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ABSTRACT 

 

With the looming threat of climate change, electric utilities need to adapt their current 

load forecasting techniques so as to generate climate-sensitive load forecasts. This study 

investigates potential improvements in hourly and monthly load forecasting models by 

incorporating weather variables. While the hourly models show mixed results across seasons and 

regions, the monthly model shows marked improvement over a purely autoregressive approach 

to load forecasting. In light of climate change, electric utilities can avail of economic benefits 

from minimizing their exposure to the volatile spot market prices and significant losses through 

inaccuracies in predictions. Moreover, decision-making based on more climate-sensitive 

forecasts will result in reduction in the carbon footprint of the electric utilities and improvements 

in their investment strategies for renewable energy technologies for the future. 
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CHAPTER 1 Introduction 

 

Electricity has been the backbone of economic growth since the 18
th
 century. The energy 

needs of the growing population and rapid industrialization have been satisfied by the 

development of electricity supply and generation. With its increasing significance as a key 

infrastructure, electricity consumption has also increased manifold, fuelling the search for 

resources to meet this growing demand. 

Weather is a major cause of the variation in the demand for electricity for space cooling 

and heating. The sensitivity of energy demand to weather stems from the fact that that produced 

electricity must be instantly consumed (Psiloglou et al., 2009). Examination of trends in 

electricity consumption shows a direct relationship between weather factors such as temperature 

and precipitation and electricity load. As expected, in the Southwest, space cooling is of a larger 

concern than heating due to the relative high temperatures experienced during most of the year.  

Climate change affects the electricity consumption as well as the quality and quantity of 

required resources. The increased temperatures and variability in precipitation make climate 

change a growing challenge for electric utilities. Moreover, the growing scarcity of water 

supplies will affect both future electricity consumption and production in the Southwest.  

Electricity load forecasting is an integral part of the planning and operation of electric 

utilities since it mitigates costs associated with load switching, overloading, blackouts and 

equipment failures. Electric load is related with various factors such as the time of day, day of 

week, season, climatic conditions, and the past usage patterns (Alfares & Nazeeruddin, 2002). 

Consequently, several methods have been utilized to model these relationships and generate load 

forecasts.  
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With the looming threat of climate change, electric utilities need to adapt their current 

load forecasting techniques to avoid significant losses through inaccuracies in predictions. 

Climate change enters into forecasting models through variations in weather factors that 

influence load. These weather variations exhibit a pattern distinct from the past, forming the 

essence of climate change .Moreover, efficient production by electric utilities, based on 

improved load forecasts, is likely to reduce their carbon footprint. This is important since only 

around 11 percent of U.S. electricity is generated from renewable sources (USEIA, 2010). 

This study investigates potential improvements in short term and medium term load 

forecasting models to assist with climate change adaptation by electric utilities. This is achieved 

by incorporating weather variables in the current models forecasting electricity load. In this 

research we develop load forecasting models at two distinct time scales, specifically at the hourly 

and monthly scales. While hourly load forecasting models are critical for operational planning 

and ensuring supply reliability, load forecasting at the monthly level facilitates decision-making 

regarding future capital investment and evaluation of energy price contracts.   

We develop statistical models for forecasting hourly electricity load for three AEPCO 

(Arizona Electric Power Cooperative) utilities in the state of Arizona located in Tucson, Mohave 

and Graham.  Moreover, we construct a monthly load forecasting model for the Tucson 

Metropolitan Statistical Area (MSA) based on load data from the Tucson Electric Power (TEP) 

utility. We expect that the improved statistical models will perform better than the current 

models used by the electric utilities, which use only past load data to forecast next-day load 

profiles. We test this assertion by evaluating the newly generated forecasts using generally 

accepted measures of forecasting error. We expect that the findings of this investigation will lead 

to significant cost savings for electric utility managers and efficient investment in future 
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renewable energy projects.  

