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ABSTRACT

This dissertation focuses on econometric methodology and its applications in insur-
ance and the stock market.

The second chapter proposes a new semiparametric estimator for binary-choice
single-index models. The estimator makes use of a “parametric start” idea from the
statistics literature and applies it to econometric model estimation. Even though the
chapter only focuses on binary-choice models, it is expected that the introduction
of this idea to the econometrics literature is going to contribute to semiparametric
estimation of econometric models in general, especially when one has (only) a rough
initial guess about the shape of the unknown function. Consistency of the estimator
is shown and the simulation results indicate that even though the parametric start
is not correct in any of the simulation designs, the estimator’s performance is very
promising in the estimation of coefficients and probabilities.

The third chapter successfully applies this proposed estimator along with com-
peting parametric and semiparametric estimators and is expected to expand our un-
derstanding of private insurance company involvement in the U.S. crop insurance
program. This chapter stands almost alone in the literature as an overwhelming ma-
jority of other studies examine the involvement of producers in the program. Although
preliminary, the results of this chapter show that the insurance company involvement
in this program may be too costly to justify and that the program may not be as
efficient in terms of premium rates and rating practices of the federal government.

The fourth chapter examines market volatility taking into account the New York
Stock Exchange trading collar. The trading collar restricts certain forms of trade in
component stocks of the S&P500 stock price index when there is “excess” volatility
in the market. This important feature of the market has been ignored in the large

volatility modeling literature and it is expected that this chapter contributes to this
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literature by showing that after some data manipulation it is straightforward to incor-
porate this feature into standard econometric models. Another contribution of this
chapter is the successful use of a polynomial specification to capture the well docu-
mented U-shaped pattern of intraday market volatility instead of a computationally

more difficult two-step procedure.
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1. DISSERTATION INTRODUCTION

This dissertation focuses on econometrics with applications in insurance and the stock
market. Although the semiparametric binary-choice model estimators that exist in
the literature work well in most situations and provide flexibility that can not be
obtained with parametric estimators, they do not incorporate reasonably reliable
prior information about the shape of the unknown function. The motivation of the
second chapter is the expectation that taking advantage of this fact can improve the
performance of the semiparametric estimators. This is shown via simulations and an
application with insurance data in the second and third chapters of this dissertation,
respectively. Finally, the risk management aspect of this research is complimented in
the fourth chapter with a stock market application. The feature of the stock market
that is analyzed in this chapter has been ignored in the overwhelming majority of the
finance and risk management literature. The motivation is to show that this feature
can be easily incorporated into standard econometric models.

The second chapter of this dissertation proposes a new semiparametric estimator
for binary-choice single-index models which uses parametric information in the form of
a known link (probability) function and nonparametrically corrects it. The estimator
introduces (potentially) useful information in the form of a parametric link function
which is its guide in the sense of Hjort and Glad [27]. The distinguishing characteristic
of the proposed estimator is how the unknown link function is estimated using prior
parametric information about its shape. It is shown that the estimator is consistent
and the finite-sample properties of the proposed estimator are compared to those
of parametric probit and semiparametric single-index model estimators of Klein and
Spady [41] and Ichimura [35]. A distinguishing feature of the simulations is that
besides using a fixed smoothing parameter, the method of Hérdle et al. [25] is also

used to choose the smoothing parameter for the proposed estimator. Results indicate
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that even though the parametric start is not correct in any of the simulation designs,
the proposed estimator achieves significant bias reduction and efficiency gain. For
purposes of estimating probabilities, the proposed estimator outperforms the other
two single-index model estimators in nine out of ten simulation designs.

The third chapter of this dissertation empirically tests the revelation of private
information by the insurance companies via their reinsurance decisions in the U.S.
crop insurance program—a prominent facet of the U.S. farm policy worth more than
$16 billion and gaining more financial and political importance. The participation of
insurance companies as intermediaries in the U.S. crop insurance program, along with
the producers and the federal government, can be justified on the basis of efficiency
gains. These gains may arise from either decreased transaction costs through better
established delivery channels and/or the revelation of private information that can
be used to improve accuracy of the premium rates. Using both parametric and
semiparametric estimators which are explained in detail in the second chapter, out-
of-sample tests are conducted and it is found that the insurance companies do reveal
private information. The results may prove useful for countries considering the use
of intermediaries in their crop insurance programs and in analyzing other insurance
programs where there is government involvement, e.g., insuring natural disaster risks.

In the fourth chapter of this dissertation, using five-minute data, market volatility
in the Dow Jones Industrial Average is examined in the presence of trading collar.
The trading collar, formally known as Rule 80A, restricts certain forms of trade in
component stocks of the S&P500 stock price index when there is “excess” volatility
in the market. Besides taking into account the trading collar, the model also captures
intraday seasonality of market volatility via a polynomial specification. Use of this
specification, which seems to be the first in the literature, is easier to estimate than
the two-step Fourier transform procedure which is used in the literature. Results of
this chapter indicate that market volatility is 3.4% higher in declining markets when
the trading collar is in effect. Results also support a U-shaped intraday periodicity
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in market volatility as found in other studies.

Findings of this dissertation are concluded in the last chapter and some extensions
and future research ideas are also provided. These extensions and ideas are expected
to become parts of a research agenda on econometric methodology and their applica-

tions in finance, insurance, and risk management.
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2. SEMIPARAMETRIC ESTIMATION OF THE LINK FUNCTION IN BINARY-CHOICE

SINGLE-INDEX MODELS

2.1. Introduction

Discrete choice models are commonly used in microeconometrics to analyze situations
where a decision or choice has to be made. Another common use of these models is
when dealing with selection bias; estimating a discrete choice model (to estimate
the “selection” equation) is the first step in the popular 2-step Heckman procedure.

These models usually take the following general form
yr = v+ u; (2.1)

where y; is a latent variable which is operationalized by defining y; = 1 if y > 0 and
y; = 0 otherwise, f is a (¢ 4+ 1)x1 vector of unknowns, v; = (1, z;) where z; is a 1xq
vector of explanatory variables, and u; is the error term. The literature is dominated
by parametric estimation where the distribution function (cdf) of u;, say F(u), is
assumed to be normal (probit model) or logistic (logit model). Because paramet-
ric assumptions that are not consistent with the data could invalidate the results,*
some have considered nonparametric and semiparametric methods. In discrete choice
models the estimated effects of the regressors are of interest as well as the estimated
conditional mean. Thus instead of a fully nonparametric approach, semiparametric
methods have been the focus to circumvent any distributional assumptions yet recover
the desired estimates.?

There has been significant research on semiparametric estimation of single-index

models that contain parametric discrete choice models as a special case (see Stoker

'For an exception see Ruud [57].

2Furthermore fully nonparametric methods suffer from the so-called “curse of dimensionality”,
i.e., as the number of regressors increases, estimation precision decreases rapidly. The single-index
models, which are explained below, reduce this dimensionality problem to a scalar.
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[63], Powell et al. [54] Ichimura [35], Klein and Spady [41], Horowitz and Hérdle [34],
Cosslett [10], Horowitz [32, chapters 2 and 3|, Pagan and Ullah [52, chapter 7]). A

single-index model has the following form

E(ylv) = F(vp) (2:2)

where F' is an unknown (not necessarily a distribution) function, called the link func-
tion. The term v/ is the index.®> Note that if I is the normal or logistic distribution
function, the function in (2.2) is the binary probit or logit model and if it is the iden-
tity function, equation (2.2) becomes the usual linear regression model. Among the
advantages of single-index models is dimension reduction. The index v[ is a scalar
and thus single-index models do not suffer from the curse of dimensionality; if 3 were
known it would be possible to estimate F' as the nonparametric mean regression of y;
on z; = v; which is a scalar. Therefore in single-index models it is possible to esti-
mate F at the nonparametric rate as if there is a single regressor* and the coefficient
vector (3 at the parametric rate O(n~'/2) (see Horowitz [32, chapter 2] for further
advantages of single-index models).

Along a completely different vein, a recent paper by Hjort and Glad [27] proposes
a semiparametric method for density estimation which starts with a parametric esti-
mator and multiplies this parametric start with a correction factor (unknown density
divided by the parametric start) which is estimated nonparametrically. The idea is
based on bias reduction. If the parametric start captures a sufficient amount of the
curvature of the unknown density, the correction factor will be close to one and less
rough. Thus the bias associated with the nonparametric estimation of this correction
factor will be less than that associated with the underlying density. Neither this

paper or a companion piece by Glad [17] consider single-index models.

3This study will be concerned with a linear index as in (2.2) instead of a general form h(v;3)
where h is a scalar valued function. Ichimura [35] has a general analysis of single-index models and
Ichimura and Lee [36] extend that general framework to multiple-index models.

4The fact that 3 is unknown and has to replaced with an estimator does not change this result
as long as the estimator of 3 is v/n-consistent (see Horowitz [32, pp.21-22]).
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Unlike the semiparametric papers in the literature that estimate the link function
nonparametrically, this study proposes to estimate the link function semiparametri-
cally by employing the Hjort and Glad [27] bias reduction idea. Potentially relevant
information is introduced in the form of a parametric function which is the para-
metric guide for the link function. The distinguishing characteristic of the proposed
estimator is how the unknown link function F' is estimated using prior parametric
information about its shape.

There are a number of papers in the literature which compare some of the semi-
parametric estimators for single-index models but these studies are applications and
compare different methods with the particular data set in hand. As these semipara-
metric methods are adopted, finite sample comparison of these methods by means of
simulations can provide valuable information. A second contribution of this study is
that an extensive simulation analysis is conducted in which the finite sample perfor-
mance of the more popular of these semiparametric estimators, namely the estimators
of Klein and Spady [41] and Ichimura [35] are compared with the proposed estimator.
Note that finite sample simulation is especially important because bias reduction is
not always realized in samples of reasonable size (see Jones and Signorini [37]).

The choice of smoothing parameter is also addressed for the new estimator from
a practical point of view following the idea of Hirdle et al. [25]. In single-index
models, the asymptotic distribution of the centered and normalized estimator does not
depend on the smoothing parameter so, asymptotically, any sequence of smoothing
parameters is going to give the same estimator as long as it satisfies certain conditions.
But in finite samples the performance of the estimators can be very sensitive to the
choice of this smoothing parameter. For the proposed estimator, besides using a
fixed smoothing parameter, the objective function is optimized with respect to the
smoothing parameter as well as the unknown coefficients following Hérdle et al. [25].

The chapter is organized as follows: In the next section, some of the semipara-

metric and nonparametric estimators for binary data are reviewed. The emphasis in
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this section is on the semiparametric estimators based on the index restriction. Then
the new estimator is presented in section 2.3. In section 2.4 the applied literature
comparing existing parametric and semiparametric methods for the estimation of dis-
crete choice models is briefly reviewed. The mixed results of these studies motivate
the need for a general simulation comparison of these estimators. Section 2.5 contains
the simulation results where the finite sample performance of the single-index model

estimators are compared. Finally, concluding thoughts are discussed in section 2.6.

2.2. Semi and Nonparametric Estimators of Binary Data

In this section the semi and nonparametric models for binary data are reviewed. This
review is by no means exhaustive, instead, reflects their importance and relevance
for the proposed estimator in this study. For a more comprehensive review, see, for

instance, Horowitz [30], Pagan and Ullah [52], and Powell [53].

2.2.1. Semiparametric Estimators

Common features of these models are that it is assumed that the distribution of u
depends on x only through the index® (index restriction) and that F' is completely
unknown (no centering assumptions will be made thus the intercept term can not be
identified).®

5Single-index models, unlike models which assume independence of u and z, allow for limited
forms of heteroscedasticity (general but known form and unknown form if it depends only on the
index). This limitation can be serious since, for instance, the assumption that Pr(y = 1|v) depends
only on the index does not allow a certain form of heteroscedasticity, called random coeflicients
model, which may be important in applications.

6The maximum score estimator of Manski [45] and its smoothed version by Horowitz [29] make
zero conditional median assumption (median(u|z) = 0) which identifies the intercept term (zero con-
ditional mean assumption is not sufficient for identification in a binary response model, see Manski
[46, p.731] and Horowitz [32, section 3.2]). These models allow for different forms of heteroscedas-
ticity including random coefficients models although at the cost of a rate of convergence slower than
v/n. In fact under this conditional median independence assumption, y/n consistency is not possible,
see Pagan and Ullah [52, p.278] and Horowitz [30].
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Quasi-Maximum Likelihood Estimator The semiparametric single-index model
of Klein and Spady [41] can be considered as quasi log-likelihood estimation. Note
that for binary data Pr(y = 1|v) = F(vf) and if F' (the link function) were known

the maximum likelihood estimator would maximize the log-likelihood

n

> (ilog[F(viB)] + (1 — y;) log[L — F(vif3))). (2:3)

i=1
The idea is to consider the link function in (2.3) unknown and replace it with a
nonparametric estimator. Since [ in single-index models is not fully identified, a lo-
cation and scale normalization is required (see Horowitz [32, section 2.4]). Location
normalization is achieved by requiring v to contain no intercept term and scale nor-
malization is achieved by setting the [ coefficient of a (continuous) regressor equal

to one.”

The [ vector after scale and location normalizations is denoted by b, i.e.,
b= (1,B,...,53,)" assuming the first regressor has a continuous distribution. The
following Nadaraya-Watson nonparametric estimator for the link function is used
Flat) = Y ik <_~””i” . W) /3K <_””ib . Ijb> (2.4)
J# J#
where K is the kernel function (usually a symmetric density function) and h = h(n)
is the smoothing parameter such that » — 0 as n — 00.® By replacing the unknown
link function F' in (2.3) by (2.4), the quasi log-likelihood function is obtained and by
maximizing the quasi log-likelihood with respect to b where b is b without its first
component, the semiparametric estimator 3 is obtained. Klein and Spady [41] show

that b satisfies \/ﬁ(l:) — bo) N N(0,9Q¢q.) where Qg can be consistently estimated

by the Hessian and the outer product of the gradient matrices and it attains the

TAn alternative scale normalization would be ||3|| = 1 where || - || is the Euclidean norm.

8Since there is no location restriction on u in single-index models and thus the intercept term is
not identified, (2.4) is actually a nonparametric estimator of the distribution of u + 8y where Sy is
the intercept. Also, Klein and Spady [41] have additive terms in the numerator and denominator of
(2.4) to control the rate at which numerator and denominator tend to zero. Ichimura [35] utilizes
indicator variables to trim those observations which correspond to small density values. A similar
trimming function and an indicator variable enter multiplicatively to objective functions in (2.3)
and (2.5) respectively. In this presentation those terms are ignored for simplicity.
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semiparametric efficiency bound of Cosslett [10] if the errors are independent of the
regressors.?

