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Abstract 
 

 This study utilizes Monte Carlo experiments on simulated data to study the effects 

of sample size on the empirical accuracy of both point and interval estimates of technical 

efficiency in cross-sectional stochastic frontier models. Also considered is the robustness 

of Coelli's (1995) test statistic for the presence of skewness. It is found that sensitivity to 

sample size varies by model as well as the relative amount of inefficiency present in the 

data. Furthermore, large amounts of inefficiency are not optimal in terms of interval 

estimation accuracy. Finally, results indicate that Coelli's asymptotic test statistic is 

robust in moderately small samples, though performance varies with the underlying 

distribution of inefficiency.  
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Chapter 1 
 

Introduction 
 

 Stochastic frontier models have been prevalent in the literature since their 

simultaneous introductions by Aigner et al. (1977) and Meeusen and van den Broeck 

(1977). Though methods for constructing firm–level estimates of technical efficiency 

were not immediately introduced, the composed error structure was generally considered 

a more theoretically sound basis for modeling technical efficiency than previously 

employed deterministic frontier methods.  

 Shortly after the introduction of the original composed error specification of the 

stochastic frontier model, Jondrow et al. (1982) purposed a method to obtain point 

estimates of firm-level technical efficiency, relying on either the conditional mean or 

mode of the distribution of the inefficiency. Battese and Coelli (1988) later expanded 

upon this estimator using a higher order approximation of the conditional mean that 

would theoretically yield more accurate point estimates. Their estimator is now 

considered almost standard. Later work by Bera and Sharma (1999) developed an interval 

estimator based on the conditional distribution of the inefficiency, while Horrace and 

Schmidt (1996) introduced an interval estimator based on the distribution for which the 

Battese and Coelli point estimator is the mean.  

 Additionally, Coelli (1995) has developed a specification test for the stochastic 

frontier model, consisting of a test for skewness in the residuals of a simple OLS 

regression. As noted by Bera and Mallick (2002), a test for skewness should not be 

misconstrued as a test for the stochastic frontier model itself. Skewness is a necessary 

condition for the stochastic frontier model, but it is not a sufficient one. While Coelli's 
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test statistic is incapable of directly assessing the validity of the stochastic frontier model, 

it does give the researcher insight into whether or not a critical assumption of the model 

appears true. That is to say that while we cannot validate the claim that the data constitute 

a recipe for the stochastic frontier model, we can at least determine if one of its key 

ingredients is present.  

 While useful, Coelli's test statistic is an asymptotic test, with properties defined 

only for large samples. Similar arguments can be made for the point and interval 

estimators, both of which rely strongly upon the distributional assumptions underlying 

the stochastic frontier model itself. Small sample properties are not straightforwardly 

derived and are thus not well understood in these models. This lack of knowledge brings 

into question the reliability of both point and interval estimators, as well as Coelli's 

asymptotically normal test statistic, for smaller samples. Furthermore, differing 

specifications of the stochastic frontier model, particularly with regards to the distribution 

of the inefficiency component, may lead to differential performance as sample size grows 

shrinks. It would therefore be of interest to examine the small sample properties of these 

estimators, as well as Coelli's test statistic, in at least the most frequently employed 

stochastic frontier specifications.  

 To this end, a Monte Carlo experiment is conducted wherein three of the most 

commonly used stochastic frontier models are estimated using simulated data. By varying 

the sample size and the amount of inefficiency simulated in the data, we attempt to draw 

at least qualitative conclusions about the effects such factors may have upon the 

performance of the point and interval estimators. Coelli's test statistic is also computed in 

all cases, in an effort to gauge its ability to detect skewness in the composed OLS 
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residuals. 

 The remainder of the thesis proceeds as follows: chapter two gives a theoretical 

background and brief survey of the relevant literature on stochastic frontier models, while 

chapter three considers the details of empirical estimation. Chapter four outlines the 

design of the Monte Carlo experiments, data generation, numerical optimization and the 

measures with which the estimators are compared. Chapter five presents the simulation 

results and chapter six provides concluding remarks.  
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Chapter 2 
 

Stochastic Frontier Models 
 

The general rationale of modeling a production process in terms of a frontier, as opposed 

to a production function, is that it serves as an upper bound on productive capability of a 

profit maximizing producer. That is, a production frontier accounts for the fact that while 

producers seek to maximize their profits, they are not always successful. In the words of 

Kumbhakar and Lovell (2000, pg. 2) “Not all producers succeed in utilizing the minimum 

inputs required to produce the outputs they choose to produce, given the technology at 

their disposal. ... Consequently, not all producers succeed in maximizing the profit 

resulting from their  production activities.” By measuring shortfalls from the production 

frontier, inference can be drawn about the efficiency with which producers allocate their 

inputs in the productive process.  

 To make the difference between production functions and production frontiers 

explicit, consider a typical production function of the general form 

 (2.1) 

where, for the i-th firm, yi denotes output, xi represents a vector of inputs 

and β is a vector of parameters characterizing the production process. Here, the right hand 

side of the equation is presumed to be the frontier of possible production, assuming profit 

maximization on the part of the producer.  

 If we alternatively consider the addition of a random, two-sided (say normal) 

disturbance term, v, then the result is a stochastic production function model, given by  

 (2.2) 
( , )i i iy f x vβ= +

,( )i ify x β=
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If, on the other hand, we consider the addition of a positive, one-sided error term1, u, we 

would obtain 

 (2.3) 

The result in the one-sided error case is a deterministic frontier 

model. Given the assumptions about u, production will lie on or below the frontier given 

by the right-hand side less the disturbance. That is, for values of u greater than or equal to 

zero,  

 (2.4) 

Notice that in the stochastic production function model there is no 

frontier to speak of, in the sense that deviations from the production function can be 

either positive or negative. This provides a sharp contrast to the deterministic frontier 

model, where only one-sided deviations are allowed. Figures 2.1 and 2.2 graphically 

illustrate the differences between these two specifications in a single input environment.  

The notion of a stochastic frontier departs from the deterministic frontier 

formulation in the sense that it allows the entire frontier to become stochastic. Models of 

this type have existed in the literature for some time, stemming from early work in 

frontier production models by Farrel (1957), Aigner and Chu (1968),  Seitz (1971) and 

Timmer (1971).  Two later studies by Aigner et al. (1977) and Meeusen and van den 

Broeck (1977) simultaneously proposed the estimation of such models using a composed 

error term. Both formulations began with a normally distributed error to account for pure 

randomness and added a second, one-sided error to account for technical inefficiency. In 

particular, Aigner et al. (1977) suggested a (positive) half normal distribution for the 

                                                 
1Equivalently, u can take the form of a symmetric error term truncated (from below) at zero.  

( , )i iy f x β≤

( , )i i iy f x uβ= −
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inefficiency. In this context, the model would take on the form,  

 (2.5) 

Here, u is the one-sided, half-normal error component and v is a 

normally distributed error. The motivation for using a half normal distribution to 

characterize the inefficiency is best summarized by Kumbhakar and Lovell (2002, p. 74), 

who base this distributional assumption upon “... the plausible proposition that the modal 

value of technical inefficiency is zero, with increasing values of technical inefficiency 

becoming increasingly less likely.” They also note that this particular distributional 

assumption allows for straightforward derivation of the density for the composed errors, 

which is required to undertake empirical estimation.  

 Though theoretically justifiable and mathematically one of the most tractable, the half 

normal distribution for ui is but one of several composed error specifications considered 

in the stochastic frontier literature. Aigner et al. (1977) also considered the exponential 

distribution as an alternative to the half normal in their introduction of the frontier model, 

while the simultaneous introduction by Meeusen and van den Broeck (1977) focused 

exclusively on the exponential distribution. Stevenson (1980) introduced a more general 

truncated normal distribution, allowing for a non-zero mode and thereby nesting the 

normal–half normal model of Aigner et al. Greene (1980) considered an even more 

flexible gamma distribution for the inefficiency component, ui.  

 While it is tempting to employ a more flexible specification, Kumbhakar and Lovell 

(2000) point out several potential problems, stemming from research by Ritter and Simar 

(1997a, 1997b). These include difficulty in the estimation of the additional parameters, 

particularly in the case of the gamma distribution. Moreover, they argue that the log 

( , )i i i iy f x v uβ= + −
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likelihood function for the gamma formulation is difficult (and in some cases impossible) 

to maximize. Kumbhakar and Lovell (2000) investigated results reported by Greene 

(1990) and found that rank correlations between pairs of firm-level technical efficiency 

estimates across all four models were highly correlated. They argue that such evidence 

supports the use of  simpler distributions, namely the half normal and exponential, rather 

than the more general truncated normal and gamma counterparts. Furthermore, 

Kumbhakar and Lovell's results indicate that, at least insofar as the ranking of firm-level 

efficiencies, “...the choice between the two one-parameter [half normal and exponential] 

densities  is largely immaterial” (p. 90). 