 

1.1 Electricity Load & Load Forecasting 

 

The term electricity demand is used synonymously with load based on the fact that electric 

utilities generally supply electricity to specifically meet load demand. While a shortage in 

electricity supply can lead to brownouts, blackouts or financial losses incurred through purchases 

in electricity spot markets, overproduction by an electric utility implies wastage of scarce 

resources, higher production costs and often system overloads. The lack of economically-

efficient storage technology for electricity ensures the continuity of this inherent risk in the 

business of electricity supply. Therefore, foreknowledge of load behavior, through load 

forecasting, is crucial in planning, analysis and operation of power systems so as to assure an 

uninterrupted, reliable, secure and economic supply of electricity. Electric load forecasting 

involves the prediction of both the geographical locations and magnitudes of electric load over 

the different periods (usually hours) of the planning period (Alfares & Nazeeruddin, 2002). 

Electric utilities are mostly concerned with peak load forecasts, i.e., the maximum 

instantaneous load or the maximum average load over a designated interval of time. Peak load 

forecasts can be made at the daily, monthly, seasonal or annual level.  At the daily level, peak 

load allows the electric utility to plan its generation and spot-market activity to ensure continuity 

of electricity supply. Annual and seasonal peak load forecasts are important for planning i.e., for 

securing adequate generation, transmission and distribution capacities. These medium-term peak 

load forecasts improve decision-making with regards to capital expenditures and improve the 

reliability of electric system (Feinberg, 2009). 
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Traditionally, the electricity industry was characterized by a highly vertically integrated 

market structure with very little competition. However in the last few decades this has been 

replaced by competitive markets. With the rise of competition, the costs of over- or under-

production and then selling or buying electricity on the spot market have increased substantially. 

Moreover, since electricity is typically produced by several generating units with different lead 

times, short-term load forecasts allow each unit to more accurately anticipate its need by the 

utility, avoiding costs incurred from idle operation. As a result load forecasting has become the 

central and integral process in the planning and operation of electric utilities, energy suppliers, 

system operators and other market participants.  Since the financial penalties for forecast errors 

are so high, most research in this field aims at reducing them even by a fraction of a percent 

(Weron, 2006). There are many modeling techniques used by electric utilities to forecast future 

loads. These are discussed in greater detail in Chapter 2.  

 

1.2 Impact of Climate Change  

 

The United Nations Framework Convention on Climate Change (UNFCCC) has defined 

climate change as a change of climate which is attributed directly or indirectly to human activity 

that alters the composition of the global atmosphere and which is in addition to natural climate 

variability observed over comparable time periods. This study accepts the premise that climate 

change is primarily human-induced.  

While climate change is a global problem, its effects are felt even at the county level. Global 

trends observed in recent decades include rising temperatures, increasing heavy downpours, 

rising sea level, longer growing seasons, reductions in snow and ice, and changes in the amounts 
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and timing of river flows. These trends are projected to continue based on the quantity of heat-

trapping gas emissions in the atmosphere. According to a 2009 report by the U.S. Global Change 

Research Program (USGCRP), in the southwestern U.S., climate change is likely to result in 

higher temperatures and increased scarcity of water supplies. By the end of the century, average 

annual temperature is projected to rise approximately 4 degree Fahrenheit to 10 degree 

Fahrenheit above the historical baseline, averaged over the southwest region. (USGCRP,2009). 

Dominguez, Cañon and Valdes (2010) showed that the projected future aridity of the region will 

be characterized by higher temperatures (~0.5°C or 32.9 °F) and lower precipitation (~3 

mm/month) than the projected trends from the IPCC climate models. Their improved 

temperature and precipitation projections for the southwest imply that the region will be 3.52 °C 

(or 38.33 °F) warmer and 16.25 mm drier by the year 2050.  

It must be noted that climate change affects not just the magnitude, but also the variability of 

temperature and precipitation in the region. This is likely to be further intensified by continuing 

population shifts to the Southwest.  