Note that in (2.4) the denominator can get arbitrarily close to zero so care must be
taken. Klein and Spady [41] use complicated trimming procedures without restricting

x to be in a specific set as in Ichimura [35] (see below).

(Weighted) Semiparametric Least Squares Estimator The single-index model
of Ichimura [35] is, in contrast to Klein and Spady [41], based on minimizing a non-

linear least squares (NLS) loss function. The NLS estimator of b minimizes
1 ¢ o
=D Iy~ Faib) (2.5)
i=1

where F' is the nonparametric estimator for the unknown link function in (2.4).
Ichimura [35] denotes this model semiparametric least squares (SLS) and shows that
b is consistent and v/7(b — by) 4 N(0,Qs1s) and gives a consistent estimator of

Qsrs =X T and ¥ can be consistently estimated by

A 1 . N
D= =Y &al F'(z)?
n
=1
S IR DU A T2
Y =—=) ;% F'(x;b)*[y; — F(xb)]
n
=1
where #; = (g, ..., 24), b= (1,0")", and F" is the derivative of F.

Ichimura [35] also considers weighted SLS (WSLS) in which he weights the ob-
jective function (2.5) and the summands in F by a weight function W (z;). As in
parametric NLS, efficiency considerations play a role: the choice of the weight func-

tion does not affect the consistency and rate of convergence of the estimator of b

9A recent paper by Chen [9] builds on Klein and Spady [41] and shows that the intercept can be
consistently estimated and there are possible efficiency gains in the estimation of slope coefficients
although at the cost of stronger assumptions: a location restriction in the form of conditional
symmetry, i.e., the density of 4 conditional on the regressors is symmetric around zero and an index
restriction stronger than the one in Klein and Spady [41], namely, the conditional density depends
on z only through the squared index.
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but does affect its efficiency. Optimally weighted (the weight function is a consis-
tent estimator of Var(y|z)~') WSLS achieves the semiparametric efficiency bound.!°
Horowitz [32, p.31] explains how a consistent estimator of Var(y|x) can be obtained.
Note that the first order conditions from (2.3) are the same conditions that one can
obtain from (2.5) with the estimated"! weight function W (z) = {F(xb)[1— F(xb)]}~".

As in the Klein and Spady [41] estimator, care must be taken to prevent the
denominator of (2.4) from getting arbitrarily close to zero. Ichimura [35] restricts the
summands in (2.4) and (2.5) to those observations for which the density of the index

is not too small (see Ichimura [35] for details).

2.2.2. Nonparametric Estimators

A completely nonparametric analysis of binary-choice models, one that not only as-
sumes that the distribution of the error term is unknown but also the conditional
mean is just some unknown function of the covariates, i.e., E(y|x) = m(z) where
m is an unknown smooth function, is not very appealing to economists since the /3
coefficients (which can not be recovered in a completely nonparametric analysis) may
have behavioral significance and may contain important information. Furthermore,
as mentioned above, a completely nonparametric analysis would suffer from the curse
of dimensionality and impractical sample sizes may be needed to obtain reliable con-
ditional mean estimates. Hence, only one nonparametric estimator is going to be
reviewed (which is applicable to data generating processes more general than just
binary-choice models) which is also based on using prior parametric information in
attempts to reduce bias similar to the estimator proposed in this chapter. Note that

this estimator has not been used in an application.

10For this efficiency result, the weight function should depend on z only through the index as in
binary-choice models where Var(y|z) = Var(y|zb).
"chimura [35] treats W (-) as a known function.
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Local Nonlinear Least Squares Gozalo and Linton [20] propose a nonparametric
procedure which is analogous to local likelihood estimation and can be centered at
any parametric regression function. Their main objective is to estimate the unknown
regression function at an interior support point. Their main idea, as is the proposed
estimator’s in this study, is bias reduction. Their setup is to minimize a nonlinear
least squares loss function where they introduce prior parametric information. The
performance of the estimator depends on this parametric model: the bias of the esti-
mator is proportional to the distance between the second derivative of this parametric
model and the second derivative of the true regression function (whereas the variance
is the same as the variance of Nadaraya-Watson and local linear estimators). Also,
like the local linear estimator, their estimator is design adaptive, i.e., its bias does
not depend on the design density f(z) (the bias of Nadaraya-Watson estimator does).
For each point v, they find S(v) and hence F(v) = F(vf3(v)) by minimizing

Z{yi — F(viB) Ky (v; — v) (2.6)

with respect to 8. In (2.6), Ky(-) = det(H) 'K (H ') where H is a nonsingular
smoothing parameter matrix and K(-) is a kernel function. Their prior parametric
information is in F, that is, F' is a parametric function. Note that in the single-index
models considered above F'is unknown and [ fixed. Here F'is a known parametric
function and g varies with v. As Gozalo and Linton [20, p.81] explain, when they fit a
local probit, “...this [model] can be interpreted as a random coefficient probit, except
that the variation in parameters is driven by the conditioning information rather than
by some arbitrary distribution unrelated to the covariates.” Loosely speaking, single-
index models and parametric probit and random coefficient probit models are special
cases of their model. If the estimated (’s are constant over x, the result would be
the probit model whereas if the single-index or the random coefficient probit model
is the underlying truth, the ratios of ’s corresponding to slope coefficients should

be constant over x. Thus one can use estimated /3 coefficients from this model along
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with calculated confidence intervals to test against these alternatives.

Note that implementation of this estimator requires n optimizations where n is
the sample size and thus computationally can be very expensive to calculate. Also,
this estimator—being a generalization of the linearity part in local linear estimator
to any parametric regression function—has a slower rate of convergence O((nh9)'/?),
where ¢ is the number of regressors, than single-index models and suffers from curse

of dimensionality due to its complete nonparametric nature.

2.3. Parametrically-Guided Single-Index Model

The proposed semiparametric estimator is first motivated by the estimator of Hjort
and Glad [27] and Glad [17]. Suppose one wishes to estimate the conditional mean
function E(y|x) = m(x). They first start with a parametric estimator m(z, 5) which
could be, for instance, a simple linear regression or a more complex maximum likeli-
hood estimation, and then multiply it with a correction factor r(z) = m(z)/m(z, )
which is estimated nonparametrically. The idea is based on bias reduction: if the
parametric start is close to the truth, the correction factor will be close to a constant
and thus smoother and (bias wise) easier to estimate than m itself. Hence the bias
associated with nonparametric estimation of this correction factor would be less than

the bias from direct nonparametric estimation of the unknown regression function.

Their estimator is
m(z) = m(z, B)F(z).

When the correction factor is estimated by the Nadaraya-Watson estimator'? their

parametrically guided estimator is

() =Y LG oy 0) |3 Ko — ).

i=1 m(.’lfi, 6) =1
12Glad [17] generalizes this to local pth order polynomial estimator which reduces to the Nadaraya-
Watson for p = 0.
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Glad [17] shows that this estimator has the same large sample variance as the standard
nonparametric estimators (Nadaraya-Watson and local linear) while bias reduction is
possible if the parametric start belongs to a neighborhood around the true regression
curve.

The proposed semiparametric estimator for the single-index model is based on
the above idea, that is introducing (potentially) relevant information in the form of a
parametric function in attempts to reduce bias. The estimator starts with a paramet-
ric model for the link function, say G(zb), where G(+) is a known function (for instance
normal cdf) and multiplies it with the correction function r(xb) = F(xb)/G(xb) which
is estimated nonparametrically. Note that the information that this estimator starts
with is only related to the shape of the link function and not to the coefficient es-
timates. In this sense the estimator is using a fixed start vis-a-vis Hjort and Glad
[27] and Glad [17]. When the Nadaraya-Watson estimator is used to estimate the
correction factor the proposed model is

eSS (257 /5 (4). e

JFi

This model will be referred to as parametrically-guided single-index model (PGSIM).
The unknown F' in (2.3) is replaced with (2.7) and the resulting quasi log-likelihood
function is maximized with respect to b.

Note that the semiparametric estimator of the link function in (2.7) does not nest
the nonparametric estimator in (2.4) so the Klein and Spady [41] model is not nested

in the model proposed model.'® However, a bias and variance comparison of (2.4) and

I3For this to happen, the parametric start G(-) should be a constant function. In density estima-
tion, the Hjort and Glad [27] estimator nests the usual kernel density estimator if the parametric
start is the uniform density over the space. But here a distribution function which is constant and
which satisfies the continuity (of the index) assumption can not be found. One obvious example of
such a constant distribution function, which does not satisfy the continuity assumption, is the unit
point mass at @ when z = a a.s.:

0 ifz<a

G(z):{ 1 ifz > a.

Of course here not only is the continuity assumption not satisfied but also 5 is not identified with
this G(-).
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(2.7) is useful to see the bias reduction. Equation (2.4) is the usual Nadaraya-Watson
estimator of the link function whereas (2.7) corresponds to fixed start of Hjort and
Glad [27, section 2] and Glad [17, section 2] as mentioned above. While both have

the same variance
Var(F(2)) = (nh) ™ f(2)7'0* () R(K) + 0,((nh) ")
where f(z) is the density of z, 0?(z) = Var(y|z), and R(K) = [ K?(t)dt, the bias of

(2.4) is
h?puz(K)

Bms(ﬁ}(g(z)) = W(F”(Z)f(Z) +2f'(2)F'(2)) + 0,(h?)
where po(K) = [t*K(t)dt, whereas the bias of (2.7) is
Bias(FpGSIM(z)) = %(r"(z)(?(z)f(z) +2f'(2)r' (2)G(2)) + 0,(h?).

Thus, for the same h and K, bias reduction is possible if the parametric start G can

be chosen such that
r"(2)G(2) f(2) + 2f"(2)1"(2) G (2)| < |[F"(2) f(2) + 2f'(2) F'(2)]. (2.8)

If the parametric start is proportional to F', the correction factor r is going to be a
constant and thus v’ = r” = 0. If it is sufficiently close to F', roughness of r will be less
than roughness of F' and r will have a smaller second derivative. Thus (2.8) defines a
“neighborhood” of F' where bias reduction is possible by choosing a parametric start
from this neighborhood.'*

The above argument indicates that even though the estimator can not (asymptot-
ically) outperform Klein and Spady [41] with respect to the coefficients as they attain

the semiparametric efficieny bound, in finite samples there is potential to increase

1 Obviously (2.8) is a neighborhood for the link function and not for the coefficient estimates.
For the latter, it is not straightforward to obtain a neighborhood like (2.8) as there is no closed
form solution but it is reasonable to expect bias reduction for coefficient estimates as well since they
would be obtained from first order conditions which are functions of less biased estimates of the link
when (2.8) is satisfied (b(Fgs) vs. b(Fpasin)).
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efficieny by using a parametric guide. On the other hand, the bias of E pasiy reduces
to a smaller order than Klein and Spady [41] and Ichimura [35] probability estimates

when the parametric start is proportional to F'.

2.3.1. The Estimator and Consistency

Following the intuition behind the estimator that is presented above, here, a formal
description of the estimator and its consistency result is provided.

As mentioned above, in the semiparametric estimators of Ichimura [35] and Klein
and Spady [41] care must be taken as the nonparametric density estimator in the
denominator can get arbitrarily small. Also, in Klein and Spady [41], any estimator
of F should be kept in the (0, 1) open interval. They use complicated trimming proce-
dures which they denote likelihood trimming (to downweight observations for which
the corresponding densities are small) and probability trimming (to control the rate
at which numerator and denominator of F' tend to zero). Ichimura [35], on the other
hand, restricts x to a set by indicator variables on which the above mentioned prob-
lems are avoided. This latter approach is easier to deal with in asymptotics.'® Hence
this approach is employed. Here, these restrictions should include one more thing,
namely, that the parametric start G(-) should be nonzero throughout the support of
the index. In what follows, the notation for the trimming terms will follow Ichimura
[35, p.78] and Horowitz [32, pp.23-24] closely.

The proposed semiparametric estimator for binary-choice models maximizes

@ulb) = > Ve (e lolF )] + (1= ) logll — Fd))  (29)

where 177 is an indicator variable, A, C R? is such that A, = {z : p(zb) >n Vb€

15In actual estimations, trimming has very little effect on the performance of the estimators.
Klein and Spady article reports simulation results from untrimmed estimator: “...the estimate ob-
tained without any trimming performed quite similar to that under the trimming that we employed.
Accordingly, we report results for the semiparametric estimator obtained without probability or
likelihood trimming (Klein and Spady [41, p.406]).”
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B}, p(-) is the density of the index, 7 is a positive constant, and

1 G(zib) z;b—x;b
. m—1)h Zj;éz’ yjl[wjeAm]{G(ij)}K< R )
F(be) - 1 xib—ij
(n—1)h Zj;éi Lzjean,) K ( h )
: zib — ;b 2.10
if z;é: 1[xjeAm}K (TJ> 75 0, and ( )
VE=!

] 0.1 otherwise

where K : R — R is a density function, h > 0 and h — 0 as n — oo, and A,,; is a

“...includes [A,] in such a way that all

set such that, as Ichimura [35, p.79] explains
boundary points in [A,] are interior to [A,,], in a neighborhood of x, with probability
approaching 1, there are data in all directions to take a local average”. Clearly the
purpose is to reduce bias that may otherwise result close to the boundary points.
His suggestion is to use A,, = {z : ||z — 2'|| < 2h for some 2’ € A,}. Note that
as n — 00, A,, seems to get smaller but as the sample size increases there will be
more and more sample points close to boundary as well and sufficient to take a local
average.

The identification of single-index models, in the most general context, has been
analyzed by Ichimura [35]. Manski [45] looks at identification of binary-choice models
with linear index under different assumptions including index restriction. Klein and
Spady [41] give conditions for identification of single-index models in binary response

models where the index is a general but known function. The reader is referred to

the original papers for details. Here the following assumptions are made:

Assumption I1 The model in (2.1) satisfies the index restriction.

Assumption I2 F is continuously differentiable and not a constant function of the

index over its support.

Assumption I3 At least one regressor, with nonzero coefficient, has a continuous dis-

tribution. Its distribution conditional on the remaining regressors is absolutely
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continuous.

Assumption [4 Varying the values of discrete regressors must not divide the support

of the index into disjoint subsets.
Assumption I5 Pr(y = 1|zby) = Pr(y = 1|xzb,) = by = b..

