2000 

Rhode Island 1997  x x  
South Carolina 1996 x x x 

     

Criminal penalties 
removed 
in the 2000 amendments 

South Dakota 1996 x x x  
Texas 1995 x x x 

     

Criminal penalties 
removed 
in the 1997 amendments 

Utah 1996 x x x  
Virginia 1995 x x x  
Wyoming 1995 x x x   
Source: Frey and McCollough (2003) 
*In sunset since 1997      
**In sunset since 2001      
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Table 4.  Self-policing Policies Provisions and Years of Adoption 

State 
Year of 
adoption 

Applies only to 
Small Business Applies to All Business 

Arizona 2002  x 
California 1996  x 
Connecticut 1996  x 
Delaware 1994  x 
Florida 1996  x 
Hawaii 1998  x 
Indiana 1999  x 
Maine 1996 x  
Maryland 1997  x 
Massachusetts 1997  x 
Minnessota 1995  x 
New Mexico 1999  x 
New York 1999 x  
North Carolina 1995  x 
Oregon 2002  x 
Pennsylvania 1996  x 
Tennessee 1996  x 
Vermont 1996*  x 
Washington 1994  x 
Source: Frey and McCollough (2003)  
* In sunset from 1998 to 2000 
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Table 5. t Test of Mean Differences: Before and After Regulation Implementation 
     

Self-Policing Policies 
  Emissions   Inspections   

  Before  Alter Before  Alter 

Mean 0.0085 -0.0349 4.4304 4.6987 
Variante 1.6241 1.0981 93.1877 167.9552 
Observations 18014 4394 18014 4394 
t Stat 2.0976  -1.53  
P one-tail 0.018   0.9376   
     
     

Immunity 
  Emissions   Inspections   

  Before  Alter Before  After 

Mean 0.0087 -0.0314 4.8603 3.1202 
Variante 0.000075 0.0009 124.6923 44.6625 
Observations 17550 4858 17550 4858 
t Stat 2.0091  10.3596  
P one-tail 0.0223   0.0000   
     
     

Audit Privilege 
  Emissions   Inspections   

  Before  Alter Before  After 

Mean -0.0102 0.0258 4.6865 3.9674 
Variante 1.5932 1.3384 120.1936 76.2218 
Observations 16068 6340 16068 6340 
t Stat -1.9736  4.6713  
P one-tail 0.0242   0.0000   
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Table 6. Emissions Equation     

 Variables 6 Regulations 3 Regulations Reduced Model 

cons 0.3927* 0.3641* 0.9738** 
  (0.2181) (0.2164) (0.0158) 
age -0.1352** -0.1348** - 
  (0.0488) (0.0488)  
hfin -0.0111** -0.0111** - 
  (0.0034) (0.0034)  
salesct 4.9251 5.0424 - 
  (7.4479) (7.4477)  
randt -0.0441** -0.0441** - 
  (0.0044) (0.0044)  
growth 0.0027 0.0027 - 
  (0.0019) (0.0019)  
emplsc 4.8491** 4.8367** - 
  (2.4489) (2.4489)  
sierraper -0.0927 -0.1375 - 
  (1.7006) (1.6975)  
popt -0.0354** -0.0360** - 
  (0.0110) (0.0109)  
inpercapt 38.4315** 39.3325** - 
  (8.3012) (8.2016)  
nrexpt 0.0187 0.0290 - 
  (0.0619) (0.0615)  
gsp_m_mt 0.1734 0.5131 - 
  (1.1811) (1.1457)  
repvot 0.2625** 0.2582** - 
  (0.1175) (0.1152)  
sliab 0.0415** 0.0401** - 
  (0.0197) (0.0196)  
facility -0.0052** -0.0052** -0.0046** 
  (0.0011) (0.0011) (0.0010) 
 p_ac -0.1088**   
priv  (0.0267) -0.0940** -0.0937** 
 p_ac_o -0.0825** (0.0202) (0.0201) 
  (0.0252)     
 i_ac 0.0819**   
imm  (0.0289) 0.0691** 0.0769** 
 i_ac_o 0.0616** (0.0215) (0.0214) 
  (0.0300)     
 sp_ab -0.0034   
selfpol  (0.0178) -0.0140 -0.0199 
 sp_sb -0.1103** (0.0163) (0.0159) 
  (0.0562)     
R-2 0.1075 0.1073 0.0999 
F 70.44 77.12 122.65 
P>F 0.0000 0.0000 0.0000 
Obs 22408 22408 22408 
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Table 7. Inspection Equation: Non-Dynamic Model with 3 Regulations 
  Random Effects Fixed Effects 