Moreover, the growing scarcity of water supplies will affect both future electricity 

consumption and production in the Southwest. This effect is exacerbated by what is generally 

referred to as the water-energy nexus. The water-energy nexus refers to the interdependency 

between the water and energy sectors. Due to our focus on load forecasting, it is necessary to 

highlight the water-energy nexus as it applies to the electricity sector. On the one hand, water is 

an integral element of energy-resource extraction, refining, processing, transportation and 

utilization. It is an integral part of electricity generation, where it is used directly in hydroelectric 

generation and indirectly for cooling and emissions scrubbing. For example, in calendar year 

2000, thermoelectric power generation accounted for 39 percent of all freshwater withdrawals in 
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the U.S., roughly equivalent to water withdrawals for irrigated agriculture (Hutson et al., 2004). 

On the other hand, electricity is used for the treatment, heating and transportation of water. It is 

predicted that as climate change induced-warming increases competition for water, the energy 

sector will be strongly affected because power plants require large quantities of water for cooling 

(USGCRP, 2009).  

Moreover, weather is a major cause of the variation in electricity load for space cooling, 

heating and electric lighting. Examination of trends in electricity consumption shows a direct 

relationship between weather factors such as temperature and precipitation and electricity 

consumption. As expected, in the Southwest, space cooling is of a larger concern than heating 

due to the relative high temperatures experienced during most of the year. It is predicted that 

climate change induced-warming will decrease demand for heating energy in winter and increase 

demand for cooling energy in summer. The latter will result in significant increases in electricity 

use and higher peak loads in most regions (USGCRP, 2009).  

Electric utilities have not ignored the repercussions of climate change. In 2005, electric 

utility company specialists and stakeholders who attended an EPRI workshop titled ―Identifying 

Research to Help Electric Companies Adapt to Climate Change,‖ unanimously agreed that more 

applied research on the climate change impacts was necessary, with load forecasting being one 

of the areas considered for application.  

 However, most industry-specific climate change reports have emphasized mitigation of 

green house gas (GHG) emissions. This has resulted in greater investment in mitigation 

technologies, development of renewable energy sources and the deployment of smart grids and 

smart meters (Acclimatise, 2009). One such study was conducted by the Electric Power Research 

Institute (EPRI) to investigate the various options that the U.S. electric utilities might pursue in 
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response to a range of possible climate policy scenarios. It focused predominantly on emissions 

reduction policies, opportunities and technologies (EPRI, 2003).   

While mitigation is integral to an electric company‘s response to climate change, it is 

essential for utilities to undertake adaptation. The Carbon Disclosure Project (CDP) undertaken 

by Acclimatise, highlighted this fact. Under CDP, based on responses of electric companies to a 

questionnaire, it was reported that electric utilities were responding to climate change by 

identifying risks and taking actions to manage them. However, while utilities were reporting 

direct climate impacts (such as those due to extreme climate events), indirect impacts were 

neglected. Companies also reported investing in climate-resilient materials and designs, such as 

coastal sea defenses, sustainable drainage systems and dam reservoir overflow management 

facilities for hydropower. Some companies were also focusing on optimizing their existing assets 

through improved cooling technologies (Acclimatise, 2009).  For supporting climate change 

adaptation by the electricity sector it is necessary to understand and accurately predict electricity 

demand in light of climate change. We seek to shed further light on the impact of climate change 

on the electricity sector by adapting current load forecasting models used by utilities to 

incorporate climate information.  
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CHAPTER 2 Literature Review 

 

2.1 Climate and Load Forecasts  

 

While the links between electricity load and weather elements appear to be self-evident, it 

was necessary for the purposes of this study to review past research to strengthen our 

understanding of these dynamic relationships. This in turn informed our expectations for the 

parameters associated with each of the weather variables included in our models.  

Given the economic importance of load forecasting and the advent of climate change, the 

relationships between weather variables and electricity load have been widely investigated and 

used in short and medium term load forecasting. In one of the earliest works in this field, Joseph 

Lam (1998) investigated the relationships between residential electricity consumption and 

economic variables and climatic factors (specifically temperature) for Hong Kong. Among socio-

economic factors, he also found that knowledge of temperature, as measured by using cooling 

degree days, facilitated the estimation of residential electricity use.  