For 14, see Horowitz [32, pp.16-17| for an example how its violation turns the slope
coefficient on the discrete regressor into an intercept term which is not identified.
Assumption I5 is a necessary restriction for identification of binary-choice maximum-
likelihood models in particular. Klein and Spady [41, pp.395-397] provide sufficient
conditions under this assumption.'®

The consistency proof requires showing uniform convergence, over x and b, of F
to F'. Once this is accomplished, the estimator that maximizes the quasi-likelihood in
(2.9) asymptotically behaves like the estimator that maximizes the likelihood function
for a known F' since sup,p |Qn(b) — Qn(b)| = 0,(1) where

Qn(0) = 107" Lppenn(yslog[F (2:b)] + (1 = y;) log[1 — F(x;b)]).
i=1

The estimator which maximizes this likelihood can be analyzed by standard results

for parametric estimators. First the following assumptions are made:
Assumption 1 Observed sample (z;,v;), i =1,...,n is i.i.d.

Assumption 2 B C R? is compact and the true parameter vector b is in the interior

of B.
Assumption 3 A, is compact.

Assumption 4 K(s) is a density. Furthermore [ sK(s)ds =0, K(s) =0 for s < —1

and s > 1, and its second derivative satisfies a Lipschitz condition.

6There are two cases to consider: When the link function F is monotonic in the index and when
it is not. If the underlying distribution is heteroscedastic, for instance, F' need not be monotonic in
the index.
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Assumption 5 Parametric start G is uniformly bounded over z, b and G(xb) #

0Ve,be A, x B.
Assumption 6 [ |¢(t)|dt < oo where ¢(t) is the characteristic function of K.

Assumption 7 There exist F' and F that do not depend on z such that 0 < F <
F(zb) <F <1 VbeB.

Lemma 1 shows the uniform convergence of F and is proved in the appendix.

Lemma 1. Under assumptions 1-7, if h — 0 and h\/n — oo as n — oo, then for

any € > 0
Pr sup  |F(zb) — F(zb)| > €] =0 as n — oo.
(z,b)eArxB
Proof. See the appendix. O

As Bierens [5, p.115] notes, the best uniform convergence rate is obtained when
min(h+/n, h=2) (see the appendix) is maximum so & oc n~/¢ and thus min(h+/n, h=2)
n?/6.17 This is not the fastest uniform convergence rate achievable for nonparametric
regression (see Schuster and Yakowitz [60]), however, this conservative approach has
been chosen for its simplicity. Also, lemma 1 does not provide uniform convergence
of derivatives of F' which are required in asymptotic normality arguments.

With lemma 1, it can be shown that Q,(b) in (2.9) converges in probability,
uniformly in b, to a likelihood function for a known F'. This limiting likelihood, in
turn, converges in probability, uniformly in b, to its expectation which is maximized by
b.. This b, satisfies (see Klein and Spady [41, p.400]) Pr(y = 1|z) = Pr(y = 1|zby) =
Pr(y = 1|xb,) where the first equality is the index restriction and the second equality
is a necessary condition for b, to be maximum. Hence, from I5, b, = by is unique

maximum. Theorem 1 below gives the result and is proved in the appendix.

17Klein and Spady [41] obtain a similar uniform convergence rate.
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Theorem 1. Under assumptions 1-7,
b = argsup Qn(b) 25 by.
b

Proof. See the appendix. O

2.4. Review of Parametric vs. Semiparametric Comparison

There are a number of empirical papers that compare different parametric and semi-
parametric estimators for binary data. These studies show that semiparametric meth-
ods which reduce the risk of misspecification by avoiding strong distributional assump-
tions may give quite different results than parametric methods. But depending on
the application and data set used, these studies have mixed results and thus can not
be generalized. In this section these results are reviewed.

Horowitz [31] uses parametric probit and random-coefficients probit with the
single-index model of Klein and Spady [41] and the smoothed maximum score es-
timator of Horowitz [29]. He conducts specification tests and rejects the fixed coef-
ficient probit and the semiparametric single-index models. Gerfin [16] compares the
parametric probit model with the semiparametric models of Gabler et al. [15], Klein
and Spady [41], and Horowitz [29]. He finds that the coefficient estimates do not dif-
fer substantially across models. His specification tests and within sample prediction
exercises are not conclusive. Fernandez and Rodriguez-Poo [13] estimate the para-
metric probit and logit models with the semiparametric single-index model of Klein
and Spady [41]. They observe important differences in coefficient estimates from the
parametric models and the semiparametric model. Newey et al [51] are mainly in-
terested in estimating a selection model. They estimate the selection equation by
the semiparametric estimators of Ichimura [35] and Klein and Spady [41] and find
the coefficient estimates to be quite close to the probit estimates. Goodwin and Holt

[19] are interested in labor supply and find that the probit and the Ichimura [35]
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models give quite similar results though marginal effects are generally more elastic
in the single-index model. These mixed results suggest the need for a comprehensive

simulation study whose results can be generalized.

2.5. Simulations

In this section, finite sample performance of the estimators which are based on index
restriction are compared. The procedures that are employed to pick the smoothing

parameters are also discussed in detail.

2.5.1. Design

The model generating the data is

yr = Bo + Bix1; + Boxo + uy

and y; takes a value of 1 if the latent y > 0 and a value of 0 otherwise. The values
of the true parameters are fy = 0, f; = 1, and o = 1. The regressors z; and x,
are independently and identically distributed. The data generating process (DGP)
for x; is chi-square distribution with 3 degrees of freedom truncated at 6. The DGP
for x4 is standard normal truncated at +2. Both x; and x, are first trimmed by 2%,
i.e., lower and upper tails of their empirical distributions are trimmed by one percent
and then standardized to have zero mean and unit variance. For the DGP of the
error term, four homoscedastic normal mixtures and a heteroscedastic distribution are
considered. Normal mixtures are (1) standard normal, (2) 0.75-N(0,1) + 0.25-N(0,25),
(3) 0.75-N(-0.5,1) + 0.25-N(1.5,25), and (4) 0.5-N(3,1) + 0.5-N(-3,1). The second
distribution is leptokurtic, the third distribution is skewed and leptokurtic, and the
fourth distribution is bimodal. The second (third) (fourth) distribution has standard
error 2.65 (2.78) (3.16), skewness 0 (1.29) (0), and kurtosis 6.61 (6.29) (1.38). The
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heteroscedastic distribution is normal with zero mean and variance 0.25(1 + (v;3)?)?
where v;3 = fo + S + foxai. '®

Figure 2.1 gives a graph of the link function for different errors in the simulation
design. Note that when the error distribution is heteroscedastic, the link function is

not monotonic in the index.
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FIGURE 2.1. Link Function for Design Errors

8Even though it is not in the simulation design, at this point, it is instructive to digress to discuss
maximum likelihood estimation of misspecified binary choice models. Ruud [57] showed that when
the explanatory variables are multivariate normal, maximum likelihood estimates of slope coefficients
can still be estimated consistently up to scale even when the distributional assumption is not correct.
More generally the result holds when

E(&|zb=1t) = cp + 1t (2.11)

where ¢p and ¢; are constants, which is satisfied when the explanatory variables are multivariate
normal. Note that this consistency result does not hold for the probability estimates.

Another interesting implication of (2.11) is that when it holds, the semiparametric efficiency
bound is the same as the parametric (Cramér-Rao) efficiency bound (see Cosslett [10]).
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2.5.2.  Smoothing Parameter

In general, it is usually standard to use a version of cross-validation (CV) or plug-
in methods (see, for instance, Wand and Jones [65, chapter 3]). In semiparametric
single-index models, however, selection of the smoothing parameter has not been well
studied.' One exception is the paper by Hirdle et al. [25] where they show that
equation (2.5) with W (z;) = 1, i.e., SLS, can be expanded as A(b) + B(h) and can
be minimized simultaneously with respect to both b and h. This is like separately
minimizing A(b) with respect to b and B(h) with respect to h. The end result is
a y/n-consistent estimator of b and an asymptotically optimal estimator of A in the
sense that ﬁ/ho — 1 as n — oo where hy is the optimal bandwidth for estimating F'
when b is known and is proportional to n~*/° as usual in nonparametrics (see Hirdle
et al. [25] for technical details).

For the Klein and Spady [41] estimator, the smoothing parameter h has to satisfy
nh® — 0 and nh® — oo and for the Ichimura [35] estimator, the smoothing parameter
h has to satisfy nh® — 0 and logh/(nh3+3/(m=D) — 0 where m > 3 as n — oco. If
the smoothing parameter is taken to be h = c/nl/p where ¢ is a positive constant
with ¢ = 1 and p = 7, the resulting h would satisfy the requirements of both Klein
and Spady [41] and Ichimura [35] estimators. Hence, in the simulations, this smooth-
ing parameter is used for both of these estimators. For the new estimator, however,
asymptotic results are not complete and hence a set of conditions for the smoothing
parameter similar to Klein and Spady and Ichimura estimators do not exist. So, be-
sides using this constant smoothing parameter, the Hérdle et al. [25] idea is applied
as well to quasi log-likelihood function of the proposed estimator and hence the ob-

jective function is optimized with respect to both b and h.2° This is the first study

113

9The difficulty in single-index models stems from, as Horowitz [32, p.50] explains, “...in semi-

parametric single-index models, the asymptotic distribution of [/n(b — by)] does not depend on the
bandwidth h. Therefore, bandwidth selection must be based on a higher-order approximation to the
distribution of [\/n(b — by)].”

20The asymptotic optimality (in the sense defined above) of h obtained this way is established
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which uses this idea in practice other than the original Hérdle et al. [25] paper.?! Note
that in equation (2.7) observation i is excluded so in a way the objective function is

“cross-validated”.

2.5.3. Results

Table 2.1 has the simulation results for bias and root mean squared error (RMSE)
of By over 500 simulations for a sample size of 100 and 1000. In the table, KS
is the quasi log-likelihood estimator of Klein and Spady [41] and PGSIM is the
parametrically-guided single-index model estimator. PGSIM, results are obtained
with a constant smoothing parameter h used for Klein and Spady and Ichimura esti-
mators and PGSIM,, results are obtained by the Hardle et al. idea. For identification
purposes, in single-index models, 3, is not estimated and [; is set equal to 1. To
avoid local optima, in each simulation, different starting values (probit estimate, 0,
1, 1.5) are tried for the semiparametric estimators. A logistic cdf is the parametric
guide in the PGSIM. For all of the three semiparametric estimators, a normal density
function is used as the kernel. Note that in practice if, for some z;, G(z;) is zero or
near zero while G'(z;) is not then the ratio G(z;)/G(%;) blows up in PGSIM. Following
Hjort and Glad [27] and Glad [17], trimming is conducted below 0.1 and above 10.

When the error distribution is standard normal (error 1), the parametric guide
(logistic distribution function) is quite close to the true link function and PGSIM
achieves significant bias reduction and efficiency gain with respect to semiparametric
estimators of Klein and Spady [41] and Ichimura [35].

Under errors 2 and 3, the parametric guide for the link function is not correct but
the estimator still achieves significant bias reduction and efficiency gain compared to

the other two semiparametric estimators and the parametric probit. In fact PGSIM

only for the Ichimura [35] estimator. There is no study which finds a similar result to Hérdle et al.
[25] for the quasi log-likelihood functions.
21Of the applied papers that are reviewed in section 2.4, some use fixed h values and others use

CV.
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is the most efficient under these two error distributions when n = 100. PGSIM is still
the most efficient when n = 1000 under error 3.

Under the bimodal distribution, PGSIM is the most efficient with both sample
sizes and particularly so when n = 100; it achieves very significant bias reduction
compared to other estimators.

When the error distribution is heteroscedastic, probit maximum likelihood esti-
mators are inconsistent (Yatchew and Griliches [68]). Even though the estimator
achieves significant bias reduction and efficiency gain against the parametric probit,
the Ichimura estimator is more efficient when n = 100; the efficiency loss against
Ichimura estimator is 16%. When n = 1000, however, PGSIM is the most efficient
albeit by only a small difference in RMSEs.

Comparing Klein and Spady and Ichimura estimators, not surprisingly, the simula-
tion results indicate that they perform very similarly especially as the sample size gets
larger. If one has a significantly large sample, however, Klein and Spady estimator
may be more attractive since it is asymptotically efficient (assuming homoscedastic-
ity). Also, calculating standard errors for Klein and Spady is more straightforward,
especially with a standard maximum likelihood routine, since all that is needed is the

Hessian and the outer product of the gradient matrices.
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Ba h

Bias RMSE mean sd median

n =100 Error 1 0.0477 0.2342 0.6220 0.3302 0.5912
Error 2 0.0571 0.3220 0.8174 0.4828 0.7177

Error 3 0.0352 0.3202 0.7924 0.4388 0.7318

Bimodal -0.1395 0.6920 0.5061 0.2238 0.4952
Heteroscedastic  0.0623 0.2843 0.6268 0.3342 0.5533

n =1000 Error 1 0.0077 0.0732 0.4318 0.1225 0.4453
Error 2 0.0150 0.0957 0.6541 0.2871 0.6058

Error 3 0.0072 0.0927 0.5457 0.1724 0.5490

Bimodal 0.0420 0.4506 0.3309 0.1029 0.3457

Heteroscedastic -0.0042 0.0570 0.3090 0.0614 0.3115

TABLE 2.2. Simulation Results (PGSIM) - /3, and h

Table 2.2 has simulation results for Bg and h for the proposed estimator. Com-
pared to the constant smoothing parameter that is used (0.5179), except for the
bimodal distribution, the estimator significantly oversmooths and on average uses a
bigger smoothing parameter when n = 100. For the bimodal distribution, on average,
the estimator slightly undersmooths. For n = 1000, the estimator again significantly
oversmooths on average compared to the constant smoothing parameter except for
the bimodal and heteroscedastic distributions. As the sample size increases from
100 to 1000, the smoothing parameter converges to zero as expected and so does its
standard deviation. In almost all cases, choosing the smoothing parameter in the
optimization via Hérdle et al. (PGSIM},) rather than a constant h (PGSIM,) gives
better results. When this is true, usually, there is an increase in bias and a decrease in
RMSE. Bias-variance tradeoff is a well known phenomenon in nonparametrics. Here,
however, this probably is a finite sample issue as the asymptotic distribution of coef-
ficient estimates in single-index models do not depend on the smoothing parameter
h and thus there is no bias-variance tradeoff in the asymptotic sense. Of course the
asymptotic distribution result is not provided here so this last point is more of a

conjecture.
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The performances of single-index models are also compared with respect to their
ability to estimate probabilities (ﬁ' ). The proposed estimator is expected to perform
better here than coefficient estimates since the bias reduction idea only indirectly af-
fects coeflicient estimates whereas here it directly affects probability estimates. Table
2.3 has the results from this comparison. In the table, L; (Ls) is the difference of
F from F measured by L;-norm (Ly-norm).?? Note that for single-index models F
estimates converge slower (approximately proportional to n'/3) than coefficient esti-
mates. Hence, when comparing semiparametric estimators to parametric probit, to
get a comparison of probabilities as accurate as coefficients with n = 100, one needs
to look at results for n = 1000.