 Variable Poisson NB Poisson NB 

hfin 0.0150** 0.0162** 0.0151** 0.0166** 
 (0.0032) (0.0040) (0.0033) (0.0042) 
salesct -14.3032** -7.2687 -14.8978** -6.9437 
 (5.0221) (6.5200) (5.0831) (6.7777) 
randt -0.0046 -0.0060 -0.0035 -0.0050 
 (0.0047) (0.0057) (0.0050) (0.0061) 
growth 0.0008 0.0003 0.0006 0.0003 
 (0.0015) (0.0021) (0.0015) (0.0021) 
facility 0.0424** 0.0327** 0.0408** 0.0309** 
 (0.0006) (0.0007) (0.0006) (0.0007) 
emplsc 17.0205** 16.3181** 17.1779** 16.1973** 
 (1.7499) (2.1981) (1.7668) (2.2662) 
sierraper -7.1231** -3.9748** -6.2033** -5.0078** 
 (1.5648) (1.8972) (1.5556) (1.9279) 
popt 0.0167** -0.0551** 0.1495** -0.0370** 
 (0.0077) (0.0078) (0.0136) (0.0085) 
inpercapt -53.2179** -20.7077** -45.7642** -13.0388 
 (6.9219) (7.1357) (9.6078) (8.7038) 
nrexpt 0.0693 0.0701 -0.2393** -0.2435** 
 (0.0627) (0.0792) (0.0698) (0.0873) 
gsp_m_mt 4.7978** 14.6289** 5.5524** 15.0708** 
 (0.9809) (1.0551) (1.0763) (1.1353) 
repvot -0.7756** -0.7446** -0.8032** -0.7801** 
 (0.1427) (0.1704) (0.1481) (0.1775) 
priv -0.0592** -0.1658** -0.0719** -0.1950** 
 (0.0168) (0.0227) (0.0169) (0.0231) 
imm 0.1052** 0.1668** 0.1585** 0.1979** 
 (0.0201) (0.0262) (0.0204) (0.0268) 
selfpol -0.0944** -0.0569** -0.1267** -0.0580** 
 (0.0155) (0.0199) (0.0160) (0.0204) 
sliab -0.0081 -0.0541** -0.0046 -0.0387 
 (0.0199) (0.0236) (0.0209) (0.0251) 
cons 2.0088** 2.6876** - 2.4261** 
  (0.1957) (0.2111)  (0.2423) 
Wald chi2(30) 14114.1 8279.63 13692.78 7563.06 
Prob>chi2 0.0000 0.0000 0.0000 0.0000 
Log likelihood -39276.277 -38023.619 -29760.645 -28425.409 
Obs 22408 22408 16918 16918 
Note: Standard Errors in parenthesis. **Statistically significant at the 5% level. *Statistically 
significant at the 10% level. Time Dummies included. 

 



 49 

 

Table 8. Inspection Equation: Dynamic Model with 3 Regulations 
  Random Effects Fixed Effects 