 Regardless of the choice in distributional specification for the inefficiency term, it should 

be clear that the production frontier is no longer deterministic but in fact stochastic, and is 

given for the i-th firm by 

 (2.6) 

An important and perhaps subtle difference between the stochastic 

and deterministic specifications should be addressed at this point. Notice that in the 

aforementioned deterministic frontier model, no firm-level variation in output capability 

is allowed for after taking efficiency into account. The stochastic frontier model, by 

contrast, explicitly allows for such variation with the inclusion of v. That is, the 

specification of a stochastic frontier allows for random differences in operating 

environment that, while beyond the producer's control, are nonetheless related to 

productive capability. Indeed, Bera and Sharma (1999) exploit this very characteristic of 

the stochastic frontier framework to construct measures of production uncertainty. The 

deterministic frontier model simply assumes away any such influences on production. 

( , )i i iy f x vβ≤ +
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Such an assumption is convenient and perhaps even appropriate in some settings, but it 

would seem in general to be an oversimplification. 

 In addition to their differing assumptions about the presence of statistical noise, 

there also exists a more fundamental distinction between the stochastic frontier 

framework and the deterministic approach. As highlighted by Horrace and Schmidt 

(1996), stochastic frontiers are statistical models and provide estimates of technical 

efficiency. Deterministic frontier models, by contrast, are often formulated as 

mathematical programming problems.2 While uncertainty is accounted for and 

quantifiable in the stochastic frontier model, the deterministic frontier model produces 

only efficiency measures, about which uncertainty is not easily gauged. Indeed, Horrace 

and Schmidt (1996, p. 257) note that while confidence intervals for deterministic models 

can be generated through bootstrapping techniques, such procedures “...are an imperfect 

substitute for an adequately developed distributional theory.” 

 While theoretically more appealing, the stochastic frontier model does introduce 

certain empirical obstacles not found in more simplified formulations. The root cause of 

these difficulties lies in the composed errors. In the present case of cross-sectional data, 

for example, the measurement of firm-level efficiency  would seem to require the 

empirically impossible task of decomposing the observed errors into their inefficiency (u)  

and noise (v) components. In response to this apparent impasse, alternative techniques 

have been developed for extracting information on firm-level technical inefficiency. The 

following chapter will review these techniques in detail. 

 The stochastic frontier model assumes inefficiency to exist in a production 

                                                 
2There are techniques to estimate deterministic frontier models statistically, but these methods suffer from 

serious theoretical and empirical shortcomings. See Kumbhakar and Lovell (2000).  
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process characterized by some amount of stochastic variation beyond the control of the 

producer. In general, this appears to be an unreasonable assumption. Much less tenable 

would be the assumption that the productive process was purely deterministic, and that 

observed deviations were entirely attributable to inefficiency on the part of the producer. 

It is for this reason that the stochastic frontier framework is often adopted in favor of its 

more rigid deterministic counterpart.
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Figure 2.1 
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Figure 2.2
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Chapter 3 
 

Empirical Estimation of Technical Efficiency 
 

Stochastic frontier models are composed error models, with one component of the error 

representing inefficiency and the other statistical noise. While simple enough in theory, 

such models present challenges in both estimation and inference. This chapter considers 

cross-sectional stochastic frontier models3 under three of the most common error 

specifications. Section one explores techniques for estimation, extraction of firm-level 

technical efficiency estimates and the construction of confidence intervals for the normal 

– half normal model. Subsequent sections generalize these techniques to the normal – 

exponential and normal – truncated normal models. 

3.1 Estimation: The Normal – Half Normal Model  

Recall, from chapter 2, the basic stochastic production frontier model can be 

expressed as  

        i = 1, ..., n      (3.1) 

where, for the i-th firm, yi typically denotes the logarithm of output, xi 

denotes a k-vector of input quantities, also typically measured in logarithms (or functions 

of input quantities), β represents technology parameters to be estimated and vi and ui 

represent noise and inefficiency, respectively. Given some distributional assumptions on 

the components of the error terms, such models can be estimated by either maximum 

likelihood or (in some cases) a two-stage, corrected ordinary least squares (COLS) 

procedure. Consider, for example, the following set of assumptions:  

                                                 
3Panel data models also exist, but are beyond the scope of this analysis. For an excellent extension of the 

techniques in this chapter to panel data, see Kumbhakar and Lovell (2000).  

i i i iy x v uβ= + −
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Here, v is the standard, two-sided error and  u represents the one-sided (non-negative) 

inefficiency. Under these assumptions, one obtains the so-called “Normal – Half-Normal” 

model of Aigner et al (1977).  

 To effect maximum likelihood or COLS estimation of this model, the distribution 

of the composed errors must be specified. Aigner et al. (1977) as well as Kumbhakar and 

Lovell (2000) derive this distribution by first appealing to assumption (iii), which 

suggests that given4   

 

 

 

 

        

the joint density function of v and u will simply be the product of the individual densities. 

That is    
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4Notice that f(u) is distributed as a N(0, σu) that is truncated from below at zero.  
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u) as ε, the joint distribution of u and ε can be obtained by direct substitution as 

 

Again following Aigner et al. (1977) and 

Kumbhakar and Lovell (2000), the marginal density of  ε  is found by integrating out the 

density of u, so that 

 

 

 

  

 

 

This density is plotted in figures 3.1 – 3.3 

for several values of λ. The mean and variance of ε can be derived by considering the 

corresponding mean and variance of its v and u components. Kumbhakar and Lovell 

(2000) show that 
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The log likelihood function 

is then found by taking the natural logarithm, yielding 

 

 

 

  

 

In this formulation, λ and σ (or, equivalently, σu
2

 and σv
2 ) become additional parameters 

in the model and can be consistently estimated along with the technology parameters in 

β5. Hence, there are k+2 parameters to estimate.   

 As an alternative to maximum likelihood, COLS can also be used to obtain 

consistent estimates of all parameters in the model. First, we re-write the stochastic 

production frontier as  
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 (3.11) 

Reformulated in this manner, the error term has a zero mean and finite variance, allowing 

for consistent estimates of all parameters, apart from the intercept, by OLS. As can be 

readily seen, the resulting OLS intercept will be biased downward by the mean of u. In 

order to obtain a consistent estimate of this term, a consistent estimator for the mean of u 

is needed.  

 Given assumptions (i), (ii) and (iii), a consistent estimator for β0 can be obtained 

by considering the central sample moments of the OLS residuals and the associated 

central moments of the error term. Denoting the i-th sample moment of the residuals 

about their mean m as mi  and the i-th moment of error term about its mean µ as µi , we 

have6  
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central moments of the error term, m3  can be set equal to µ3,  implying  
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           m3 > 0 (3.13) 

as a consistent estimator for the σu
2 parameter7. By considering this result and equating 

m2 with µ2 it is then trivial to obtain  

  

as a consistent estimator for σv
2, the variance of v. Having found 

consistent estimators for all other parameters, a consistent COLS estimate of  intercept 

term is then given by  

  

  

 

 COLS has the advantage of being robust to distributional assumptions about the 

disturbances during the first stage estimation of the technology parameters (excluding the 

constant), but it is not without its own shortcomings. The reliance on the moments of the 

residuals in estimating the variances of the disturbance terms, as well as for correcting the 

bias in the intercept, hinges critically upon the sign of the third central sample moment. 

Olson et al. (1980) observed that negativity of the third central moment of the error term 

does not ensure that the third central moment of the residuals will always be negative. In 

practice it is entirely possible to observe a non-negative, third central moment of the 

residuals, although this would bring into serious question whether or not the stochastic 

frontier model was correctly specified. In addition, COLS estimation of the stochastic 

frontier model has been found to be inefficient compared to maximum likelihood, a direct 

                                                 
7Notice that  σu

2 is not the variance of u. Recall that u ~ |N(0,σu
2 )| so that V(u) = ((π−2)/π) σu

2.   See Aigner 
et al. (1977). 
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consequence of the latter's usage of distributional assumptions (or, equivalently, the 

former's lack thereof). It is worth mentioning, however, that this difference in efficiency 

holds only for the case where the underlying distributional assumptions of the maximum 

likelihood specification are in fact correct.  