Probit performs very poorly in estimating probabilities, especially under bimodal
and heteroscedastic errors. In fact under these error designs, even with n = 100,
probit is the least efficient. Under error 3, probit performs competitively compared
to KS and Ichimura but the new estimator with an estimated smoothing parameter
performs better than probit. A small increase in sample size, however, probably
to around 1500, would result in probit performing worse than all semiparametric
estimators, not just PGSIM},. As expected as in table 2.1, KS and Ichimura estimators
perform similarly in estimating probabilities.

Even though the parametric start is not correct in any of the simulation designs
(the closest it comes is under error 1), the new estimator performs better than KS
and Ichimura estimators in all simulations except the heteroscedastic design when
n = 1000. This is to be expected since as mentioned above, all that is required from
the parametric start is to smooth the object to be estimated nonparametrically and
not that the parametric start be correct all the time. This is the strength of the

estimator and shows its usefulness in many situations.

22Tn general, L,-norm is defined as (E(|z|?))'/?.
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2.6. Conclusions

In this chapter, a new semiparametric estimator for binary-choice single-index models
is proposed which uses parametric information in the form of a known (parametric)
link function and nonparametrically corrects it. It is also shown that the estimator
is consistent. An extensive simulation study is conducted and the new estimator is
compared with the semiparametric estimators of Klein and Spady [41] and Ichimura
[35]. The performance of the estimator is robust to the correctness of the parametric
guide since all that is required from the guide is to “smooth” the function to be
estimated nonparametrically so as to achieve bias reduction, not that it be correct all
the time.

As for the comparison of Klein and Spady [41] and Ichimura [35] estimators, not
surprisingly, they perform very similarly as the only difference is their loss functions.
If one has a significantly large sample, however, Klein and Spady [41] may be a
better choice since it is asymptotically efficient.?®> Also calculation of the covariance
matrix is easier for Klein and Spady [41] thanks to the wide availability of maximum
likelihood and Hessian and outer product of gradient matrices routines. This is the
first study that compares finite sample performance of these two semiparametric
estimators which are frequently used in applied work.

The method of Hérdle et al. [25] is followed regarding the choice of the smoothing
parameter for the proposed estimator besides using a fixed smoothing parameter and
the objective function is optimized with respect to the bandwidth as well as the
unknown coefficients. Other than the original Hérdle et al. [25] paper, this study
is the first to utilize this idea. Results show that it works well and gives quite
reasonable results thus can be employed by the applied researchers especially if time
is a constraint in which case a data-driven procedure, e.g., cross-validation, may not

be feasible.

23 As mentioned above, however, asymptotic efficiency result assumes independence of the errors
and the regressors which rules out heteroscedasticity.
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3. ON THE REVELATION OF PRIVATE INFORMATION IN THE U.S. CROP

INSURANCE PROGRAM

3.1. Introduction

In the U.S. crop insurance program, unlike the crop insurance programs in other coun-
tries, three rather than two economic interests are served: the federal government
through the United States Department of Agriculture’s Risk Management Agency
(RMA); the farmers; and the insurance companies. Very little has appeared in the
literature on insurance companies and their involvement in the crop insurance pro-
gram, arguably one of the cornerstone programs of U.S. farm policy (for exceptions
see Miranda and Glauber [48], Ker [38], Ker and McGowan [40], and Ker [39]). Fig-
ure 3.1 illustrates the breakdown of government program costs or outlays since 1981
into producer subsidies, indemnities less premium, administrative & operating (A&O)
expense reimbursement to insurance companies, and underwriting gains accrued by
insurance companies. There are a number of interesting features. Producer subsidies
increased dramatically in 1995 as a result of the 1994 Federal Crop Insurance Act and
again in 2001 as a result of the 2000 Agricultural Risk Protection Act. Indemnities less
premium are quite volatile. Insurance companies’ A&O has increased with increases
in total premium. Finally, underwriting gains accruing to insurance companies have
increased dramatically since 1994. Note that not only have total government costs
increased dramatically but payments to insurance companies have tended to increase
at a higher rate suggesting that they have been successful at accruing public rents.
In fact, monies accruing to insurance companies are close to rivaling those accruing
to producers.

While the current approach to decreasing total uninsured losses is greater sub-

sidization at higher coverage levels (as evidenced in figure 3.1), in 1980 insurance
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companies were solicited for assistance. It was believed correctly that decreased pro-
ducer transaction costs via better established delivery channels would lead to signifi-
cantly higher participation. Intermediaries are often used to carry out public policy
when gains in efficiency are expected. In the crop insurance setting, efficiency gains
were expected through two avenues. First, the better established delivery channels
of insurance companies could reach a greater number of producers for a given cost.
Second, the exploitation of information by insurance companies could increase the
accuracy of rates thereby decreasing adverse selection activities. However, interme-
diaries also represent a new group of rent seekers that have the potential to decrease

overall program efficiency.

2000

Producer Subsidy
1500 -
Adminstrative and Operating

Reimbursement for Insurance Companies

1000 -
Insurance Companies
Underwriting Gains

500 -

Government Outlays (thousands)

Indemnities less Premiums ']

500 I I I I
1980 1985 1990 1995 2000 2005

Year

Fi1GURE 3.1. Government Outlays for U.S. Crop Insurance Program

Interesting policy questions arise: (i) do insurance companies reveal private in-
formation to RMA via their contract allocation decisions (explained below); (ii) are
insurance companies efficiently allocating (retain and cede decisions) their book of

business with respect to the SRA; (iii) would producer demand be increased more
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through government delivery and increased subsidies; (iv) is monitoring of insurance
companies rather than sharing the underwriting gains/losses of the program more
efficient; (v) is the political equilibrium stable such that future gains may not be
recoverable from revealed private information; and (vi) does this degree of support
to the insurance companies represent in itself a political equilibrium. There is much
room for research on these important issues.

In this chapter, the focus is on the first policy question. In light of ARPA and the
new subsidy structure, producer participation will continue to increase markedly and
shift to higher coverage levels. As a result, total premium dollars will also continue
to increase significantly and hence premium dollars diverted to insurance companies
will dramatically increase. As a result, research on these important policy questions
is particularly pertinent in the context of current farm policy which continues to
increase monetary resources for the crop insurance program.

To test revelation of private information by the insurance companies, semipara-
metric as well as parametric methods are used to estimate the contract profitability
decisions of insurance companies (whether a contract returns a profit or not) us-
ing a data set aggregated to crop-county-year combinations. Using semiparametric
methods that avoid distributional assumptions proves to be useful as the paramet-
ric method is rejected. Out-of-sample test results show that insurance companies
do possess relevant and statistically significant private information and that they
strategically reinsure.

The remainder of this chapter proceeds as follows. The second section reviews
the U.S. crop insurance program and ARPA as a backdrop. The third section details
the Standard Reinsurance Agreement (SRA). The fourth section discusses the data
and outlines the econometric methods. The fifth section presents the results while

the final section focuses on the corresponding policy implications.
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3.2.  U.S. Crop Insurance Program

Federally regulated crop insurance programs have been a prominent part of U.S.
agricultural policy since the 1930s. In 2002, the estimated number of crop insurance
policies exceeded 1.25 million with total liabilities exceeding $37 billion. Traditional
crop insurance schemes offered farmers the opportunity to insure against yield losses
resulting from nearly all risks, including such things as drought, fire, flood, hail,
and pests. For example, if the farmer’s expected wheat yield is 30 bushels per acre
(y¢ = 30), a policy purchased at the 70% coverage level (A = 0.7) insures against
a realization below 21 bushels per acre (0.7 x 30 bushels per acre = 21 bushels per
acre). If the farmer realized a yield of 16 bushels per acre, they would receive an
indemnity payment for the insured value of 5 bushels per acre.

A variety of crop insurance plans and a number of new pilot programs are cur-
rently under development. Standard crop yield insurance, termed ‘Multiple Peril
Crop Insurance’, pays an indemnity at a predetermined price to replace yield losses.
Group-risk yield insurance, termed ‘Group Risk Plan’, is based upon the county’s
yield. Insured farmers collect an indemnity when their county’s average yield falls
below a yield guarantee, regardless of the farmers’ actual yields. Three farm-level
revenue insurance programs are available for a limited number of crops and regions:
‘Crop Revenue Coverage’; ‘Income Protection’; and ‘Revenue Assurance’. These pro-
grams guarantee a minimum level of crop revenue and pay an indemnity if revenues
fall beneath the guarantee. The recently developed ‘Group Risk Income Plan’; a
variation of the Group Risk Plan, insures county revenues rather than yields.

Figure 3.1 illustrates that companies are a major participant in the U.S. crop
insurance program and warrant attention. ARPA increases the prominence of the crop
insurance program in farm policy. The additional cost of this legislation is estimated
to be $8.2 billion over a 5-year period approximately doubling the federal budget on

crop insurance programs to $16.1 billion. ARPA has mandated the expansion of crop
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insurance in three important dimensions: expanded product coverage including, for
example, livestock products; expanded geographical availability for existing crops;
and increasing producer demand by doubling subsidies from approximately 30% to
60% of the estimated actuarially fair premium rate. Finally, the current form of the
SRA will remain in effect through the 2004 reinsurance year. All legislative actions
suggest that crop insurance will remain one of the predominant policy instruments
to funnel resources to agricultural producers. As a result, significant public resources

will flow to insurance companies. The program clearly deserves close analysis.

3.3.  The Standard Reinsurance Agreement (SRA)

The involvement of the insurance companies in the U.S. crop insurance program is
defined by the SRA. The insurance companies sell policies and conduct claim adjust-
ments and in return, RMA compensates them for these administrative and operating
expenses. The underwriting gain/loss, which is defined as total premiums less total
claims or indemnity payments, are shared, asymmetrically, between the insurance
companies and the RMA. Both the provisions by which the underwriting gains and

losses are shared and the reimbursement for A&O expenses are set out in the SRA.!

3.3.1.  Provisions of Sharing the Underwriting Gains/Losses

Section II.A.2 of the 1998 SRA states that an insurance company “...must offer all
approved plans of insurance for all approved crops in any State in which it writes an
eligible crop insurance contract and must accept and approve all applications from all
eligible producers.” An eligible farmer will not be denied access to an available, feder-
ally subsidized, crop insurance product. Therefore, an insurance company wishing to

conduct business in a state cannot discriminate among farmers, crops, or insurance

1See Ker [39] and Skees [62] for a discussion of the A& O expense reimbursement and it’s economic
implications.
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products in that state. An unusual situation arises; the responsibility for pricing the
crop policies lies with the RMA but the insurance company must accept some liability
for each policy they write and cannot choose which policy they will or will not write.

To elicit the participation of insurance companies, two mechanisms are required
that emulate a private market. First, given that insurance companies do not set
premium rates, there needs to be a mechanism by which they can cede the liability,
or the majority thereof, of an undesirable policy. In a private market, the insurance
company would not write a policy deemed undesirable. Second, a mechanism provid-
ing an adequate return to the insurance company’s capital and a level of protection
against ruin (bankruptcy) is needed. Premium rates in a private market reflect a
return to capital and a loading factor guarding against ruin. The premium rates set
by RMA do not reflect a return to capital but include a loading factor. The SRA
provides these two mechanisms which, in effect, emulate a private market from the
perspective of the insurance company. In so doing, the SRA also provides a vehicle
by which an insurance company can exploit information by strategically reinsuring
its book of business.

Under the SRA, insurance companies cannot cede or retain the total underwriting
gain/loss of a policy but must place each into one of three funds: assigned risk,
developmental, or commercial. For each state in which the insurance company does
business, there is a separate assigned risk fund, developmental fund, and commercial
fund. The structure of the risk sharing is identical but the parameters that dictate
the amount of sharing vary greatly across funds. For each fund, the underwriting
gain/loss the insurance company retains is equal to the total underwriting gain/loss

for the fund multiplied by two parameters. Formally,
Qo = Q- - i3

where Q% denotes the underwriting gain/loss retained by the insurance company for

fund k, QF denotes the underwriting gain/loss for fund k, p¥ is the first parameter
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for fund k, and pf is the second parameter for fund k. The underwriting gain/loss

retained by the RMA may be defined as:
Dhara = Q- (1= pf - p3)

where Q% denotes the underwriting gain/loss retained by the RMA.

The first parameter, u¥, represents an er ante choice variable for the insur-
ance company with respect to the commercial and developmental funds. For k =
assigned risk fund, u¥ = 0.2. For k = developmental fund, p} € [0.35,1.0] while for
k = commercial fund, ¥ € [0.5,1.0]. They must choose ¥ by July 1 of the preceding
Crop year.

The second parameter, p%, is not a fixed scalar but a function of the fund loss
ratio. Figure 3.2 illustrates the relationship between the fund loss ratio and the
percent of premium retained. The fund loss ratio is defined as the ratio of total
claims to total premiums. A loss ratio greater than one results when total claims
exceed total premiums and thus corresponds to an underwriting loss. Conversely, a
loss ratio less than one results when total premiums exceed total claims and thus
corresponds to an underwriting gain.

Figure 3.2 illustrates aspects of the three funds (for the boundary values of p)
that pertain directly to the empirical analysis: (i) insurance companies minimize their
exposure to the underwriting gains and losses for those policies in the assigned risk
fund and (ii) insurance companies maximize their exposure to the underwriting gains
and losses for those policies in the commercial fund. Therefore, rational behavior
would indicate that policies the insurance companies expect to yield underwriting
gains would be placed in the commercial fund while policies the insurance companies
expect to yield underwriting losses would be placed in the assigned risk fund. Very
little can be determined about policies placed in the developmental fund. If u¥ = 0.35
(minimum) this fund resembles the assigned risk fund while if g% = 1.00 (maximum)

this fund resembles the commercial fund. Therefore, without knowledge of u for
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FI1GURE 3.2. Percent of Premium Retained by Insurance Company Relative to Fund
Loss Ratio

the developmental fund, the expectations of the insurance companies regarding those
policies can not be determined.