 Variable Poisson NB Poisson NB 

inspec(t-1) 0.4575** 0.4635** 0.3561** 0.2936** 
 (0.0088) (0.0116) (0.0083) (0.0110) 
Hfin 0.0037 0.0061 0.0056 0.0096** 
 (0.0034) (0.0040) (0.0036) (0.0045) 
salesct -5.3347 1.1922 -6.2245 1.4147 
 (5.4629) (6.5556) (5.5850) (7.0328) 
randt -0.0114** -0.0090 -0.0115** -0.0067 
 (0.0049) (0.0056) (0.0055) (0.0065) 
growth 0.0006 0.0001 0.0006 0.0003 
 (0.0017) (0.0021) (0.0017) (0.0022) 
facility 0.0315** 0.0250** 0.0328** 0.0260** 
 (0.0007) (0.0008) (0.0007) (0.0008) 
emplsc 12.1973** 11.0670** 12.7119** 12.1883** 
 (1.9093) (2.2315) (1.9492) (2.3694) 
sierraper -7.2232** -4.7333** -6.8770** -5.7850** 
 (1.5960) (1.8333) (1.5985) (1.9140) 
popt 0.0153** -0.0323** 0.1945** -0.0253** 
 (0.0072) (0.0081) (0.0175) (0.0100) 
inpercapt -28.9897** -26.3935** -25.7811** -28.2731** 
 (6.5735) (6.7733) (10.6851) (9.9367) 
nrexpt -0.0004 0.2361** -0.5460** -0.1972** 
 (0.0654) (0.0751) (0.0809) (0.0923) 
gsp_m_mt -0.3216 5.6126** -0.2957 10.5026** 
 (0.9960) (1.1616) (1.1853) (1.3258) 
repvot -0.9978** -1.0487** -1.0342** -1.1587** 
 (0.1544) (0.1772) (0.1659) (0.1948) 
priv -0.0572** -0.1187** -0.0713** -0.1623** 
 (0.0178) (0.0218) (0.0181) (0.0231) 
imm 0.0710** 0.1119** 0.1323** 0.1596** 
 (0.0215) (0.0259) (0.0222) (0.0274) 
selfpol -0.0645** -0.0496** -0.1044** -0.0621** 
 (0.0168) (0.0201) (0.0174) (0.0212) 
sliab 0.0058 -0.0299 0.0192 -0.0124 
 (0.0216) (0.0243) (0.0237) (0.0275) 
cons 1.3251** 2.7080** - 1.4685** 
  (0.1932) (0.2107)  (0.3104) 
Wald chi2(30) 14181.6 10201.48 13036.81 8287 
Prob>chi2 0.0000 0.0000 0.0000 0.0000 
Log likelihood -31446.018 -31002.022 -23514.7 -22968.595 
Obs 17857 17857 13473 13473 
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Table 9. Inspection Equation: Non-Dynamic Model with 6 Regulations 
  Random Effects Fixed Effects 

 Variable Poisson NB Poisson NB 

hfin 0.0150** 0.0162** 0.0151** 0.0166** 
 (0.0032) (0.0040) (0.0033) (0.0042) 
salesct -15.1184** -7.7622 -15.7423** -7.5010 
 (5.0410) (6.5426) (5.0938) (6.8044) 
randt -0.0042 -0.0058 -0.0031 -0.0047 
 (0.0047) (0.0057) (0.0050) (0.0061) 
growth 0.0007 0.0003 0.0006 0.0003 
 (0.0015) (0.0021) (0.0015) (0.0021) 
facility 0.0425** 0.0328** 0.0408** 0.0310** 
 (0.0006) (0.0007) (0.0006) (0.0007) 
emplsc 16.9265** 16.2510** 17.1832** 16.1373** 
 (1.7558) (2.2050) (1.7701) (2.2739) 
sierraper -6.3324** -3.5109* -5.8367** -4.6051** 
 (1.5699) (1.9059) (1.5608) (1.9398) 
popt 0.0106 -0.0575** 0.1448** -0.0394** 
 (0.0077) (0.0078) (0.0142) (0.0086) 
inpercapt -52.3815** -20.7923** -40.6229** -11.8785 
 (6.9956) (7.1963) (9.8221) (8.8134) 
nrexpt 0.0703 0.0712 -0.2374** -0.2463** 
 (0.0629) (0.0793) (0.0701) (0.0876) 
gsp_m_mt 5.3630** 14.9220** 5.7351** 15.4227** 
 (0.9921) (1.0673) (1.0910) (1.1495) 
repvot -0.5727** -0.6490** -0.6155** -0.6516** 
 (0.1463) (0.1750) (0.1516) (0.1826) 
p_ac -0.1709** -0.2297** -0.1296** -0.2577** 
 (0.0272) (0.0350) (0.0280) (0.0362) 
p_ac_o -0.0088 -0.1311** -0.0447** -0.1607** 
 (0.0192) (0.0263) (0.0194) (0.0267) 
i_ac 0.2744** 0.2577** 0.2812** 0.2953** 
 (0.0310) (0.0397) (0.0313) (0.0410) 
i_ac_o -0.0187 0.1029** 0.0397 0.1239** 
 (0.0254) (0.0334) (0.0259) (0.0342) 
sp_ab -0.0412** -0.0285 -0.0951** -0.0312 
 (0.0176) (0.0220) (0.0184) (0.0227) 
sp_sb -0.2851** -0.1642 -0.1329 -0.0383 
 (0.0967) (0.1104) (0.1006) (0.1161) 
sliab -0.0198 -0.0564** -0.0120 -0.0405 
 (0.0200) (0.0236) (0.0210) (0.0251) 
cons 1.9065** 2.6499** - 2.3432** 
  (0.1978) (0.2137)  (0.2460) 
Wald chi2(33) 14154.68 8340.58 13721.75 7621.7 
Prob>chi2 0.0000 0.0000 0.0000 0.0000 
Log likelihood -39240.466 -38017.8 -29731.367 -28419.217 
Obs 22408 22408 16918 16918 
Note: Standard Errors in parenthesis. **Statistically significant at the 5% 
level. *Statistically significant at the 10% level. Time Dummies included. 
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Table 10. Inspection Equation: Dynamic Model with 6 Regulations 
  Random Effects Fixed Effects 