 When maximum likelihood estimation is used, Kumbhakar and Lovell (2000) 

point out that the re-parameterization to λ is particularly convenient, because it yields 

information about the composition of ε. Specifically, they note that as λ→∞ the one-sided 

error 'dominates' and a deterministic frontier model obtains. Conversely, as λ→0, a 

stochastic production function model with no inefficiency emerges. They also 

acknowledge that while the value of λ is useful in trying gauge the presence of 

inefficiency, it is difficult to interpret the results of a standard likelihood ratio or Wald 

test for the boundary values of the parameter space (e.g. λ=0). Because of this, inference 

about the presence of inefficiency is not easily made solely on the basis of λ.       

Other methods of testing for the presence of inefficiency are available, however. One 

such test, suggested by Coelli (1995), does not require maximum likelihood estimation of 

the full model but instead only simple OLS regression of a restricted model. Because the 

composed residuals must exhibit negative skewness in the presence of inefficiency, Coelli 

proposed a relatively straight-forward method for testing the null hypothesis of zero 

skewness. Again denoting the i-th central sample moment of the residuals about their 

mean as mi , his test statistic can be written as  

 (
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and is distributed asymptotically as a standard normal. For any intrinsically linear (e.g. 

Cobb Douglas, translog, etc.) model, this statistic can be easily computed using the 

residuals generated by a standard OLS regression. Because this test statistic follows an 

asymptotically normal distribution, however, inference in small sample applications may 

warrant some measure of caution. 

 While such testing can readily provide inference about the presence of technical 

inefficiency, it yields little quantitative insight. In order to say something about the extent 

of efficiency with which firms are operating, it is necessary to further examine the 

residuals of the full model. Following estimation by either maximum likelihood or COLS, 

however, one obtains only composed residuals. These residuals naturally contain 

information about efficiency, but it is obscured by statistical noise from which it cannot 

be readily separated. One early solution to this problem was the usage of an “average 

efficiency” measure. The first such estimator was proposed by Aigner et al (1977),  and is 

given by  

 

 

 An alternative estimator, 

 

  

 

was later proposed by Lee and Tyler (1978). Kumbhakar and Lovell (2000) note that the 

latter estimator is preferred, as the former contains only the first term in the power series 

expansion of exp{-u}. Regardless of which estimator is ultimately chosen, one can easily 
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obtain an average efficiency measure and draw limited inference about the  technical 

efficiency of a given sample of firms. The problem with this, however, is that averages 

can mask large (or small) inefficiencies at the firm level. One might even say that as the 

variation in firm level efficiency of a given sample grows, average efficiency measures 

will provide an increasingly abstract characterization of the individual firms. For such 

reasons, it is desirable to obtain estimates not just of average efficiency across firms in a 

given sample, but measures of firm-level efficiency itself.  

 While it is not possible to directly decompose an observed residual εi into its vi 

and ui components, there are means for extracting the information that εi contains about 

ui. Jondrow et al. (1982) proposed two methods, both relying on the conditional 

distribution of u given the composed residual ε. Specifically, they show the conditional 

distribution under assumptions (i), (ii) and (iii) to be  
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truncated (from below) at zero.  

 Having the conditional density of u given ε, it is straightforward to obtain the 

conditional density of ui for each firm in the sample given an estimate of its associated 

residual εi. Jondrow et al. (1982) proposed either the mean or mode of each firm's 

conditional density as a point estimate for the unobserved inefficiency error component 

ui. Maintaining assumptions (i), (ii) and (iii) these estimators are, respectively,  

 

 

 

 

Using either of these methods to obtain a point 

estimate of ui, the Jondrow et al. (1982) estimator firm-level technical efficiency is then 

given by  

 (3.2

Battese and Coelli (1988) later introduced a second estimator,  
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Lovell (2000) point out, however, these estimates are inconsistent8 in the cross-sectional 

context regardless of how one choses to estimate ui and TEi. As an alternative to relying 

solely on point estimates, Horrace and Schmidt (1996) have derived interval estimators 

for the normal – half normal model. Specifically, they exploit the fact that ui|εi  follows a  

truncated normal distribution and thereby derive its upper and lower confidence bounds. 

Since exp{-ui} is a monotonic transformation of ui, they are then able to derive upper and 

lower bounds on the distribution of exp{-ui}|εi , for which the Battese and Coelli 

estimator is the mean. At a significance level of α, the upper and lower bounds on exp{-

ui}|εi  are given by 

  

  

 

 

  

 

 

 

 

  

By using these confidence intervals in conjunction with the Battese and Coelli (1988) 

point estimator, one can make inferences about firm-level technical efficiency while also 

                                                 
8This is a result of the variance of (ui|εi ) being independent of i and thus not necessarily shrinking as 
sample size grows. See Kumbhakar and Lovell (2000). 
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knowing something about the uncertainty which surrounds those point estimates. Horrace 

and Schmidt (1996) note that the conditional distribution of ui is obtained with the 

implicit assumption that the parameters β, λ and σ  are known. Consequently, the 

confidence intervals for the distribution of ui|εi , and therefore those of exp{-ui}|εi , 

characterize only the uncertainty associated with point estimates made from within these 

distributions. Horrace and Schmidt (1996, p. 262) also argue, however, that “For large N 

this is probably unimportant, since the variability in the parameter estimates is small 

compared to the variability intrinsic to the distribution of ui|εi.”  

 

3.2 Estimation: The Normal – Exponential Model  

Though it is not frequently employed in empirical work, the one parameter exponential 

distribution can also be used to characterize the inefficiency component of the stochastic 

frontier model given in section 3.1. In this case, the following assumptions are made: 

 Just as in the normal – half normal case, estimation can be carried out using either 

maximum likelihood or COLS. The required distribution of the composed errors can be 

derived analogously to those of section 3.1. We have 
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 (3.28) 

By substitution of (ε + u) for v one obtains, 

 

  

As shown in Aigner et al. (1977) and Kumbhakar and Lovell (2000), the density of the 

composed errors is found by integrating u out of the joint distribution. That is, 

  

  

 

 

 

 

 

 Figures 3.4 – 3.6 show this distribution of ε for various values of λ. Given this 

distribution, maximum likelihood estimation once more becomes straightforward. As in 

section 3.1, the likelihood function for a sample of n firms can be written as  
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 (3.32) 

Notice that in this particular formulation, there is no re-parameterization in terms of 

λ and σ , as was used in the normal – half normal model. There remain k+2 parameters to 

be estimated, however, just as in the normal – half normal case.  

 Estimation of technical efficiency in the exponential model follows directly from 

the techniques used in section 3.1. A measure of average technical efficiency can be 

obtained from 

 

 

The Jondrow et al. (1982) and Battese and Coelli (1988) point 

estimators can be found in a similar fashion to those of the normal – half normal model. 

As shown9 in Kumbhakar and Lovell (2000), the conditional distribution of  ui|εi  is given 

by 

  

 

 

 Because ui|εi  takes the 

form of a N(µ, σv) truncated (from below) at zero, a straightforward extension of the 

Jondrow et al. technique can be applied, using either the mean or mode as a point 

estimate of ui. These estimators, given in Kumbhakar and Lovell (2000), are 

                                                 
9The errors found in Kumbhakar and Lovell (2000, pg. 82) have been corrected.  
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As with the normal – half normal case, these point 

estimates of ui can be translated into point estimates of technical efficiency using the 

original estimator of Aigner et al. (1977),  

 (3.3

  

Alternatively, the Battese and Coelli (1988) estimator can be readily adapted to the 

normal – exponential model and is given by 

 

 

 

Likewise, the interval estimators of Horrace and Schmidt (1996) can be modified so that, 
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The normal – truncated normal model is a more general form of the normal – half normal 

model, allowing for a non-zero mean, µ , in the distribution of inefficiency. Here, the 

distributional assumptions of the model are: 

 As shown in Kumbhakar and Lovell (2000) and Stevenson (1980), the distribution 

of the composed errors in this model can be obtained in an identical fashion to those of 

the half normal and exponential models. We have 

  

 

which, by assumption (iii), implies 

 

 

 

 

 

Making the substitution of (ε + u) for v once more, we have 

 

 

Following either Kumbhakar and Lovell (2000) or Stevenson (1980), the density of the 
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 (3.45)

  

 

This distribution is shown in figures 3.7 – 3.9 for several values of λ. At this point, 

maximum likelihood estimation can be carried out in an identical fashion to the half 

normal and exponential models. For a sample of n firms the likelihood function is  

 

 

 

 

 

 

 

Taking the natural logarithm, the log likelihood function becomes 
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 (3.47) 

 Estimation of technical efficiency in the truncated normal model is accomplished 

in the same fashion as the half normal and exponential cases, with the exception that there 

are now k+3 parameters to be estimated. For brevity, we consider only the firm-level 

estimators of technical efficiency and not average measures. The interested reader is 

referred to Kumbhakar and Lovell (2000) for the analog to the average measures given in 

the previous sections.  