Two final points of significance need discussed. First, there exists separate devel-
opmental and commercial funds for “catastrophic policies”, “revenue policies”, and
“other policies”. This latter category is comprised of MPCI/APH policies and GRP
policies (GRP policies make up a negligible fraction of the total policies). The empir-
ical analysis considers only the three fund allocations for the “other policies” because
insurance companies have significantly less experience and historical information with
the “revenue policies” and “catastrophic policies” and thus their fund allocations may
not be as efficient. Also note that while these funds (except assigned risk) are not ag-
gregated across types of policies, they are aggregated across crops. Second, insurance
companies face a constraint, at the state level, on the maximum percent of premium

in their book of business that can be placed in the assigned risk fund. These max-
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imums, which vary quite significantly by state, are located in Table 3.1. While this
may inhibit the insurance companies’ ability to cede unwanted policies, by choosing
p® = 0.35 for the developmental fund, they can make it resemble the assigned risk

fund and there does not exist such restrictions on the developmental fund.

State Percent State Percent State Percent
Alabama 50% Louisiana 50% Ohio 25%
Alaska 75% Maine 75% Oklahoma 50%
Arizona 55% Maryland 20% Oregon 30%
Arkansas 50% Massachusetts 45% Pennsylvania 25%
California 20% Michigan 50% Rhode Island 75%
Colorado 20% Minnesota 20%  South Carolina  55%
Connecticut  35% Mississippi 50% South Dakota 30%
Delaware 30% Missouri 20% Tennessee 35%
Florida 40% Montana 75% Texas 75%
Georgia 75% Nebraska 20% Utah 75%
Hawaii 10% Nevada 75% Vermont 15%
Idaho 45%  New Hampshire  10% Virginia 30%
Illinois 20% New Jersey 50% Washington 30%
Indiana 20% New Mexico 55% West Virginia 75%
Iowa 15% New York 40% Wisconsin 35%
Kansas 20%  North Carolina  20% Wyoming 35%

Kentucky 25% North Dakota 45%
TABLE 3.1. Maximum Percent of Premium in Assigned Risk Fund by State

While the involvement of the insurance companies was initially justified to increase
participation through better established delivery channels, this does not necessarily
explain why insurance companies share in the underwriting gains and losses rather
than just receive an A&O reimbursement. There are three possible reasons. The first
is RMA wishes to share the risk with the private market. This is unlikely because
RMA can self-insure without cost while in order to share underwriting gains and losses

with the private market, they must pay a risk premium.? The second reason is so that

2The government can absorb that risk since it is the unique agent that can diversify over time
and across space more than any other agent in the economy.
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the insurance companies are incentive compatible with RMA when conducting claim
adjustments. That is, because the insurance companies must share, to some extent,
the underwriting losses, there is less exposure to fraudulent claims. However, in so
doing, RMA must offer a vehicle for companies to adversely select. In essence, RMA
has traded moral hazard for adverse selection with respect to insurance companies.
It is unlikely that the cost of monitoring insurance companies’ claim adjustments
would be in the order of magnitude of the necessary risk premium that RMA pays
to insurance companies. The final reason for having insurance companies involved in
the underwriting gains and losses is to design a contract that would reveal relevant
private information to RMA regarding premium rates. This information could then
be used to improve the accuracy of premium rates. The allocation of the policies to
the three funds does reveal the expectations of the insurance companies with respect
to the profitability of those policies. The key question, and the one studied here, is

whether those expectations/allocations reveal unknown information.

3.4. Data and Methodology

Recall that the purpose here is to test whether relevant private information is revealed
with respect to rating policies (premium rates) in the fund allocations of insurance
companies. This hypothesis can be tested by predicting whether policies are prof-
itable or not. If a policy is correctly expected to be profitable (premium exceeds
expected indemnities), this would suggest that the premium rate needs to decrease.
Conversely, if a policy is correctly expected to be unprofitable (premium less than
expected indemnities), this would suggest that the premium rate needs to increase.
Specifically, one can test whether the percent of correct predictions increases signif-
icantly when the insurance companies’ fund allocations are included as explanatory
variables.

The dependent variable is whether a set of policies returned a profit or not. If the
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total premium is greater than indemnities, y = 1. Conversely, if total premium is less

than indemnities, y = 0. The first model is:
y=F(p)+e (3.1)

where v is information available to RMA such as historical loss ratio, crop dummies,
state maximums on the assigned risk fund, and liability changes. F(-) is the link

function and vf is the index. The second model is:
y = F(vf + insurance company fund allocations  y) + € (3.2)

where the set of explanatory variables now includes the insurance company fund

allocations.?

3.4.1. The Data

The data is comprised of the total premium, indemnities, liability, and number of
policies in each of the three funds by crop-county-year combination on corn, cotton,
soybeans, and wheat for the reinsurance years 1998, 1999, 2000, and 2001. Combina-
tions with less than $500,000 in liability are removed leaving 7,600 crop-county-year
combinations.

There are three caveats regarding the data that require discussion. First, the data

is aggregated to the county level; policy specific fund allocation decisions were not

3The dependent variable is based on whether a set of policies returned a profit or not rather
than the level of profit. As argued in Ker and McGowan [40] (independent strategy), this is the
decision that the insurance company faces. Under their “independent strategy” which assumes the
loss ratio of a given policy is independent of the loss ratio for that fund, the insurance company
only needs to consider whether the policy is expected to return an underwriting gain or loss. Recall,
insurance companies maximize their share of the underwriting gains/losses with the commercial fund
and minimizes their share with the assigned risk fund. If the loss ratio of the policy is independent
of the fund loss ratio, then the insurance company maximizes their total underwriting gain/loss by
maximizing the size of the commercial fund. This of course is maximized by only allocating those
policies with expected underwriting gain in the commercial fund. Those with expected underwriting
loss are allocated to the assigned risk fund. Therefore, given this allocation rule the most that can be
ascertained from their actual allocations is whether a policy is expected, by the insurance company,
to return an underwriting gain or an underwriting loss, not the expected magnitude.
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available. This is not problematic, however, because anecdotal evidence (discussion
with companies as well as looking at their fund allocations) suggests that insurance
companies tend to allocate by crop-county combinations rather than individual poli-
cies. Second, the data is aggregated across coverage level. Again, insurance companies
tend to allocate by crop-county combinations and do not consider coverage levels be-
cause of the lack of information at coverage levels differing from the 65% coverage
level.* Third, the data is aggregated across insurance companies. While company
specific fund allocations would be preferred, it was only possible to obtain aggregated

data.

3.4.2.  Econometric Methodology

For the estimation of (3.1) and (3.2), three methods are considered: parametric
probit and two semiparametric estimators, namely, SLS estimator of Ichimura [35]
and PGSIM. These semiparametric estimators have been discussed in detail in chapter
two. The smoothing parameter h for these semiparametric estimators is chosen by
applying the Hérdle et al. [25] idea (see section 2.5.2). In estimations, a normal density
function truncated at plus and minus 3 standard deviations is used as the kernel for
both of the single-index model estimators. The parametric start for PGSIM is a
probit model, i.e., normal cdf. No trimming of the data was conducted for either of
the semiparametric estimators.® Note that, in chapter two, a consistent covariance
matrix estimator is not provided for PGSIM. In absence of this estimator, it would be
ideal to bootstrap the standard errors. Unfortunately this is not feasible due to the

sample size and the time that is required for optimization.® For this reason, initially,

4One may have more concern here in that premium rates at higher coverage levels tend to
be biased upwards in high premium rate areas. However, it is likely that by eliminating those
combinations with less than $500,000 in liability, the problem have been mitigated; participation in
high rate areas tends to be weak.

®As Horowitz [31, p.53] explains “...this amounts to assuming that the support of [the index] is
larger than that observed in the data.”

SNote that during the optimization, at each iteration, a nonparametric estimation is required.
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it was experimented with the robust covariance matrix estimator of White [66] since
the problem is likelihood based. This estimator requires second derivatives, however,
and due to highly nonlinear nature of the problem, the numerical second derivatives
from the optimizer were not reliable at all. Thus, the so-called BHHH estimator using
the analytical gradient were calculated. However, one should note that the empirical
tests are based on out-of-sample forecast performance rather than in-sample standard

errors.

3.5. Estimation Results

To test the hypothesis that no private information is revealed in the fund allocation
decisions of insurance companies, the sample is randomly split into an estimation
sample and a prediction sample. The hypothesis is evaluated using out-of-sample
rather than in-sample methods because (i) the insurance companies must make their
allocation decisions out-of-sample; and (ii) out-of-sample tests minimize spurious re-
sults from over-fitting the data (particularly concerning for nonparametric methods
which, if applied inappropriately, can be made to over fit the data).

The explanatory variables used in the analysis are crop dummies for cotton, soy-
beans, and wheat, historical loss ratios (from 1981 to year prior to the corresponding
crop year), ratio of current liability to the previous year liability, the maximum per-
cent of premium allowed in the assigned risk fund for that state, percent of premium
placed in the commercial fund, and the percent of premium placed in the assigned

risk fund.

3.5.1. Revelation of Private Information

To test the hypothesis about the revelation of private information, two sets of models
are estimated. The difference between the first and second set of models is that the

fund allocation explanatory variables are only included in the second set of models.
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The estimation results and predictive performances for the models without and with
the fund allocation data are located in tables 3.2 and 3.3 respectively (standard errors

are in parentheses).

Parameter Estimate Probit Ichimura PGSIM
intercept 1.6902  0.0000*  0.0000*
(0.0683) n/a n/a
deotton -0.2374  -5.1377 3.9632
(0.0881)  (0.0754) (0.0146)
dsoybeans -0.1077 3.1030 4.1033
(0.0587)  (0.0630) (0.0337)
dwheat -0.1067  -2.7825 0.8989
(0.0715)  (0.0911) (0.0224)
liability ratio -0.0020 -0.0687  -0.2558
(0.0078)  (0.0067) (0.0013)
state risk -1.6868 -6.8218  -2.1699
(0.1533)  (0.1150) (0.0013)
historical LR -0.2521  -0.2521* -0.2521*
(0.0475) n/a n/a
h n/a 0.3264 0.1089

Predictive Performance  74.66%  77.84%  78.34%

* - parameter is restricted as necessitated by estimation procedure

TABLE 3.2. Estimation Results and Predictive Performance without Fund Allocation
Data

Note that deoion 1s the dummy variable for cotton, dsoypeans is the dummy variable
for soybeans, dyneqr is the dummy variable for wheat, liability ratio is the ratio of
current year’s liability to the previous year’s liability, state risk is the percent of
premium in the insurance companies book of business that is allowed in the assigned
risk fund, historical LR is the historical loss ratio up to but not including that years
insurance experience, commercial is the percent of premium placed in the commercial
fund, and assigned is the percent of premium placed in the assigned risk fund. The
percent of premium placed in the developmental fund is not included as that would

result in a singularity problem as the three percentages in the three funds always
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Parameter Estimate Probit Ichimura PGSIM
intercept 1.3813 0.0000*  0.0000*
(0.1426) n/a n/a
deotton -0.2129 -0.1836  -0.2954
(0.0885)  (0.0631) (0.0286)
dsoybeans -0.1083 -0.0728 1.6128
(0.0589)  (0.0404) (0.0183)
dyheat -0.0880 -0.1330  -0.1540
(0.0718)  (0.0527) (0.0256)
liability ratio -0.0028 -0.0022  -0.0141
(0.0078)  (0.0095) (0.0040)
state risk -1.6507 -2.9153  -1.9087
(0.1545)  (0.1102) (0.0382)
commercial 0.2854 0.1448 0.5151
(0.1236)  (0.0445) (0.0171)
assigned -0.3957 -0.7199  -0.8445
(0.2141)  (0.1147) (0.0417)
historical LR -0.1738  -0.1738* -0.1738*
(0.0523) n/a n/a
h n/a 0.1025 0.0484

Predictive Performance  75.24% 79.63%  79.18%

* - parameter is restricted as necessitated by estimation procedure

TABLE 3.3. Estimation Results and Predictive Performance with Fund Allocation
Data

equals one. Recall the dependent variable is set equal to 1 if the set of policies
resulted in a profit (premium greater than indemnities) and 0 if the set of policies
resulted in a loss (premium less than indemnities). Finally, for the semiparametric and
nonparametric estimators, the intercept is restricted to 0 and the parameter estimate
on the historical loss ratio is restricted to the probit estimate as is commonly done.”

There are no a priori expectations about the signs of the dummy variables whereas
one might have expectations about the signs of the other parameter estimates. First,

the sign of liability ratio is negative as expected. If liability increases (decreases)

"This parameter can be set to any finite constant.
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significantly from one year to the next, this may suggest that producers perceive their
return to that insurance contract to have increased (decreased) and thus the expected
return for the insurance company may decrease (increase). The parameter estimate on
state risk is negative (as expected) and significant. This indicates, quite interestingly,
that policies in those states with higher bounds on the percent of premium allowed in
the assigned risk fund are less likely to be profitable. It is interesting from a political
economy perspective that these parameters were negotiated in the 1980s and yet they
still provide an indicator as to the profitability of a current crop insurance contract.
The parameter estimate on the historical loss ratio in the probit models are negative
and significant as expected; the higher the loss ratio the less likely the policies are
profitable. The parameter on the percent of premium in the commercial fund is
positive as expected. This suggests that policies the insurance company places in the
commercial fund are more likely to be profitable. This is statistically significant in
both the Probit and semiparametric models. Finally, the parameter on the assigned
variable is negative as expected suggesting that policies the insurance company places
in the assigned risk fund are less likely to be profitable.

The null hypothesis is that no private information is revealed in the fund allocation
decisions. To test this, the percent of policies correctly predicted with and without
the fund allocation explanatory variables are compared. Specifically, the percent
of policies correctly predicted should increase significantly when the fund allocation
explanatory variables are included in the model. The test may be formally written
as:

H,:py — pny=0versus Hy, : pf — ppy >0

where p; corresponds to the percent of correct predictions from the model that in-
cludes the two fund variables while p, s corresponds to the percent of correct predic-
tions from the model that does not include the fund variables. Table 3.4 summarizes

the empirical tests. Standard errors are calculated by bootstrapping the prediction
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sample and recovering the difference in the percent of correct predictions (500 boot-

straps are used).