 Variable Poisson NB Poisson NB 

inspec(t-1) 0.4562** 0.4626** 0.3549** 0.2949** 
 (0.0088) (0.0115) (0.0083) (0.0109) 
hfin 0.0036 0.0060 0.0057 0.0095** 
 (0.0034) (0.0040) (0.0036) (0.0044) 
salesct -6.2205 0.2684 -7.1984 0.3360 
 (5.4844) (6.5824) (5.5963) (7.0708) 
randt -0.0109** -0.0086 -0.0109 -0.0062 
 (0.0049) (0.0056) (0.0055) (0.0065) 
growth 0.0005 0.0001 0.0005 0.0002 
 (0.0017) (0.0021) (0.0017) (0.0022) 
facility 0.0316** 0.0251** 0.0328** 0.0261** 
 (0.0007) (0.0008) (0.0007) (0.0008) 
emplsc 12.0388** 10.9740** 12.6732** 12.0810** 
 (1.9155) (2.2391) (1.9519) (2.3799) 
sierraper -6.5185** -4.2128** -6.6456** -5.2848** 
 (1.6015) (1.8397) (1.6038) (1.9282) 
popt 0.0130** -0.0332** 0.1930** -0.0278** 
 (0.0072) (0.0081) (0.0183) (0.0100) 
inpercapt -28.9529** -26.7532** -20.8362* -27.6153** 
 (6.6195) (6.8161) (10.8685) (10.0457) 
nrexpt -0.0061 0.2269** -0.5437** -0.2044** 
 (0.0656) (0.0754) (0.0813) (0.0927) 
gsp_m_mt -0.0851 5.7270** -0.3493 10.8249** 
 (1.0064) (1.1742) (1.2012) (1.3392) 
repvot -0.8319** -0.9287** -0.8751** -0.9875** 
 (0.1578) (0.1815) (0.1693) (0.2001) 
p_ac -0.1574** -0.1956** -0.1096** -0.2401** 
 (0.0286) (0.0341) (0.0297) (0.0364) 
p_ac_o -0.0136 -0.0810** -0.0525** -0.1225** 
 (0.0201) (0.0248) (0.0206) (0.0263) 
i_ac 0.2175** 0.2232** 0.2319** 0.2850** 
 (0.0328) (0.0390) (0.0333) (0.0416) 
i_ac_o -0.0320 0.0337 0.0255 0.0620* 
 (0.0273) (0.0328) (0.0281) (0.0347) 
sp_ab -0.0148 -0.0123 -0.0811** -0.0253 
 (0.0192) (0.0226) (0.0203) (0.0239) 
sp_sb -0.2656** -0.2015* -0.0492 -0.0468 
 (0.1048) (0.1170) (0.1140) (0.1290) 
sliab -0.0039 -0.0335 0.0160 -0.0148 
 (0.0218) (0.0243) (0.0239) (0.0276) 
cons 1.2525** 2.6739** - 1.3778** 
  (0.1947) (0.2125)   (0.3139) 
Wald chi2(33) 14196.37 10269.82 13042.27 8352.37 
Prob>chi2 0.0000 0.0000 0.0000 0.0000 
Log likelihood -31422.405 -30992.57 -23493.666 -22957.899 
Obs 17857 17857 13473 13473 
Note: Standard Errors in parenthesis. **Statistically significant at the 5% 
level. *Statistically significant at the 10% level. Time Dummies included. 
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Table 11. Inspection Equation: Reduced Model 