 To obtain firm level estimates of technical efficiency in the truncated normal 

model, Kumbhakar and Lovell (2000) show that  
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which, as in the other two cases, can be seen as a  N(µ, σ*) truncated below zero. As a 

result, the Jondrow et al. point estimators of ui are simply given by 

 

 

 

 

Either of these estimates can be used to obtain the Jondrow et al. point estimate of 

technical efficiency using 
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 Just as with the half normal and exponential cases, the Battese and Coelli (1988) 

estimator can be adapted to the truncated normal model. Kumbhakar and Lovell (2000) 

show this to be 
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exp{-ui}|εi   can be adapted to the truncated normal model. At a significance level of α, 

the upper and lower bounds are given by 

 

 

  

 

 

 As can be clearly seen, the techniques 

applied to obtain both point and interval estimates, while somewhat complicated, are 

nonetheless general. Indeed, the same techniques can be applied to obtain point and 

interval estimates for other distributional specifications, including Greene's (1980) normal 

- gamma model. Furthermore, these same techniques can be adapted readily to panel data, 

though such exposition clearly extends beyond the scope of the present analysis.  
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Figure 3.1 
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Figure 3.2 
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Figure 3.3 
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Figure 3.4 
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Figure 3.5 
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Figure 3.7 
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Figure 3.9 
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Chapter 4 

 
Monte Carlo Experiments 

 
This chapter provides details of the methods by which the Monte Carlo experiments in 

this study were undertaken. The first section outlines the type of simulations conducted; 

section two considers the methods used to generate the data for the simulations; section 

three briefly discusses estimation. 

 

4.1 Simulation Design 

The goal of this analysis is to better understand the effects of both sample size and the 

amount of inefficiency on the robustness of both point and interval estimators of firm-

level technical efficiency. Also considered is the effect on Coelli's (1995) test for 

skewness.  

 The first experiment considers the case where each of the models is correctly 

specified and the data generating process corresponds exactly with the assumptions of the 

model. The normal – half normal, normal – exponential and normal – truncated normal 

model are each estimated by maximum likelihood, and the resulting parameter estimates 

are then used to construct the point and interval estimators of technical efficiency. 

Simulations are conducted with three levels of inefficiency, characterized by the size of 

the parameter λ, and across a series of sample sizes ranging from 50 to 500 observations.  

Coelli's (1995) test statistic is also computed using the residuals of a simple OLS 

regression.  

 The second experiment is concerned with the misspecification between the normal 
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– half normal and normal – exponential models. In this case, the misspecification 

considered is the use of the normal – half normal model when the data generating process 

is normal – exponential. The converse, where the data generating process is normal – half 

normal and the exponential model is applied, is also considered. Simulations are 

conducted across the same inefficiency levels and samples sizes as the first experiment, 

with both models estimated by maximum likelihood.   

 In both experiments, measures of parameter bias and mean square error (MSE) are 

calculated for σv
2 , σu

2 and, where applicable, µ. These measures are constructed such 

that 

  

 

 

 

 

In the case of the point 

estimators of technical efficiency, performance is measured somewhat analogously to the 

parameter estimates by considering an average mean square error across replications. 

This can be expressed as 

 

 

and is calculated for both the Jondrow et al. (1982) and Battese and Coelli (1988) point 
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efficiency, we consider an average coverage rate, constructed as  

 

 

 

 

Finally, with regards to Coelli's (1995) normally distributed test statistic for skewness of 

the OLS residuals, we calculate the average p-value across replications as a general 

metric for its performance. 

 

4.2 Data Generation 

For simplicity, all simulations conducted in this analysis employed a two-factor Cobb-

Douglas production function, with the resulting stochastic frontier taking the form 

 

In logarithms, this model can expressed equivalently as 

  

 

In this form the data can be easily generated using a variety of techniques. In the present 

analysis, rather than generating yi itself, we use the second formulation to generate lnyi 

using fixed10 parameters β0, β1, and β2, a matrix of stochastic ln(xi) values and 

appropriately specified errors vi and ui. For every replication, lnx1i and lnx2i are drawn 

randomly from, respectively, a N(10, 9) and N(20, 36)11. The vi  were generated for each 

                                                 
10Arbitrary values of, respectively, 10, 3 and 1 were chosen.  
11These values were chosen arbitrarily, with the intent of generating random draws that were most often 
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replication using random draws from a N(0, σv
2), while the generation of ui depend upon 

the form of inefficiency.  

 For the half-normal specification, the absolute values of random draws from a 

N(0, σu
2) were used to simulate ui. Similarly, for the truncated normal specification, 

absolute values were taken from random variates generated as N(µ, σu
2), where µ is non-

zero mean. Finally, in the case of the exponential model, random draws from a uniform 

distribution were transformed12 to random exponential draws according to the probability 

integral transformation. This transformation is given by  

 

where U  is distributed uniformly on the (0, 1) interval and the 

resulting x is distributed exponentially with mean σu
 and variance σu

2. The values 

assigned to σv
2 , σu

2 and µ during the experiments, as well as descriptive statistics on the 

composed errors, are detailed in figure 4.1.  

 

 

4.3 Maximum Likelihood Estimation 

For each simulation, maximum likelihood parameter estimates are found by iterative 

numerical optimization. Initial simulations employed a Quasi-Newton optimization 

routine but this was found in many cases to provide weaker13 convergence than the non-

                                                                                                                                                 
interval.  

12Attempts were made to directly sample from random exponential draws, but SAS was found to be 
generating these variates with a mean and variance that differed significantly from σu and σu

2 

,respectively. 
13Elements of the gradient under Quasi-Newton optimization frequently exceeded 1x10-3. A comparison of 

log likelihood values also showed the Simplex method to be obtaining superior optima with lower log 
likelihood values and smaller elements of the gradient.  

( )ln 1ux Uσ= − −
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derivative Nelder-Mead simplex algorithm. In order to obtain the best parameter 

estimates, the Quasi-Newton method was abandoned and the Nelder-Mead simplex 

method was employed exclusively.  

 In every case parameters were estimated directly, rather than re-parameterizing 

the models and estimating λ and σ. This was done primarily for the purposes of obtaining 

comparable estimates across models, because the exponential model has no direct analog 

to the σ parameter used in the other formulations. All calculations, ranging from 

parameter estimation to point and interval construction, were performed using SAS 

version 8.2.  
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 Normal - Half Normal  

 λ = 1.5  λ = 2  λ = 4.743  

Parameter σv
2 σu

2  σv
2 σu

2  σv
2 σu

2 
 

Value 0.4 0.9  0.2 0.8  0.04 0.9  

E(ε) -0.75694   -0.71365   -0.75694   

V(ε) 0.72704   0.49070   0.36704   

          

 Normal - Exponential  

 λ = 1.5  λ = 2  λ = 4.743  

Parameter σv
2 σu

2  σv
2 σu

2  σv
2 σu

2 
 

Value 0.4 0.9  0.2 0.8  0.04 0.9  

E(ε) -0.94868   -0.89443   -0.94868   

V(ε) 1.3   1   0.94   

          

 Normal - Truncated Normal 

 λ = 1.5 λ = 2 λ = 4.743 

Parameter σv
2 σu

2 µ σv
2 σu

2 µ σv
2 σu

2 µ 
Value 0.4 0.9 0.85 0.2 0.8 0.85 0.04 0.9 0.85 

E(ε) -0.83246   -0.78664   -0.83246   

V(ε) 0.90782   0.67018   0.54782   
 
 
 

Figure 4.1
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Chapter 5 
 

Simulation Results 
 

This chapter summarizes the results of the two Monte Carlo experiments. Section one 

considers the case for which the true data generating process is known and appropriately 

modeled, while section two considers the case where the true data generating process 

differs from the assumptions of the model. Motivation for the simulations, again, lies in 

the fact that small sample properties for these point and interval estimators is largely 

unknown, as are the properties of Coelli's test statistic across various composed error 

specifications. 