Test Test Statistic Standard Error

Private Information Tests

Model 2 less Model 1 with Probit 0.0058 0.00169
Model 2 less Model 1 with Ichimura 0.0179 0.00576
Model 2 less Model 1 with PGSIM 0.0084 0.00592

Probit versus Nonparametric Tests

Ichimura less Probit - Model 1 0.0318 0.00557
PGSIM less Probit - Model 1 0.0368 0.00506
Ichimura less Probit - Model 2 0.0439 0.00504
PGSIM less Probit - Model 2 0.0394 0.00498

TABLE 3.4. Hypothesis Test Results

The out-of-sample test results reveal—exception being the PGSIM—that predic-
tive performance increases significantly when the fund allocations are included as
explanatory variables indicating that there exists relevant private information. This
coincides with the in-sample results which suggested that the fund allocations were
significant at explaining profitable and nonprofitable sets of policies. Therefore, the
null hypothesis that no relevant private information is revealed in the fund allocation

data is rejected.

3.5.2. Testing the Parametric Probit Model

Three tests are undertaken for the parametric probit model. The first is the so-
called HH test of Horowitz and Hérdle [33]. This test is motivated by conditional
moment tests. Horowitz and Hérdle [33] replace the parametric alternative model

with a semiparametric one. The advantage of this test relative to tests with arbitrary
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nonparametric alternatives is that as long as only the shape of the link function, and
not the single-index structure, is the issue, the HH test will be more powerful as the
latter tests suffer from curse of dimensionality.® The HH test, on the other hand,
assumes that the conditional expectation of the dependent variable depends on the
regressors only through the index not only in the null but in the alternative as well

and thus avoids curse of dimensionality. The HH test statistic is
T =VhY w(z)ly: — F)IEF() - F(2)]
i=1

where z; = viﬁ’pmbit is the estimated index from the parametric probit model, w is
a nonnegative weight function which can be chosen to be an indicator variable of
an interval that contains 95-99% of z, and F' is the normal distribution function.
For F, they use the jackknife-like method of Schucany and Sommers [59] to achieve

asymptotic unbiasedness. Formally,

E(1) = [Eu() = (h/s) E,(D)]/[L = (h/s)"]

and

Ft(l):ZyjKC;éj)/ZK(l_téj> for ¢=h,s

j#i J#i
where h = ¢n VD) g = /9D with ¢,¢ > 0,0 < § < 1, and K is a kernel of
order r > 2. Horowitz and Hérdle [33] show that T, is asymptotically distributed as
N(0,02) where
o2 = 20 / ()2 (]I, (3.3)

o0

In (3.3), Cx = 7 K(u)?du and o*(l) = Var(y|z = l). This test is conducted for
both models 1 and 2 using a standard normal density as the kernel (r = 2) and w
was taken to be the indicator variable which equals 1 on an interval containing 98%

of Z and 0 elsewhere. There is no optimal way of choosing h and s. Following Hardle

8 As the number of regressors increases, estimation precision declines rapidly. This phenomenon
is known as curse of dimensionality.
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et al. [23], s is determined according to s = hn!=9/% with § = 0.1.° For h, several
values were used which were found after a graphical inspection of F'. Based on those
values, T},/67 was in the range 6.66-7.63 for model 1 and 6.81-7.27 for model 2. Thus,
for both models, the probit is rejected.

The second test calculates the difference in the predictive performance of the
semiparametric methods versus the probit for both models 1 and 2 (see Table 3.4).
These test results reject the probit model in favor of the semiparametric methods.
The test results could not reject either of the semiparametric model in favor of the
other.

A third less formal but pictorially pleasing test follows the graphical approach
of Horowitz [32, p.53]. Figures 3.3 and 3.4 show nonparametric kernel estimates of
dF/dz, pointwise 95% bootstrap confidence interval, and the normal density func-
tion. Note that for a probit model, dF'/dz would be the normal density function.
In these nonparametric estimations, the standard normal density is used as the ker-
nel. For bandwidth selection, initially, cross-validation for derivative estimation (see
Hérdle [22, pp.160-161]) was tried, however, numerical minimization of this objective
function was not successful for the most part so after experimenting with CV, the
bandwidths are chosen accordingly. In both graphs, the derivative of the link function
is clearly left skewed that can not be accommodated by the symmetric normal density.
Pointwise confidence intervals are represented by the dotted lines. In both figures, the
derivatives are bimodal which suggests that the true data generating processes may
possibly be a mixture of two populations. Using a parametric probit model clearly

misses these features of the data.

9Hirdle et al. [23] suggest using bootstrap instead of normal approximation to calculate critical
values and show that bootstrap yields better approximations to the critical values in a simulation
study with n = 200. Here, however, the sample size is relatively large (n = 3,800) and thus normal
approximation is used.
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FicUrE 3.3. Test of Probit for the Data not Including Fund Allocations

3.6.  Conclusions and Policy Implications

Although the crop insurance program has garnered significant attention in the aca-
demic literature, surprisingly little has focused on the insurance companies and in
particular the SRA. However, the rents obtained by the insurance companies in re-
turn for their involvement are close to rivaling those obtained by producers. Conse-
quently, more research is needed, both theoretically and empirically, focusing on the
involvement of insurance companies.

This chapter focused on whether insurance companies reveal private information
through their reinsurance (fund allocation) decisions. Using both parametric and
semiparametric estimators, out-of-sample tests have been conducted and it is shown
that insurance companies do possess statistically significant private information that
may warrant their involvement in the crop insurance program. However, the percent-

age increase in predictive performance is rather marginal in that the increase ranged



61

0.9

0.8 Nonparametric Density B
Estimate of dF/dz

0.7r i

0.6 i

Standard Normal

0.5

Density

0.4

0.3

0.2

0.1

-3 -2 -1 0 1 2 3

FIGURE 3.4. Test of Probit for the Data Including Fund Allocations

from 0.58 percentage points with the probit model to 1.79 percentage points with the
Ichimura model.

Recall the arguments for involving the insurance companies in the crop insurance
program are: (i) lower delivery costs; (ii) increased efficiency due to the revelation of
private information; and (iii) risk sharing. First, Ker [39] conjectures that delivery
costs are not lower with insurance companies. Second, even though the insurance
companies reveal private information through their reinsurance decisions, it is not
clear whether the RMA adjusts premium rates given the revelation of new informa-
tion. Third, the government need not be risk sharing with insurance companies as it
can self-insure at no cost.

Why then are insurance companies involved in this crop insurance program? One
may conjecture that they were initially involved to increase demand through lower
transaction costs incurred by producers by the better established delivery channels of

insurance companies. However, this increase in demand was obviously not sufficient
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to ward off ad-hoc disaster aid. In addition, one can argue that the savings brought
about by a government delivered insurance program, if funneled back to producers
through subsidies, would have a substantially greater impact on demand, particularly
now that producers can sign-up for their insurance electronically. It appears that the
insurance companies have been active and successful in a political economy sense
to not only survive but obtain significant rents. There is ample evidence of this in
ARPA. For example, premium subsidies have caused a pronounced shift in demand to
higher coverage levels. Therefore, the amount of A&O reimbursement has increased
according to the increases in premium at these higher coverage levels. The percentage
rate of A&O reimbursement should decline with the coverage level as there is both
a fixed and variable cost component with A&O activities. However, this has not

happened.
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4. TRADING COLLAR, INTRADAY PERIODICITY, AND STOCK MARKET

VOLATILITY

4.1. Introduction

On October 19, 1987, the Dow Jones Industrial Average (DJIA) plunged 508 points,
approximately 25% from the previous day’s close. Portfolio insurance and especially
program trading (explained below) were blamed for the excessive volatility and this
crash. To date, in the academic world and daily press, there seems to be an even split
on whether program trading is really to blame for volatility.

New York Stock Exchange (NYSE) releases data about program trading each week
and this information can be used by the public to identify the most active program
traders on the NYSE. For a short while, the NYSE stopped releasing this information
but immediately reinstated the practice in response to public requests and expressed
concerns by the House telecommunications and finance subcommittee (WSJ [64]).
In the past, some big institutional investors have announced they would end their
business with brokerage firms that do program trading (Reibstein and Friday [56]).
Needless to say, most of those firms’ customers are small investors who “get scared
by volatility”.

Program trading is basically the simultaneous purchase or sale of a basket of 15
or more stocks with a total value of $1 million or more. The most famous form of
program trading is a derivative product-related strategy called index arbitrage. Index
arbitrage is the purchase or sale of a basket of stocks in conjunction with the sale or
purchase of a derivative product, such as index futures, in order to profit from the
price difference between the basket and the derivative product. In other words, as

13

Booth [7] explains, “...index arbitrage kicks in when the price discrepancy between

an index future and the underlying stocks grows large enough that it is possible to
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lock in a profit by selling whichever of the two is over-priced and buying the other”.
Using the illustration in Hogan et al. [28, p.736], consider the no-artibrage condition

(ignoring transaction costs)
log Fy 1 =log S, + log(1 + 1) — log Dy

where F} r is the price of an index futures at time ¢ that expires at time 7. S; denotes
the stock index price at time ¢ and r, 7 is the appropriate interest rate. D, is the
future value of dividends between ¢t and 7" on a portfolio that mimics the index. If,
for instance,

log Fy 1 > log S, + log(1 + 1) — log Dy

then the index arbitrage opportunity arises and the investor purchases the portfolio
that mimics the index while selling the index futures.

Different studies were conducted and recommendations were made in response
to the October 1987 crash and the mini-crash of October 1989. Indeed, the NYSE
established a set of rules and regulations to avoid excessive market volatility and to
regain (especially small) investor confidence.! The most famous of these rules is Rule
80A Collar.

The collar, formally known as Rule 80A, was instituted on August 1, 1990 and
basically restricts (explained below) index arbitrage form of program trading in com-
ponent stocks of the S&P500 stock price index. Originally, the collar was set at 50
points, i.e., Rule 80A restrictions on index arbitrage trading in component stocks of
the S&P500 index were to be imposed when the DJIA was above or below its closing
value on the previous trading day by 50 points or more. The restrictions were to
be removed when the DJIA returned to within 25 points of previous day’s closing
value. In February 1999, percentage levels were implemented and since then have

been adjusted quarterly; the level for the collar is calculated as 2 percent of the av-

!See Greenwald and Stein [21] for recommendations by the Presidential Task Force on Market
Mechanisms and Lindsey and Pecora [44] for details of regulatory developments.
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erage closing value of the DJIA for the last month of the previous quarter and the
collar is removed when the DJIA advances or retreats from the prior day’s close to
less than or equal to half of the 2 percent value. The collar restriction in component
stocks of the S&P500 index works in the following way: If the DJIA declines (with
third quarter of 2001 values) 210 points or more then the index arbitrage sell orders
of the S&P500 stocks have to be stabilizing, i.e., sell plus.? If the DJIA advances 210
points or more then the index arbitrage buy orders of the S&P500 stocks have to be
stabilizing, i.e., buy minus® (see NYSE [50] for details of the definitions). In simpler
words, Rule80A forces sell (buy) orders to be done at a higher (lower) price when the
market is declining (rising).

Generalized autoregressive conditional heteroscedasticity (GARCH) models have
become almost a standard for modeling market volatility. But a vast majority of
market volatility models have not taken the trading collars into consideration. The
presence of trading collars could alter volatility dynamics and volatility models should
account for this. Forecasts from models that do not incorporate important institu-
tional details may not be as accurate. In this study, GARCH models are estimated
that explicitly account for the NYSE’s trading collar rules using intraday data. The
motivation and contribution is to explain what is happening to market volatility when
Rule 80A is in effect. That is, during trade, if the collar restrictions are imposed, are
there any significant changes to market volatility? Does the volatility react to shocks
in the same magnitude when the rule is in effect as when it is not? The chapter also
provides a descriptive analysis of the collar including the percentage of observations
during the collar regime and what percent of the time the rule was in effect due to a
bull and a bear market.

Financial markets exhibit strong periodic dependencies across the trading day—

2An order to sell “plus” is an order to sell a stated amount of a stock provided that the price to
be obtained is not lower than the last sale if the last sale was a “plus” tick (see NYSE [50]).

3An order to buy “minus” is an order to buy a stated amount of a stock provided that the price
to be obtained is not higher than the last sale if the last sale was a “minus” tick (see NYSE [50]).
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typically volatility is highest at the open and toward the close of the day—and failure
to account for this may seriously distort the inferences made from the models (Boller-
slev [6]). Two approaches have been used in the literature to capture intraday seasonal
patterns in volatility in the context of GARCH models: use of dummy variables in the
conditional variance equation (e.g., Baillie and Bollerslev [3] and Ederington and Lee
[11]) and use of Flexible Fourier forms (e.g., Andersen and Bollerslev [1] and Martens
[47]).

In this study, a polynomial function is used to capture systematic intraday pe-
riodicities in volatility and the seasonal components are estimated simultaneously
with the rest of the model. The polynomial functional form, like the Fourier form
introduced by Andersen and Bollerslev [1], can be viewed as a flexible form for ap-
proximating the true, unknown seasonal pattern. By increasing the number of terms
in the polynomial, the function can be made arbitrarily close to the true seasonal pat-
tern. Also, using simple parametric restrictions, the function can be made continuous
and smooth as it cycles from one day to the next.

Andersen and Bollerslev [1] first estimate seasonality and then use this to desea-
sonalize the returns. Then they fit GARCH models to the deseasonalized data. In
this study, the seasonal components and the GARCH parameters are estimated simul-
taneously. By estimating seasonality simultaneously with the GARCH parameters,
this approach avoids the shortfalls of the two-step procedure with estimated data
(Murphy and Topel [49]). This is the first study to examine market volatility in the
context of trading collars while simultaneously accounting for intraday seasonality.

The polynomial form advocated in this chapter is parsimonious in parameters
and is easy to estimate. For high frequency data, the dummy variable approach
requires too many parameters to completely specify the intraday seasonality. For
example, for the five-minute interval data that is used here, it would take as many
as 78 parameters using the dummy variables approach to capture the time of the

day effects on conditional volatility. With a polynomial specification, a sufficiently
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flexible seasonal pattern can be estimated often times using just 4 or 5 parameters.
The organization of the chapter is as follows: In the next section, the small liter-

ature on the NYSE Rules 80A and 80B is reviewed. Section 4.3 discusses the data

and creation of certain variables in detail. Then the model is discussed in section 4.4.

Estimation results are in section 4.5. Section 4.6 concludes.

4.2. Literature Review

In this section, the few studies on the NYSE Rules 8OA and 80B are reviewed although
the data and the methodologies that they use are not as detailed and thorough as in
this study.

In [8], Booth and Broussard use extreme value statistical theory to determine the
probability that a particular extreme negative return (which could trigger the circuit
breaker?) will occur sometime during the day. Their finding is that the NYSE fixed-
point circuit breaker is an inflexible tool that may lead to unwanted triggering of
the mechanism. Since April 1998, fixed-point circuit breaker has been replaced with
percentage levels as the authors suggest.