 Random Effects Fixed Effects 

Variable Poisson NB Poisson NB 

facility 0.0446** 0.0346** 0.0433** 0.0325** 

 (0.0005) (0.0007) (0.0006) (0.0007) 

priv -0.0682** -0.1658** -0.0841** -0.1949** 

 (0.0166) (0.0232) (0.0167) (0.0241) 

imm 0.1022** 0.1565** 0.1239** 0.1829** 

 (0.0198) (0.0265) (0.0199) (0.0274) 

selfpol -0.0606** -0.0338* -0.0586** -0.0359* 

 (0.0148) (0.0195) (0.0149) (0.0201) 

cons 0.8334** 2.0894** - 2.0027** 

  (0.0325) (0.0350)   (0.0344) 

Wald chi2(18) 13656.42 7782.36 13177.49 7009.43 

Prob>chi2 0.0000 0.0000 0.0000 0.0000 

Log likelihood -39464.658 -38227.301 -30006.077 -28622.429 

Obs 22408 22408 16918 16918 
Note: Standard Errors in parenthesis. **Statistically significant at the 5% level. 
*Statistically significant at the 10% level. Time Dummies included. 

 

 

 

 

Table 12. Marginal Effects with Respect to the Average Inspection  
 Random Effects Fixed Effects 

Variable Poisson NB Poisson NB 

lninspeclag 2.0498 2.0766 1.5952 1.3153 
facility 0.1413 0.1119 0.1468 0.1163 
emplsc 54.6438 49.5802 56.9494 54.6035 
sierraper -32.3597 -21.2053 -30.8090 -25.9170 
inpercapt -129.8737 -118.2429 -115.4992 -126.6634 
repvot -4.4702 -4.6982 -4.6333 -5.1908 
priv* -0.2493 -0.5014 -0.3081 -0.6712 
imm* 0.3299 0.5302 0.6339 0.7753 
selfpol* -0.2797 -0.2166 -0.4442 -0.2696 
Note: Marginal Effects were computed using results in Table 8. The 
average inspection is 4.48 and was calculated from the original sample. 
*Discrete Marginal Effects: (exp(bi)-1). 
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Table 13. Bootstrapped t Statistics for Emissions Instrumented in the Inspection Equation 
 Random Effects Fixed Effects 

Model Specification Poisson NB Poisson NB 

Dynamic with lagged        
instrumented emissions 0.1717 0.1166 0.1859 0.1718 
 (17857) (17857) (13473) (13473) 
Dynamic with contemporaneous       
instrumented emissions 0.1125 0.0716 0.1660 0.1177 
 (17857) (17857) (13473) (13473) 
Inspections with lagged        
emissions instrumented 0.2812 0.2152 0.2395 0.3127 
 (17857) (17857) (13473) (13473) 
Inspections with contemporaneous       
emissions instrumented 0.1714 0.2349 -0.1502 -0.0393 
 (22408) (22408) (16918) (16918) 
Reduced Model with contemporaneous       
emissions instrumented 0.1831 0.2307 0.1855 0.1799 
 (22408) (22408) (16918) (16918) 
 Note: Number of observations in parenthesis 

 

 

Table 14. Non-Bootstrapped t Statistics for Emissions Instrumented in the Inspection Equation 
 Random Effects Fixed Effects 

Model Specification Poisson NB Poisson NB 

Dynamic with lagged        
instrumented emissions 1.1237 0.5740 0.5769 0.5341 
 (17857) (17857) (13473) (13473) 
Dynamic with contemporaneous       
instrumented emissions 1.1237 0.5740 0.5934 0.5240 
 (17857) (17857) (13473) (13473) 
Inspections with lagged        
emissions instrumented 1.9115* 1.2362 1.0759 0.8271 
 (17857) (17857) (13473) (13473) 
Inspections with contemporaneous       
emissions instrumented 0.4342 0.3592 -0.2594 -0.0643 
 (22408) (22408) (16918) (16918) 
Reduced Model with contemporaneous       
emissions instrumented 0.8112 0.6499 0.4188 0.2238 
  (22408) (22408) (16918) (16918) 
Note: * Statistically significant at the 10% level. Number of observations in parenthesis. 

 