5.1 Simulation Results: Experiment One 

The first experiment considers the case in which the models are correctly specified and 

proceeds to estimate them on a variety of sample sizes and levels of inefficiency, 

characterized by the magnitude of the parameter λ. The results of these simulations are 

presented in tables 1 – 5.  

 Some general patterns are readily noticeable in these results. Considering first the 

estimation of  σv
2 , σu

2  and, where applicable, µ, the effect of λ can be readily seen. In 

samples of every size and across all three models, the reduction in parameter bias and 

mean square error (MSE) as λ  increases is pronounced. Nowhere is this more apparent 

than in the case of the normal – truncated normal specification, particularly with regards 

to the estimation of the placement parameter µ. While the effect of increasing λ is clear 

and consistent, the effect of sample size on bias and MSE is not. When the sample size is 

reduced from 500 to 350,  for example, there is at least one instance in each model where 
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parameter bias is seen to decline (in absolute value). In the case of the normal – truncated 

normal specification, there are two cases of a decrease in MSE when λ  is at its smallest 

simulated value of 1.5. Though these are the only instances of MSE decreasing with 

sample size, the inconsistent changes in parameter bias can also be observed at least once 

in all three models when further reducing the sample size to 200. In the case of the 

normal – half normal and normal – exponential models, however, it appears that there is 

no discernible relationship between these somewhat counter intuitive results and the 

value of λ. While clearly inconsistent in general, the trend towards larger biases and MSE 

does hold consistently for the normal – half normal and normal – exponential models, 

regardless of the value of λ, for samples sizes of 200 and smaller. 

 In comparing bias and MSE across models, it is obvious that a large disparity 

exists between the normal – truncated normal and both the normal – half normal and 

normal – exponential models. This is true for all three values of λ and across all sample 

sizes, but is clearly the most evident when λ is small. Indeed, there is not a single case in 

which the empirical accuracy of parameter estimates from the normal – truncated normal 

specification exceeds those of the normal – half normal or normal – exponential models. 

Given the comparatively large bias and MSE associated with the placement parameter µ, 

it is not at all surprising that the associated estimates of σu
2 are much more heavily biased 

than those of σv
2. That is, if the mean cannot be reliably estimated from the data at hand, 

there should be no reason to expect the variance about that mean to be well estimated. 

Overall, the performance of the normal – truncated normal model appears to lend strong 

credence to the possibility of an identification problem, as suggested by Ritter and Simar 
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(1997a).  

 Though much less stark, certain differences in empirical performance also appear 

between the normal – half normal and normal – exponential model. Considering first the 

effects of sample size, it is apparent that the normal – exponential model is somewhat less 

sensitive than the normal – half normal specification. Except for when λ is large (4.743), 

the normal – exponential model consistently produces smaller bias and MSE in the 

estimation of  σu
2, with the advantage over the normal – half normal model increasing as 

either sample size or λ grows small. Furthermore, accuracy in the estimation of  σv
2 

surpasses that of the normal – half normal model (in MSE terms) in all but one case14.  In 

terms of bias, the estimation of  σv
2 remains fairly comparable throughout, although the 

normal – exponential model appears to outperform the normal – half normal when both 

sample size and λ are small.  

 If we next consider the Jondrow, Lovell, Materov and Schmidt (JLMS) and 

Battese and Coelli (BC) point estimators of firm level technical efficiency, some further 

patterns are readily identifiable. First and foremost, it appears that the theoretically 

superior BC estimator does not produce estimates that are markedly different than those 

of the JLMS estimator. Neither estimator appears to be adversely affected by sample size, 

at least insofar as MSE is concerned. As was the case with the parameter estimates, 

however, the effects of λ are once again pronounced. Across all three models and 

regardless of sample size, both the BC and JLMS estimators show a decline in MSE, 

most notably when λ becomes large (4.473). It also appears that when sample size grows 

                                                 
14This occurs when λ = 4.743 and n = 350, with a difference in MSE of only 1x10-6. 
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small, any advantage of the BC estimator depreciates as λ grows larger. 

 It is interesting to note that irrespective of the comparatively poor estimation of  

σv
2 , σu

2  and µ in the normal – truncated normal case, when both sample size and λ are 

large, the point estimators exhibit a smaller MSE than those of either the normal – half 

normal or normal – exponential cases. For smaller samples and/or smaller values of λ, 

however, the decline in the performance of these same point estimators is without 

parallel.  

 Comparing the point estimators between the normal – half normal and normal – 

exponential models, it appears that without exception both the BC and JLMS estimators 

are most accurate in the normal – exponential case, with the disparity increasing in all 

sample sizes as λ  grows smaller. As previously noted, the normal – exponential model 

provides sharper estimation of σu
2 , an artifact of which appears to be the increased 

accuracy of the subsequent point estimators. 

 The interval estimators appear to follow similar trends to the point estimators in 

regards to sample size. As would be expected, all three models exhibit a decrease in 

average coverage rate as the sample size falls, though this is clearly the most prevalent in 

the case of the normal – truncated normal specification. Not surprisingly, the empirical 

coverage rate for the normal – exponential model is superior to that of the normal – half 

normal model in all cases where sample size is larger than 50.  

 In contrast to the point estimators, however, the effect of  λ varies according to 

the model under consideration. In the case of the normal – half normal specification, for 

example, it appears that the median value of  λ = 2 yields the greatest empirical coverage 
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rate, regardless of sample size. By contrast, the normal – exponential model achieves the 

greatest coverage rate, again regardless of sample size, when λ = 1.5. Finally, in the case 

of the normal – truncated normal model, no consistently optimal value of  λ appears.  

 While the normal – half normal and normal – exponential models out perform the 

normal – truncated normal in terms of average coverage, it also seems abundantly clear 

that the normal – exponential model has an advantage, particularly as sample size 

becomes small. This is true for all but one case, where λ is large and the sample is 

extremely small (n = 50).  

 Finally, in considering Coelli's normally distributed test statistic for the presence 

of skewness, we find comparable trends to the interval estimators. The effect of sample 

size, for example, appears to be disparate across models. In particular, the normal – 

exponential model appears to be markedly more robust to reductions in sample size than 

either of the other models. Indeed, in every case examined, the p-values from the normal 

– exponential model easily carry the largest significance.  Given this disparity, it would 

appear that skewness is most easily identified when the distribution of inefficiency is 

exponential.  

 The effect of  λ contrasts with the pattern observed for the interval estimator: the 

significance of the test statistic increased in every model as λ grew larger. This result 

should by no means be surprising. The greater the presence of inefficiency, the greater 

must be the skewness in the distribution of ε. For this reason, and regardless of sample 

size, we should only expect  to obtain a more significant test statistic as λ increases.  
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5.2 Simulation Results: Experiment Two 

Experiment two considers the case where the data generating process differs from the 

assumptions of the model being estimated. Specifically we test the normal – half normal 

model when the data generating process is normal – exponential. Unsuccessful attempts 

were made to consider the converse, where the data generating process is normal – half 

normal and the normal – exponential model is estimated. In no case was consistent 

convergence attained. As a consequence, only results for the former case are provided.  

 As can be seen in tables 6 – 10, accuracy in parameter estimation falls 

considerably when the true data generating process differs largely from the assumptions 

of the normal – half normal model. In all but one case15, and in samples of every size, 

both bias and MSE are markedly larger in the case of the misspecified model. Also, as 

would be expected, both bias and MSE for σu
2 are significantly worse than their σv

2 

counter parts. The effect of increasing λ in the misspecified case is no different than 

when the model is correctly specified, with both bias and MSE improving as λ grows 

larger. One possibility for this may be the particular misspecification considered. That is, 

for the chosen values of λ, the normal – half normal and normal – exponential 

distributions for ε do not vary drastically in their general shape.  

 Poorer estimation of the critical σv
2  and σu

2  parameters carries over directly into 

the accuracy of the point estimates, as can be readily seen by considering the differences 

in average MSE for both the BC and JLMS estimators. When the model is misspecified, 

the effect of a reduction in sample size is pronounced, but also is not what would be 

                                                 
15This occurs at n = 50 and  λ = 4.743. 
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expected. It is interesting note, for example, that in sample sizes of 50 and 100, the 

misspecified model produced more accurate point estimates (both BC and JLMS) than 

the correctly specified counterpart. In fact, it appears the misspecified model suffers 

considerably less from reductions in sample size than does the correctly specified model. 