Kuserk et al. [43] look at whether the triggering of Rule 80A is effective in delinking
of the futures and cash markets (namely S&P500 index futures and the cash index)
and whether the triggering causes increased volatility in the (S&P500 index) futures

market. They don’t find conclusive evidence to support either one.

4Circuit breaker (Rule 80B) points were originally adopted on October 19, 1988 and represent
the threshold values for the DJIA at which trading on NYSE is halted for single day declines (below
its closing values on the previous trading day) in the DJIA. Until April 1998 these declines were
point level declines. In April 1998 percentage levels were implemented and since then have been
adjusted quarterly. Since their adoption, circuit breakers have been triggered only once on October
27, 1997.

Two important differences between Rule 80A and Rule 80B are worth emphasizing: Rule 80A
collar does not stop program trading, “...it just throws sand in the gears” and “...forces the
arbitragers to trade against the trend” (Power [55]) whereas Rule 80B circuit breakers halt all
trading including program trading. The second difference is that Rule 80A kicks in when the DJIA
is off (up or down) by certain points from the previous day’s close whereas Rule 80B halts trading
only when the DJIA is below (by certain points) its closing value on the previous trading day.



68

In [58], Santoni and Liu look at whether the adoption of Rules 80A and 80B
reduce the volatility of stock prices in the cash market. They use daily closing values
of the S&P500 composite index to estimate a GARCH(1,1) model with several dummy
variables in the conditional variance equation that correspond to periods following
the adoption and revision of the rules by the NYSE and Chicago Mercantile Exchange
(CME)?® to test for structural breaks. They find that the adoption of the rules and
their revisions had no appreciable effect on volatility and conclude that the daily data
is not consistent with the hypothesis that these rules reduce volatility. Furthermore,
they also analyze intraday data on days when the Rule 80A collar which restricts
index arbitrage was triggered. For intraday data, they focus on the unconditional
variance and even though they find some evidence suggesting that the variance is
lower following a trigger point, they conclude that the decline in volatility is not
immediately associated with the trigger.

Kuhn et al. [42] look at whether circuit breakers® moderated (S&P500 and Major
Market Index(MMI)) cash and index futures price volatility on October 13 and 16,
1989.7 They calculate the standard deviation of the log price change, average absolute
log price change, and range of price change calculated as the log of the high price
divided by the low price, all over one-minute intervals. They find no evidence, neither
in cash nor in index futures markets, to support the hypothesis that circuit breakers
moderate volatility.

The relation between volume and volatility in financial markets is well docu-
mented. Hogan et al. [28] use a bivariate error-correction GARCH model to examine
the relationship between program and non-program trading volume and volatility in

the S&P500 cash and futures markets. Because much of program trading (especially

5After the October 1987 crash, besides NYSE, CME adopted new rules as well and imposed
opening and intraday daily price limits on the S&P500 futures contract.
6In their definition, circuit breakers include downside price limits, trading halts, and the restric-

tions on certain types of trading.
"On October 13, 1989, the DJIA plunged 191 points, a 6.9% decline.
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index arbitrage) exploits the price differences between the cash and futures markets,
one would expect that program trading would affect both markets. The conditional
variances are modeled as GARCH(1,1) with volume variables (several models are es-
timated with different combinations of program trading volume, non-program trading
volume, and buy and sell program trade volumes in the conditional variance equa-
tions). They find that program trading leads to a higher market volatility whereas
non-program trading is only weakly related to volatility. Furthermore, they also
examine whether sell-program trades and buy-program trades have different effects
and find that sell-program trades are associated with higher market volatility than

buy-program trades.

4.3. The Data

The data is obtained from Tick Data Inc. for the period 4/5/1993 to 8/31/2001.
Unfortunately the intraday data for pre-1987 or at least pre-1990 (the collar was
instituted in August, 1990) could not be obtained. In this case, obviously, it is not
possible to examine volatility by means of a pre-collar vs. post-collar analysis.
Using five-minute DJIA data, a dummy variable D is created which takes the
value of one when the collar is in effect and zero when it is not. Another variable, Y,
is also created which is the current value of the Dow minus the previous day’s close.
This dummy is created in the following way: Since it was instituted, the value of the
collar has been changed several times after percentage levels were implemented in
February 1999. The collar values since the rule’s adoption are given in table 4.1. In
the table the collar pair z-z is that if the current value of the Dow is above or below
the previous day’s close by = points or more then the collar is triggered. Once the
collar is in effect, the value of the Dow should go back within z points or less of the
previous day’s close for the rule to be lifted. Otherwise the collar remains in effect

until the end of the day. No matter what the situation was at the previous day’s close
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Collar Levels

August 1, 1990 - February 15, 1999 50-25

February 16, 1999 - March 31, 1999 180-90
April 1, 1999 - June 30, 1999 190-90
July 1, 1999 - December 31, 1999 210-100
January 3, 2000 - March 31, 2000 220-110
April 3, 2000 - June 30, 2000 200-100
July 3, 2000 - March 30, 2001 210-100
April 2, 2001 - June 29, 2001 200-100
July 2, 2001 - September 28, 2001 210-100

TABLE 4.1. Rule 80A Trading-Collar Levels

(whether the rule was in effect or not) the beginning of each trading day is a new
start, that is trade does not open with the rule in effect. So the dummy variable D is
created considering these differing values of the collar for different time periods and
that the first observation of a day should be treated as a no collar observation even if
the previous observation, i.e., the previous day’s close, may be a collar observation.
In other words, the Y variable for the first observation of a day should be compared
with x even if the previous observation may be compared with z. Two more dummy
variables, D’ and D¢, are created as well. D is the dummy variable which takes a
value of one if the collar is triggred from below, that is if the rule is in effect due to
decreases. In other words D? takes a value of one if D =1 and Y < 0. D is just the
opposite. Clearly D® + D’ = D.

Note that the collar values are the same until February 1999 and the bull market
of 1990s means that from the day it was instituted until February 1999, the likelihood
that the collar was triggered and stayed in effect increases in an almost artificial way
because a 50 point collar in early 1990s is higher percentage wise than in late 1990s.
For instance, 50-25 point collar pair corresponds to 1.48% - 0.74% based on closing
value on 4/5/1993 whereas it corresponds to 0.54% - 0.27% based on closing value on
2/12/1999.
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Table 4.2 shows the mean values for the dummy variables for different time periods.
With the exception of 1995, the percentage of the collar observations increases steadily
as expected until February 16, 1999. Since this date on, the value of the collar has
been changed quarterly so it can be argued that this period is not “flawed” like the
other periods. For this last period, the mean of the dummy variable D is 0.0600.

D DP D°
4/6/1993 - 12/31/1993 ~0.0022 0.0016 0.0006
1/3/1994 - 12/30/1994 0.0374 0.0189 0.0185
1/3/1995 - 12/29/1995 0.0336 0.0188 0.0148
1/2/1996 - 12/31/1996 0.1574 0.0773 0.0801
1/2/1997 - 12/31/1997 0.4479 0.1986 0.2493
1/2/1998 2/12/1999 0.5645 0.2720 0.2925
2/16,/1999 8/31/2001 0.0600 0.0355 0.0245

TABLE 4.2. Mean Values of Dummy Variables for Different Time Periods

In other words 6% of the observations in this period were observed when the collar
was in effect.® The means of D® and D° are, respectively, 0.0245 and 0.0355. This
suggests that, during this period, Rule 80A was in effect due to increases in the Dow
41% of the time and due to decreases 59% of the time. Several important numbers
to better characterize the collar are calculated as well for this last period and they
will be discussed here. During this period, which is a little more than two and a half
years, the collar was triggered 99 times. Once it was triggered, the collar stayed in
effect, on average, 29.72 observations. Because five-minute data is used in this study,
this corresponds to an average of 2 hours and 29 minutes. That is, once the collar
was triggered, on average, it stayed in effect for almost two and a half hours.

Table 4.3 has the descriptive statistics for the continuously compounded return

8Because five-minute data is used, clearly, it is assumed that in the five-minute interval between
two observations, there is no data which would change the status of the collar. The same dummy
variables D, D?, and DY for this period are created with one-minute data as well with mean values
of 0.0621, 0.0261, and 0.0360 respectively which are quite close to the numbers in table 4.2. To keep
the sample size manageable, five-minute returns were used instead of one-minute returns data
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on the Dow times 100 for the period 2/16/1999 - 8/31/2001 using five-minute data

giving a total of 49,001 observations. In the table, B-J is Bera-Jarque test statistic for

Standard Excess
Mean Deviation Skewness Kurtosis B-J ARCH
Return 0.0000854 0.1182 0.0591 19.11 745,644.28 2,072.23

TABLE 4.3. Descriptive Statistics of five-minute DJIA Returns times 100

the null hypothesis of normality which is distributed as chi-squared with two degrees
of freedom. ARCH is LM test for 12th order ARCH effects for the null hypothesis
of no ARCH and is distributed as chi-squared with 12 degrees of freedom. Overnight
returns are excluded so it is exclusively five-minute returns in the data set. Normality
is strongly rejected as Bera-Jarque statistic is highly significant. Since the returns
are highly leptokurtic, a distribution, like student-¢, which has thicker tails than the
normal would be appropriate. Also there is strong evidence for ARCH effects as the
LM statistic for up to 12th order ARCH effects is highly significant. The sample
mean and standard deviation for five-minute returns for the DJIA are 8.540 x 107
and 1.182x 1073, Assuming returns are uncorrelated, the standard error for the mean
equals 1.182 x 1073 /,/49,001 = 5.340 x 10~° making the mean indistinguishable from
zero at standard significance levels.

The intraday seasonality of volatility in financial markets is well documented (see
Goodhart and O’Hara [18] and Bollerslev [6]). Market volatility follows roughly a
U-shaped pattern in a trading day: typically highest at the open and towards the
close of trade but at relatively low levels in the midst of the trade. To capture this
characteristic of the intraday data, a variable S is created. For a given trading day
which has n five-minute returns, first observation of variable S for that day is 1/n,
second observation is 2/n, ... and the last observation of variable S for that day is

n/n = 1. In the next section it is explained how this variable is used.
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4.4. The Model

Consider the following GARCH model

re=ptE (4.1)
Et | 77bi§71 ~ ¢(07 hta V) (42)

where r, = 100 - log(DJIA;/DJIA; 1), ¢ specifies a student-¢ distribution with zero
mean, variance hy, and v degrees of freedom. ;_; is the information set that the
analyst conditions on that is available at the end of period ¢t — 1, or equivalently,
at the beginning of period t. To capture volatility dynamics during the periods of
trading collars, following specifications for the conditional variance h; are proposed

and estimated:

hy = (1 +vDy)w; + (1 +yDy)agi_ | + (1 + vDy)Bhi (4.3a)

hy = (1 4+4°D¢ + " D?)w; + (1 4+ v°D¢ + DY) as? | + (1 + D¢ ++° DY) Bh,_y
(4.3b)

hy = (1 + voDy)w; + (1 +v1Dy)as? | + (1 + v2Dy)Bhi_y (4.3c)

he = (L+ 95D} + 75 D))wi + (L +v{ Dy + viD))azi | + (1 + 75Dy + v5D}) Bl
(4.3d)

where w; = exp(ag + a1S; + a2 S + -+ - + @,57). The log-likelihood function is
Il(v+1)/2]

T2l /r (v — 2) ‘%i Hl]zlog {”m}

where I'[-] is the gamma function, v is the degrees of freedom, and &, = r, — p. For the

log L =T log

conditional variance hy, (4.3a)-(4.3d) are used. This log-likelihood can be numerically
maximized subject to the constraint v > 2.

Equations (4.3a)-(4.3d) will be referred to as models A to D respectively. Intraday
seasonality of volatility is captured by the pth degree polynomial in the w; term

and this term will be referred to as the seasonality term. The seasonality term
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can be made continuous by restricting w; |s,—o = wt|5t:1, ie., le a; = 0.° Note
that models A through D reduce to conventional GARCH models with no intraday
seasonality when the seasonality parameters a,...,a, are restricted to zero. Day-
of-the-week dummies were included in the preliminary estimations as well in the
conditional variance specifications above but they turned out to be insignificant and
those results are not reported here. Use of daily data instead of intraday data would
probably reveal significant coefficients for those dummies.

Models A and B allow the trading collar to influence conditional variance by
allowing GARCH parameters to vary by a constant proportion when the trading collar
is in effect. Models C and D are more flexible and nest models A and B respectively.
Models C and D also allow conditional variance dynamics to be different during the
trading collars but do not restrict GARCH parameters to vary by the same constant
proportion. Models A and C treat up and down markets the same while models B
and D allow different volatility dynamics during up and down markets. Model D is
the most general model and nests the other three models in it while model A is the

most restrictive and is nested in the other three.

4.5. Estimation Results

Maximum likelihood estimates of the parameters for the four models are given in table
4.4. In the table, Akaike Information Criteria (AIC) is 2(log L — k) where k is the
number of estimated parameters and the numbers in parentheses are the asymptotic
t-ratios.

One over the degrees of freedom parameter is significantly different from zero for
all four models indicating that the ¢ distribution is indeed a better choice than the
normal as the conditional distribution. Estimated values for this parameter are quite

close and give a degrees of freedom of around 7.18.

In addition to continuity, the seasonality term can also be made smooth as it cycles from one
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Estimated GARCH coefficients v and f are highly significant and similar across
the models. Also the sum of these coefficients is close to one indicating persistence
of memory which is to be expected in high frequency data.

In model A, ~ is positive and significant. An estimated value of 0.02 indicates that
market volatility is 2.0% higher during the periods of trading collar. However, model
A does not distinguish rising and declining markets. To distinguish the effects of
trading collar in rising and declining markets, the results from model B can be looked
at. The v* coeflicient is insignificant indicating that in rising markets, the presence of
the collar has no bearing on market volatility. In contrast, 7° is significant indicating
that market volatility is appreciably higher in declining markets. A value of 0.034 for
7" indicates that market volatility is 3.4% higher when the collar is in effect in declin-
ing markets. All three trading collar coefficients 7y, 71,72 are significant in model C
implying that volatility dynamics are different during trading collar regimes. Results
from model D indicate that volatility dynamics are not affected by the presence of
trading collar during rising markets. However, volatility dynamics are significantly
affected by the presence of the trading collar in declining markets. The Akaike In-
formation Criteria indicates that model D is the preferred model. Thus, empirical
results suggest that volatility dynamics are significantly different when trading collar
is imposed and that these dynamics are not identical during up and down markets.