The effect of λ coincides with what was observed in the case of the parameter estimates. 

That is, average MSE falls in both the misspecified and correctly specified models when 

λ grows large. It is also worth noting that regardless of both λ and the size of the sample, 

the BC estimator consistently outperforms the JLMS estimator in the misspecified model.  

 Interval estimation when the model is misspecified share both similarities and 

contrasts with point estimation. Turning first to the effects of sample size, we note that, 

like the point estimators, sample size increases the accuracy of the interval estimators, 

even when the model is misspecified. As expected, the interval estimators perform 

significantly worse when the model is misspecified, though not terribly so for large 

enough samples.  

 The effects of λ, however, strongly contrast what was observed with the point 

estimators. As λ grows large, interval estimation in fact suffers a consistent decrease in 

average coverage. This is perhaps counter intuitive, considering that both point estimators 

achieved smaller MSE as λ was increased. One possible explanation may be that the 

interval estimators rely more heavily upon the distributional characteristics of the 

underlying data generating process than do the conditional mean based point estimators. 
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 Lambda = 1.5 

Model Half Normal Exponential Truncated Normal 

Param. σv
2 σu

2 σv
2 σu

2 σv
2 σu

2 µ 
Bias 0.003295 -0.030643 -0.004513 -0.001391 -0.044399 1.070880 -1.772627 
MSE 0.007798 0.059259 0.003546 0.015481 0.027019 7.056824 27.081316 
              
Point Est. BC JLMS BC JLMS BC JLMS   
Avg. MSE 0.040070 0.040691 0.036274 0.037726 0.049607 0.049722   
Interval Est.              
Avg. Coverage 0.868100 0.892900 0.747860   
Coelli              
Avg. P-value 0.056010   0.000000   0.027620     

 Lambda = 2 

Model Half Normal Exponential Truncated Normal 

Param. σv
2 σu

2 σv
2 σu

2 σv
2 σu

2 µ 
Bias -0.001521 -0.007176 -0.001956 -0.002902 -0.020103 0.273020 -0.388766 

MSE 0.001977 0.019867 0.001132 0.009196 0.005569 0.250177 0.957884 

              

Point Est. BC JLMS BC JLMS BC JLMS   

Avg. MSE 0.027427 0.027787 0.025768 0.026350 0.029348 0.029912   

Interval Est.              

Avg. Coverage 0.882580 0.892880 0.802420   

Coelli              

Avg. P-value 0.005148   0.000000   0.001633     

 Lambda = 4.743 

Model Half Normal Exponential Truncated Normal 

Param. σv
2 σu

2 σv
2 σu

2 σv
2 σu

2 µ 
Bias -0.001600 0.001768 -0.000487 -0.003601 -0.005262 0.212337 -0.323867 

MSE 0.000132 0.006293 0.000113 0.007613 0.000279 0.084639 0.176974 

              

Point Est. BC JLMS BC JLMS BC JLMS   

Avg. MSE 0.009366 0.009399 0.008631 0.008659 0.008326 0.008440   

Interval Est.              

Avg. Coverage 0.873720 0.883380 0.805180   

Coelli              

Avg. P-value 0.000014   0.000000   0.000367     

Replications 100       

Observations 500       

Alpha .10       
Table 1 
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 Lambda = 1.5 

Model Half Normal Exponential Truncated Normal 

Param. σv
2 σu

2 σv
2 σu

2 σv
2 σu

2 µ 
Bias -0.000321 -0.053137 -0.002065 -0.003938 -0.074796 1.043683 -1.737839 
MSE 0.009147 0.085542 0.005351 0.021336 0.040718 6.638323 28.224029 
              
Point Est. BC JLMS BC JLMS BC JLMS   
Avg. MSE 0.042727 0.043031 0.036407 0.037809 0.054093 0.053824   
Interval Est.              
Avg. Coverage 0.851629 0.892657 0.689257   
Coelli              
Avg. P-value 0.114601   0.000000   0.059562     

 Lambda = 2 

Model Half Normal Exponential Truncated Normal 

Param. σv
2 σu

2 σv
2 σu

2 σv
2 σu

2 µ 
Bias -0.003286 -0.022910 -0.001626 -0.002815 -0.036107 0.564264 -0.938219 

MSE 0.002488 0.029793 0.001745 0.012789 0.011457 3.474378 14.336280 

              

Point Est. BC JLMS BC JLMS BC JLMS   

Avg. MSE 0.028205 0.028320 0.025932 0.026513 0.034165 0.034092   

Interval Est.              

Avg. Coverage 0.873543 0.890771 0.722314   

Coelli              

Avg. P-value 0.019248   0.000000   0.010639     

 Lambda = 4.743 

Model Half Normal Exponential Truncated Normal 

Param. σv
2 σu

2 σv
2 σu

2 σv
2 σu

2 µ 
Bias -0.002042 -0.007144 -0.001455 -0.002374 -0.009526 0.207049 -0.300705 

MSE 0.000174 0.009630 0.000175 0.010289 0.000462 0.101021 0.188440 

              

Point Est. BC JLMS BC JLMS BC JLMS   

Avg. MSE 0.009604 0.009588 0.008889 0.008911 0.008844 0.008930   

Interval Est.              

Avg. Coverage 0.862657 0.868314 0.725943   

Coelli              

Avg. P-value 0.000001   0.000000   0.000130     

Replications 100       

Observations 350       

Alpha .10       

Table 2 
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 Lambda = 1.5 

Model Half Normal Exponential Truncated Normal 

Param. σv
2 σu

2 σv
2 σu

2 σv
2 σu

2 µ 
Bias 0.010299 -0.083529 0.005967 -0.025519 -0.093051 1.591138 -2.571055 
MSE 0.016454 0.168576 0.010713 0.041619 0.055046 14.915478 50.257870 
              
Point Est. BC JLMS BC JLMS BC JLMS   
Avg. MSE 0.050935 0.050659 0.037287 0.038199 0.061773 0.060661   
Interval Est.              
Avg. Coverage 0.805850 0.884100 0.621400   
Coelli              
Avg. P-value 0.247615   0.000285   0.146159     

 Lambda = 2 

Model Half Normal Exponential Truncated Normal 

Param. σv
2 σu

2 σv
2 σu

2 σv
2 σu

2 µ 
Bias 0.003521 -0.043974 0.001317 -0.013669 -0.045128 0.953606 -1.603694 

MSE 0.004905 0.061848 0.003106 0.024973 0.016054 8.050329 29.041472 

              

Point Est. BC JLMS BC JLMS BC JLMS   

Avg. MSE 0.030642 0.030260 0.026430 0.026820 0.038181 0.037277   

Interval Est.              

Avg. Coverage 0.849900 0.882950 0.651500   

Coelli              

Avg. z-stat -2.382271   -7.379265   -2.453056    

Avg. P-value 0.088900   0.000009   0.058885     

 Lambda = 4.743 

Model Half Normal Exponential Truncated Normal 

Param. σv
2 σu

2 σv
2 σu

2 σv
2 σu

2 µ 
Bias -0.001172 -0.010269 -0.001776 -0.002810 -0.010783 0.251549 -0.353897 

MSE 0.000367 0.018550 0.000277 0.026038 0.000792 0.205416 0.399631 

              

Point Est. BC JLMS BC JLMS BC JLMS   

Avg. MSE 0.010109 0.010011 0.009261 0.009234 0.010378 0.010221   

Interval Est.              

Avg. Coverage 0.829400 0.845550 0.605450   

Coelli              

Avg. P-value 0.001141   0.000000   0.003444     

Replications 100       

Observations 200       

Alpha .10       

Table 3 
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 Lambda = 1.5 

Model Half Normal Exponential Truncated Normal 

Param. σv
2 σu

2 σv
2 σu

2 σv
2 σu

2 µ 
Bias 0.032125 -0.161183 0.002385 -0.020144 -0.099555 1.998743 -2.988261 
MSE 0.034983 0.377693 0.020373 0.109736 0.089868 25.940308 62.446369 
              
Point Est. BC JLMS BC JLMS BC JLMS   
Avg. MSE 0.090751 0.090794 0.039148 0.039424 0.076670 0.074649   
Interval Est.              
Avg. Coverage 0.629800 0.865800 0.465500   
Coelli              
Avg. P-value 0.394866   0.013589   0.334742     

 Lambda = 2 

Model Half Normal Exponential Truncated Normal 

Param. σv
2 σu

2 σv
2 σu

2 σv
2 σu

2 µ 
Bias 0.021508 -0.106196 -0.002898 -0.006744 -0.042599 1.293848 -2.192180 

MSE 0.013193 0.168422 0.006311 0.070388 0.028439 11.818552 35.644762 

              

Point Est. BC JLMS BC JLMS BC JLMS   

Avg. MSE 0.050777 0.049964 0.028233 0.028234 0.049370 0.047159   

Interval Est.              