In the seasonality term wy, a cubic polynomial was found to be satisfactory (p = 3
and a3 = —a; — ay). Estimation results for all four models reveal that the incor-
poration of 3rd degree polynomial indeed captures the intraday seasonality as the
polynomial coefficients are highly significant. Also these seasonality parameters are
markedly similar across the models indicating that the estimated intraday seasonality
polynomial is robust across the four model specifications.

Figure 4.1 is a graphical depiction of the estimated intraday seasonal pattern in

day to the next by imposing dw;/dS; |s,=0 = dwt/dSt|g,_y, i.e., Y ira; =0.
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volatility for model D. Seasonal patterns for other three models are similar. The
figure indicates that the DJIA is about six times more volatile at the open and the
end of the day than at midday. The estimated seasonality polynomial supports a
U-shaped volatility pattern reported by earlier studies for other equity markets (e.g.,
Andersen and Bollerslev [1]).

0.0014

0.0012

0.0010

0.0008

Volatility of returns

0.0006

0.0004

0.0002

0.0000

09:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00

Time of the day

FiGURE 4.1. Estimated Intraday Seasonal Patterns in Volatility of the DJIA

4.6. Conclusions

In this chapter, using intraday data, volatility models for the DJIA are estimated
that account for the presence of Rule 80A restrictions on index arbitrage. It is shown
that the volatility does not react to shocks in the same magnitude when the rule is
in effect as when it is not and when the rule is in effect due to a market increase or
a decrease. In doing this, the models are also able to capture the well documented

U-shaped pattern of intraday volatility using a polynomial specification.
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Specifically, the results indicate that: (i) market volatility is 2% higher when trad-
ing collars are in effect; (ii) when it is differentiated between up and down markets,
volatility is higher by 3.4% if the collar restrictions are in effect during a down market
and during an up market, the collar has no effect on the volatility; (iii) from April
1993, which is the start of the data set, to February 1999, the percentage of obser-
vations when the rule was in effect increases steadily. This is due to constant collar
values and the bull market of 1990s. Since February 1999, the collar values have
been adjusted quarterly and this leads to a sharp decrease in the number of times the
collar has been triggered and stayed in effect. In the estimation period, which is from
February 16, 1999 to August 31, 2001, 6% of the observations were observed when
the rule was in effect and 41% of the time this was due to increases in the Dow and

59% of the time due to decreases.



Model A Model B Model C Model D

[ 0.00066  0.00065  0.00064  0.00062
(1.71) (1.67) (1.65) (1.60)

ag -6.75 -6.74 -6.82 -6.74
(-78.65)  (-92.61)  (-81.23)  (-99.75)

ay -18.26 -18.11 -18.35 -18.02
(-13.49)  (-19.57)  (-13.43)  (-22.05)

a 38.52 38.12 38.97 37.62
(10.94) (15.87) (11.00) (17.99)

a 0.0740 0.0732 0.0701 0.0709
(23.05) (24.98) (22.03) (24.93)

8 0.888 0.888 0.893 0.891

(187.94)  (232.74)  (199.93)  (252.98)
Y 0.020

(5.24)
o -0.0016
(-0.27)
P 0.034
(7.63)
Yo 1.228
(2.76)
07! 0.843
(3.16)
Yo -0.060
(-3.14)
071 0.752
(3.02)
o 1.156
(2.46)
0% -0.013
(-0.06)
o 0.807
(2.94)
v -0.026
(-1.35)
o -0.037
(-2.16)
/v 0.1395 0.1395 0.1393 0.1393

(34.21) (34.26) (34.21) (34.26)
logL 71,169.33  71,182.55 71,192.63  71,205.94
AIC  142,322.66 142,347.10 142,365.26 142,385.88

TABLE 4.4. Estimation Results
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5. DISSERTATION CONCLUSIONS

It is expected that the methodological contribution of this dissertation in chapter two
and the empirical findings of chapters three and four will benefit future research on
semiparametric estimation, insurance company involvement in and efficiency of U.S.
crop insurance program, and volatility modeling in equity markets where there are
implicit or explicit limits on the movement of prices.

The semiparametric approach in chapter two shows that in binary-choice models
where one might have a reliable prior expectation about the shape of the unknown link
function, it is quite straightforward to incorporate this information into the estimation
process. More importantly, as shown via simulations, one’s initial guess about the
shape of the function need only be a rough guess, not an exact one, to achieve
significant bias reduction and efficiency gain. Hence this parametric start need not
be viewed as an additional nuisance parameter whose choice might otherwise require a
data-driven, e.g., cross-validation type procedure. Furthermore, the usefulness of this
approach is not limited to estimation of coefficients. In fact, this is where the approach
has only an indirect effect. As shown in simulations (chapter two) and an application
(chapter three), this semiparametric approach can achieve more significant efficiency
gains in the estimation of probabilities where the bias reduction idea has direct effect.
Future research will involve looking at asymptotic and finite sample properties of this
semiparametric approach in estimation of marginal effects, i.e., derivatives of the
unknown link function with respect to covariates.

This approach is certainly applicable to single-index models in general as in
Ichimura [35], not just binary-choice models as in Klein and Spady [41], however,
in the latter, it is easier to come up with an initial guess for the unknown function,
e.g., a distribution function.

This new semiparametric approach has been successfully applied to insurance data
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along with competing parametric and semiparametric estimators in chapter three.
This chapter stands almost alone in the literature as the overwhelming majority
of the research analyses producer involvement in the U.S. crop insurance program
even though the rents obtained by the private insurance companies have increased
dramatically over the years. Although more research is needed, the findings of this
chapter show that the insurance company involvement in this program may be too
costly to justify their participation. Another future research that this study stimulates
is looking at efficiency of the crop insurance program in terms of premium rates and
rating practices of the federal government. Although preliminary, one of the findings
of this chapter is that the premium rates may not be efficient which could have serious
impact on financial soundness of the program.

Modeling market volatility has been the subject of many studies especially after
the seminal work of Engle [12]. Among the equity markets that have been analyzed,
stock and foreign exchange markets have been the subject of overwhelming majority
of this literature. Many of these stock and foreign exchange markets have a common
feature which is that the equity prices may freely move only in a certain band and
their move outside of that band may be restricted or even prohibited. The modeling
approach in chapter four explicitly takes a similar feature of the NYSE into account
which is ignored by almost all studies. It is shown in this chapter that this can
be done easily by some data manipulation and can be incorporated into popular
volatility models. Future research will look at commodity future prices where the
“price limits” prohibit movement of prices outside the limits as opposed to NYSE
Rule 80A collar which restricts price movements. Another contribution of this chapter
is how the well documented intraday seasonality of market volatility is captured
by a simple polynomial specification as opposed to the two-step Fourier transform
procedure. A comparison of these two procedures, in terms of estimation simplicity
and performance, may have important empirical relevance and will be the subject of

future research.
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A. APPENDIX

Proof of lemma 1
Our proof of lemma 1 follows closely Bierens [4], Bierens [5], and Pagan and Ullah

52, pp.36-39]. Note that F in (2.10) can be written as F}/F, where

~ G(z;b) zib — ;b
A= G 2t s 1 (5)
. xib — x;b

= n—lhzlx]eAm ( h )

Since F, is F} with y; = 1 and G(-) a constant function, we will only show uniform

convergence of F1.' Now observe that

) [yaif (v, w)dy

G
E(ylr) = F(x) =

[ f(y.x)d
Let g(x fyg(lx dy/ff Y, dy and h(z) = [ f(y,z)dy. So F(z) = G(x)g(x)
and G(x)g(x)h fyG z)dy. Thus Fy, = G(x)g(x)h(z). Notice that

by assumption 5, G is unlformly bounded and we have sup, |G(z)| = O(1). In fact

a plausible start is a distribution function in which case sup, |G(z)| = 1. Hence it

!The derivation below assumes that (y;,z;) is absolutely continuous. Obviously in binary-choice
models this is not true as y; is a Bernoulli random variable. We will keep the absolute continuity
interpretation as it is more general and give the necessary changes here for the binary-response case.
Using a notation similar to Klein and Spady [41], let g, be the unconditional density for z and g,,
be the density for z conditional on y for y = 0,1. We have the following series of equalities

Blyle) = F(z) = Pr(y = 1]) = P(y;& = 22— G 2oL _ Gy

where g(z) = (91./G(x))/g.- Thus Fi1 = G(2)§(z)g, where §(z)g, = (n—1)h)~' 32, %K((az—
xj)/h). So there is no change from (A.1) to (A.8). In equation (A.8), we can take an iterated
expectation to get Ex [1/G(z;)K((z — zj)/h)Pr(y; = 1|z)] = Ex [K((z — z;)/h)g(z)] = [ K((z —
x)/h)g(x)gzdz. And now 1/h times this last term would replace equation (A.9) and we can apply
Taylor expansion to 1 (z) = g(x)g,.
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suffices to show sup, |§(x)h(z) — g(z)h(x)] — 0. So we have

sup |§(2)h(x) — g()h(z)| < sup |§(2)h(x) = Bg()h(x)] +sup | Eg(a)h(z) —g(2)h(z)].
(A.1)
Like Ichimura [35], we will refer to the second term of the right-hand side as bias

term and show that it converges to 0 at the rate h2. But first notice that

i(2)h(x) = % > G?;j)f( (I _hf”ﬂ> | (A.2)
j=1
From the inversion formula (see Fristedt and Gray [14, p.231]) and by assumption 6
we have
K(a) = % / exp(—ita) p(t)dt (A.3)

where ¢(t) is the characteristic function of K and 7> = —1. Using (A.2) and (A.3)

and letting s = t/h we get

T or

i(2)h(z) = / {%ZG?(J;) exp(itxj)}exp(—itx)¢(ht)dt. (A.4)

From (A.4) we get

Ej(z)h(z) = % / E[ G?(J;j) exp(mj)] exp(—itz)p(ht)dt. (A.5)

From (A.4) and (A.5) and noting that |exp(—itx)| =1

n

1 ; .
- Zl {G?(ij) exp(itz;)

_E {%;J) exp(itajj)] H |6(ht)|dt.

§(2)h(x) — Eg(z)h(x) <i/

So

n

1 ; .
- Zl {G?(ch) exp(itz;)

J

—E {% exp(itxj)] H |6 (ht)|dt.
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Using exp(itz;) = cos(tx;) + ¢sin(txj) we can write

z;%E:{Gz)@@m%>—E{Gg)@WW%ﬂ}‘

j=1 J J

% 3 {G?(J;j) costz; — B {G?;j) cos txj} }

N -

A

1 Yi . Yi
—l—zﬁZ{G(xj) sintr; — F {G(:cj) smtxj] }‘

J/

B
Note that we can write |A+iB| = (A2 + B?)Y/2 and so E|A+iB| = E(A%>+ B*)Y/2 <
(BEA? + EB*)Y? = (Var(A) + Var(B))'/? where the inequality comes from Jensen'’s
inequality and by construction EA =0 and EB = 0. So (A.6) is

1 — Y Yj
<< Var | — J_costr; — F [ I costz } }
{ ”;{G(%’) ’ G (z;) ’

S latgmen e [t}
n n is
S {atgel] v [ et

= {% <Var [G?(J;j) cos txj} +Var [G?(J;j) sint:cj])}l/2.

Note that VarX < EX? so
, ) 1/2
J sin? ta;
<G($j)> ’

+ Var

+FE

2
Y
E <G(;73)> cos? tw;

() =
n{E <Gaﬂ>]}

S

—N

<

-
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noting that cos? tz; + sin®tz; = 1. So

(G2 )”/ [ 1otar
:%ﬁﬁ{g< )” [16)ds (a7

after a change of variables (s = ht) and the last term goes to zero as hy/n — oc.

Esup|g(x)h(x) — Ega)h(x)| < %% {E

Finally using Markov’s inequality with (A.7) we get
Pr (sup §(x)h(z) — Eg(x)h(z)] > e) —0 as n— oo.

Now for |Eg(z)h(x) — g(x)h(x)| note that

Ej(2)h(z) = B % éij(lxj)K (Z _hfvy>]
=8 [yyc;(l 7 <Z _Ijﬂ -
) [ o
o(e)h(z)

Now let ¢(x) = g(z)h(x) and s = (z — ) /h for the Taylor expansion

Do) = Uz — sh) = (=) — hst!(2) + Sh250"(2) + o(h?).

So

3 (W) — st (=) + gh%zw"(z)) K(9)hds = () + 3h40"(2) [ K (s)ds

Thus we can write

vla) + 50 (@) [ SR (9)ds - ()
Shtsup 10 @)] [ 19K (9)lds

() = (a)| = sup
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so the last term goes to zero at the rate h%. This completes the proof of lemma 1.
Proof of theorem 1
Note that

sup Q0 (D) — Qu(b)| < sup Q. (b) — Qu(b)] + sup @ (8) — Qo(b)|

where
Qulb) = D Lie (i gl (wib)] + (1 = ) ogll — F(aib)
Qulb) = > Ve o8P )] + (1 = ) logll = Fwib),

Qo(8) =+ 3" B (L (s loglF (aib)] + (1~ yi) loglt — Flaib))] .

Let Qu, = n 3" Lpcanyilog[F(x;b)] and similarly for Q.. Let F; = F(x;b)
and similarly for Fj. an can be viewed as a function of Fi, so from a functional

mean-value expansion of ()1, about F; we get

; 1 1O 1 -
Qi — Qual = |~ ; Ls,ca, i log[ ] + — ; Uiy (Fi = F)

1 n
— = Lpea,yilogF]
n <
=1
1 & 1 -
where E is between Fl and F;. So we have
N 1 & N
Sl;p |Qin — Qun| < S}lbp |qz|ﬁ ngp |F; — F|
b i=1

where ¢; = 1j,,ca,1y:/F;. Note that sup; ; |¢i| = Op(1) and from lemma 1 sup, |y —
F;| — 0 in probability so sup, [Q1, — Qin| = 0,(1). A similar result can be obtained
for y; = 0 part of the likelihood. Thus we have sup, |Q,(b) — Q. (b)] = 0,(1).
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Now let ¢;(xi, i, b) = 1iz,ea,](vilog[F (2:b)] + (1 — ;) log[1 — F(x;b)]). So

n

5up [Qu(6) — Qu(#)] = sup |~ Y (ai(ei,vub) — Elastw i) (A.10)

i=1
As Ichimura [35, p.91], we can use the uniform law of large numbers by Andrews [2]

and so (A.10) goes to 0 in probability. This completes the proof of theorem 1.
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