Avg. Coverage 0.731700 0.857700 0.493400   

Coelli              

Avg. P-value 0.277811   0.001914   0.216339     

 Lambda = 4.743 

Model Half Normal Exponential Truncated Normal 

Param. σv
2 σu

2 σv
2 σu

2 σv
2 σu

2 µ 
Bias 0.002908 -0.029218 -0.003526 0.001581 -0.008794 0.710070 -1.160310 

MSE 0.001740 0.045966 0.000666 0.059001 0.003734 4.388032 14.943988 

              

Point Est. BC JLMS BC JLMS BC JLMS   

Avg. MSE 0.014404 0.014086 0.010844 0.010671 0.016267 0.015510   

Interval Est.              

Avg. Coverage 0.705300 0.744300 0.352000   

Coelli              

Avg. P-value 0.022773   0.000021   0.051265     

Replications 100       

Observations 100       

Alpha .10       

Table 4 
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 Lambda = 1.5 

Model Half Normal Exponential* Truncated Normal 

Param. σv
2 σu

2 σv
2 σu

2 σv
2 σu

2 µ 
Bias 0.005050 -0.145652   -0.139149 1.383436 -1.812051 

MSE 0.052879 0.576358   0.125973 19.831043 36.950970 
              
Point Est. BC JLMS BC JLMS BC JLMS   
Avg. MSE 0.114471 0.114484   0.084733 0.083424   
Interval Est.              
Avg. Coverage 0.496600   0.290400   

Coelli            
Avg. P-value 0.469640   .162432    0.483642     

 Lambda = 2 

Model Half Normal Exponential* Truncated Normal 

Param. σv
2 σu

2 σv
2 σu

2 σv
2 σu

2 µ 
Bias 0.010491 -0.114913     -0.069937 1.232886 -1.737728 

MSE 0.021611 0.259718     0.039955 13.753374 30.819503 

              

Point Est. BC JLMS BC JLMS BC JLMS   

Avg. MSE 0.077878 0.077408     0.050875 0.049332   

Interval Est.              

Avg. Coverage 0.545600   0.313600   

Coelli              

Avg. P-value 0.398434   .084458    0.391076     

 Lambda = 4.743 

Model Half Normal Exponential Truncated Normal 

Param. σv
2 σu

2 σv
2 σu

2 σv
2 σu

2 µ 
Bias 0.005419 -0.064481 -0.012977 0.047640 -0.011838 0.913591 -1.392415 

MSE 0.004348 0.094564 0.002278 0.144414 0.005221 5.852274 13.105606 

              

Point Est. BC JLMS BC JLMS BC JLMS   

Avg. MSE 0.024085 0.023381 0.015992 0.015464 0.018963 0.017914   

Interval Est.              

Avg. Coverage 0.438200 0.370600 0.177000   

Coelli              

Avg. P-value 0.157767   0.015004   0.222236     

Replications 100       

Observations 50       

Alpha .10       

Table 5 16 

                                                 
16* Failed to converge. 
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 Lambda = 1.5 

Inefficiency Half Normal Exponential 

Param. σv
2 σu

2 σv
2 σu

2 

Bias 0.003295 -0.030643 -0.141845 1.794829 
MSE 0.007798 0.059259 0.022959 3.311106 
         
Point Est. BC JLMS BC JLMS 
Avg. MSE 0.040070 0.040691 0.053531 0.061732 
Interval Est.         
Avg. Coverage 0.868100 0.747260 
Coelli         
Avg. P-value 0.056010   0.000000   

 Lambda = 2 

Inefficiency Half Normal Exponential 

Param. σv
2 σu

2 σv
2 σu

2 

Bias -0.001521 -0.007176 -0.080372 1.409451 

MSE 0.001977 0.019867 0.007196 2.034841 

         

Point Est. BC JLMS BC JLMS 

Avg. MSE 0.027427 0.027787 0.038968 0.043163 

Interval Est.         

Avg. Coverage 0.882580 0.718000 

Coelli         

Avg. P-value 0.005148   0.000000   

 Lambda = 4.743 

Inefficiency Half Normal Exponential 

Param. σv
2 σu

2 σv
2 σu

2 

Bias -0.001600 0.001768 -0.020386 1.192574 

MSE 0.000132 0.006293 0.000458 1.456488 

         

Point Est. BC JLMS BC JLMS 

Avg. MSE 0.009366 0.009399 0.013497 0.014073 

Interval Est.         

Avg. Coverage 0.873720 0.631120 

Coelli         

Avg. P-value 0.000014   0.000000   

Model Half Normal    

Replications 100    

Observations 500    

Alpha .10    

 
Table 6
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 Lambda = 1.5 

Inefficiency Half Normal Exponential 

Param. σv
2 σu

2 σv
2 σu

2 

Bias -0.000321 -0.053137 -0.142441 1.800177 
MSE 0.009147 0.085542 0.024968 3.380740 
         
Point Est. BC JLMS BC JLMS 
Avg. MSE 0.042727 0.043031 0.053918 0.062048 
Interval Est.         
Avg. Coverage 0.851629 0.739429 
Coelli         
Avg. P-value 0.114601   0.000000   

 Lambda = 2 

Inefficiency Half Normal Exponential 

Param. σv
2 σu

2 σv
2 σu

2 

Bias -0.003286 -0.022910 -0.082056 1.416797 

MSE 0.002488 0.029793 0.007949 2.084301 

         

Point Est. BC JLMS BC JLMS 

Avg. MSE 0.028205 0.028320 0.039492 0.043620 

Interval Est.         

Avg. Coverage 0.873543 0.706857 

Coelli         

Avg. P-value 0.019248   0.000000   

 Lambda = 4.743 

Inefficiency Half Normal Exponential 

Param. σv
2 σu

2 σv
2 σu

2 

Bias -0.002042 -0.007144 -0.021193 1.192588 

MSE 0.000174 0.009630 0.000524 1.480634 

         

Point Est. BC JLMS BC JLMS 

Avg. MSE 0.009604 0.009588 0.013805 0.0143471 

Interval Est.         

Avg. Coverage 0.862657 0.605200 

Coelli         

Avg. P-value 0.000001   0.000000   

     

Model Half Normal    

Replications 100    

Observations 350    

Alpha .10    
Table 7
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 Lambda = 1.5 

Inefficiency Half Normal Exponential 

Param. σv
2 σu

2 σv
2 σu

2 

Bias 0.010299 -0.083529 -0.135608 1.741805 
MSE 0.016454 0.168576 0.025721 3.289359 
         
Point Est. BC JLMS BC JLMS 
Avg. MSE 0.050935 0.050659 0.053441 0.061409 
Interval Est.         
Avg. Coverage 0.805850 0.742900 
Coelli         
Avg. P-value 0.247615   0.000285   

 Lambda = 2 

Inefficiency Half Normal Exponential 

Param. σv
2 σu

2 σv
2 σu

2 

Bias 0.003521 -0.043974 -0.079449 1.383200 

MSE 0.004905 0.061848 0.008097 2.069113 

         

Point Est. BC JLMS BC JLMS 

Avg. MSE 0.030642 0.030260 0.039238 0.043295 

Interval Est.         

Avg. Coverage 0.849900 0.707900 

Coelli         

Avg. P-value 0.088900   0.000009   

 Lambda = 4.743 

Inefficiency Half Normal Exponential 

Param. σv
2 σu

2 σv
2 σu

2 

Bias -0.001172 -0.010269 -0.021837 1.183034 

MSE 0.000367 0.018550 0.000598 1.538856 

         

Point Est. BC JLMS BC JLMS 

Avg. MSE 0.010109 0.010011 0.014176 0.014672 

Interval Est.         

Avg. Coverage 0.829400 0.572750 

Coelli         

Avg. P-value 0.001141   0.000000   

     

Model Half Normal    

Replications 100    

Observations 200    

Alpha .10    
Table 8
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 Lambda = 1.5 

Inefficiency Half Normal Exponential 

Param. σv
2 σu

2 σv
2 σu

2 

Bias 0.032125 -0.161183 -0.144289 1.751367 
MSE 0.034983 0.377693 0.037597 3.744582 
         
Point Est. BC JLMS BC JLMS 
Avg. MSE 0.090751 0.090794 0.054811 0.061835 
Interval Est.         
Avg. Coverage 0.629800 0.705800 
Coelli         
Avg. P-value 0.394866   0.013589   

 Lambda = 2 

Inefficiency Half Normal Exponential 

Param. σv
2 σu

2 σv
2 σu

2 

Bias 0.021508 -0.106196 -0.085088 1.386383 

MSE 0.013193 0.168422 0.011593 2.311236 

         

Point Est. BC JLMS BC JLMS 

Avg. MSE 0.050777 0.049964 0.040614 0.044129 

Interval Est.         

Avg. Coverage 0.731700 0.661300 

Coelli         

Avg. P-value 0.277811   0.001914   

 Lambda = 4.743 

Inefficiency Half Normal Exponential 

Param. σv
2 σu

2 σv
2 σu

2 

Bias 0.002908 -0.029218 -0.024362 1.160574 

MSE 0.001740 0.045966 0.000930 1.626699 

         

Point Est. BC JLMS BC JLMS 

Avg. MSE 0.014404 0.014086 0.015427 0.015777 

Interval Est.         

Avg. Coverage 0.705300 0.407100 

Coelli         

Avg. P-value 0.022773   0.000021   

     

Model Half Normal    

Replications 100    

Observations 100    

Alpha .10    

 
Table 9
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 Lambda = 1.5 

Inefficiency Half Normal Exponential 

Param. σv
2 σu

2 σv
2 σu

2 

Bias 0.005050 -0.145652 -0.147789 1.670105 
MSE 0.052879 0.576358 0.065001 4.239038 
         
Point Est. BC JLMS BC JLMS 
Avg. MSE 0.114471 0.114484 0.063378 0.068003 
Interval Est.         
Avg. Coverage 0.496600 0.584200 
Coelli         
Avg. P-value 0.469640   0.162432   

 Lambda = 2 

Inefficiency Half Normal Exponential 

Param. σv
2 σu

2 σv
2 σu

2 

Bias 0.010491 -0.114913 -0.096397 1.341460 

MSE 0.021611 0.259718 0.020782 2.521440 

         

Point Est. BC JLMS BC JLMS 

Avg. MSE 0.077878 0.077408 0.046945 0.049163 

Interval Est.         

Avg. Coverage 0.545600 0.478600 

Coelli         

Avg. P-value 0.398434   0.084458   

 Lambda = 4.743 

Inefficiency Half Normal Exponential 

Param. σv
2 σu

2 σv
2 σu

2 

Bias 0.005419 -0.064481 -0.030536 1.046162 

MSE 0.004348 0.094564 0.001394 1.511050 

         

Point Est. BC JLMS BC JLMS 

Avg. MSE 0.024085 0.023381 0.017914 0.018056 

Interval Est.         

Avg. Coverage 0.438200 0.163200 

Coelli         

Avg. P-value 0.157767   0.016374   

     

Model Half Normal    

Replications 100    

Observations 50    

Alpha .10    

 
Table 10
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Chapter 6 
 

Conclusion 
 

For the purposes of this study simulated data were used to measure the empirical 

accuracy and sensitivity of both point and interval estimators under a variety of data 

generating processes and sample sizes. Also considered was the effect of these changes in 

the data generating process and reductions in sample size on the robustness of Coelli's 

(1995) asymptotic test for skewness in the OLS residuals.  

 Several conclusions can be drawn from the first of the two experiments, when the 

assumptions about the data generating process hold. First, regardless of sample size and 

the value of λ, the BC and JLMS point estimators do not produce largely differing 

estimates of firm level technical efficiency. Instead, it appears that the BC estimator 

provides only slightly more accuracy than the JLMS estimator. Furthermore, the 

advantage of the BC estimator appears to vanish when λ is sufficiently large and sample 

size becomes small. This is most notable in the normal – half normal case, where the 

JLMS estimator can be observed to out perform the BC estimator for both median and 

large values of λ with sample sizes of 200 or less.  

 The second conclusion to be drawn from the first experiment is that in all models, 

empirical coverage rates appeared to fall somewhat short of theoretical expectations17. 

This is readily apparent in the case of the normal – truncated normal model, but can also 

be seen in the normal – half normal and normal – exponential models as sample size falls. 

Also of interest is that a large value of λ, that is a greater presence of inefficiency in the 

                                                 
17That is, in no case did the interval estimates obtain an average coverage rate that met or exceeded the 

confidence level of 90%.  
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data, does not always lead to greater accuracy of the interval estimators. It was instead 

found that small λ generated the most accurate intervals in the normal – exponential case, 

and that median values of λ provide the sharpest interval estimates in the normal – half 

normal case. No consistently optimal value of λ appeared to exist in the case of the 

normal – truncated normal model. 

 In considering the normal – truncated normal model as a whole, we find strong 

evidence that an identification problem may exist, particularly with regards to the 

estimation of µ. It was clearly seen that poor estimation of this critical placement 

parameter greatly biased estimates of the distribution's spread, thereby leading to poorer 

point and interval estimation in all cases. Additional experimentation revealed that when 

sample size grew to approximately 2,000 observations, the normal – truncated normal 

model could be estimated as reliably and accurately as the normal – half normal and 

normal – exponential model. It would thus appear that the additional mean parameter µ 

does in fact require a large number of observations to be properly estimated. This is 

precisely the kind of identification problem hypothesized by Ritter and Simar (1997a).  

 In regard to Coelli's (1995) test statistic for the presence of inefficiency, we find 

greater robustness to changes in sample size than might have otherwise been expected, 

particularly given the asymptotic nature of the test statistic itself. It also appears that the 

test statistic is far more robust to changes in sample size in the normal – exponential 

model than the normal – half normal. In fact, for large enough values of λ, the test 

statistic in the normal – exponential model correctly identified18 the presence of skewness 

                                                 
18That is, the p-value is less than .05. 
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with a sample size as small as 50. In general, however, the simulation results indicate that 

where λ is large, the test statistic remains reliable in sample sizes as small as 100. One 

might summarize these results as indicating that while large inefficiencies can be readily 

identified regardless of sample size, small inefficiencies require larger samples to be 

deemed significant at conventional levels.  

 The second experiment conducted concerned the implications of misspecification, 

particularly where the data generating process is normal – exponential and a normal – 

half normal model is applied. The results from this experiment lead to several interesting 

conclusions regarding the use of the normal – half normal model, and its normal – 

exponential counter part. Insofar as the point estimators are concerned, it appears that in 

every case the BC estimator is superior to the JLMS estimator, despite the model being 

misspecified. Furthermore, an increase in the sample size improves the accuracy of even 

the misspecified model's point estimates. Improvements in accuracy are also observed 

when λ grows larger.  

 The results from the interval estimators are somewhat more surprising. In terms of 

sample size the results are identical to the point estimators, in that an increase in sample 

size leads to increased accuracy (in terms of average coverage rate) of the interval 

estimators. The effect of λ however, is precisely the opposite of what was observed with 

the point estimators. That is, the average coverage rate for the misspecified model 

appears to decrease notably as λ grows large. This can be observed for all sample sizes, 

but is clearly the most prominent when the sample size falls. This same general behavior 

was also observed when the model was correctly specified, and thus may be an artifact of 

the particular form of misspecification applied in the experiment.  
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 On the whole, the results of this analysis seem to suggest that the asymptotic 

properties underlying the point estimators tend to hold even for somewhat small samples, 

provided that significant inefficiency exists. In the absence of at least median values of λ 

or samples larger than 200, however, caution indeed appears warranted. This is 

particularly true when the misspecification of the underlying distribution is suspected. 

While the remarks on sample size apply equally to the interval estimators, those 

concerning λ do not. The optimal value of λ appears to be dependent upon the underlying 

distribution of the inefficiency, and in general a large value of λ does not lead to higher 

empirical coverage rates. This somewhat paradoxical relationship between point 

estimation, where large λ  is optimal, and interval estimation where it is not, may warrant 

future research.  
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