Moreover, in their study, Ranjan and Jain (1999) modeled electricity consumption as a 

function of population and weather sensitive parameters, specifically sunshine hours, 

temperature, rainfall and relative humidity. It must be noted that they created four different 

seasonal models to account for the drastic differences in weather conditions from one season to 

the next, and found that in each of the seasons different weather variables were relevant for 

explaining electricity consumption. Therefore they highlighted the fact that variability of climatic 

conditions, whether on a temporal or regional scale, was an essential modeling consideration. 

This means that, apart from accounting for seasonal variations in weather, electric utilities with 
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service areas in differing climatic regions need to use different approaches for load forecasting 

for each region. This assertion was supported by Sailor and Muñoz (1997), who developed eight 

different models, for each of the eight states included in their study, relating electricity 

consumption to climate parameters. 

The experience of many utilities indicates that the weather elements, which influence load 

demand, consist of temperature, humidity, wind and precipitation. 

Temperature has been found to play the most important role in controlling the electricity load 

(Psiloglou et al., 2009). This is primarily because of the use of electricity for heating and cooling 

purposes. Past studies have shown that temperature exhibits a non-linear pattern in its 

relationship with load, often referred to as a ‗U-shaped‘ or ‗hockey-stick‘ curve. Figure 1 

illustrates this concept for the three AEPCO electric utilities included in our study.  In Figure 1, 

we observe a bifurcation in the load observations for Graham into two distinct bands. This 

appears to be due to a discrete shift in load between 1997 and 1998. While information regarding 

types of customers for Graham will shed further light on this issue and facilitate model fit, the 

lack of this information precludes such an investigation.  

This non-linearity is explained by the Heating and Cooling Effects recently described by 

Bessec  and Fouquau (2008).  They argued that in winter, there exists a negative relationship 

between load and temperature since an increase in temperature diminishes the need for energy 

resources used for heating purposes. This is referred to as the Heating Effect. On the other hand, 

in summer an increase in temperature raises the demand for electricity for cooling appliances, 

lending credence to an evident positive relationship. In literature, this is referred to as the 

Cooling Effect. Its has also been argued that at a certain temperature level, referred to as the 

Neutral Temperature, load demand is not sensitive to temperature changes. Tanimoto (2008) 
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calculated that the neutral temperature for the Tucson MSA is around 15 degree Celsius. Most 

studies have verified and accounted for this non-linearity at the daily and hourly scale.  They 

have utilized degree-day variables (Al-Zayer and Al-Ibrahim, 1996; Sailor, 2001; Pardo et al., 

2002; Amato et al., 2005), logistic smooth threshold regression models (Bessec et al., 2008; 

Moral-Carcedo and Vicéns-Otero, 2005) and semi or non-parametric models (Engle et al., 1986; 

Henley and Peirson, 1997). In the most recent and well-known study of this relationship, Marie 

Bessec and Julien Fouquau (2008) used logistic smooth threshold regression (LSTR) model to 

confirm the non-linearity of this relationship for 15 countries in the EU, using data for a period 

of 20 years.  

Due to its significant influence on load, the effect of temperature has been studied to a much 

greater extent than the other weather elements.  While there is a significant paucity of studies 

related to the link between humidity and electricity consumption, it is understood that humidity 

is known to increase the heat-retention capacity of air (Willis, 2002). Consequently high levels of 

humidity during summer (or winter) months tend to increase the need for cooling (or heating), 

leading to an increase (or decrease in) in electricity load associated with air-conditioning 

(Contaxi et al., 2006). 
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Figure 1:  Relationship between Temperature and Electricity Load 
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Also, rapid winds are known to generate a chilling sensation, decreasing the need for 

electric cooling. However, they also augment the need for heating during the winter months. 

Precipitation is another significant weather variable which influences electricity demand. 

An increase in precipitation (specifically rainfall) decreases temperature, which in turn decreases 

load demand for air-conditioning (Willis, 2002). This implies that load and precipitation should 

be inversely related. However we must also consider the fact that heavy rainfall can push people 

indoors, increasing their consumption of electricity (Willis, 2002). Therefore the relationship 

between precipitation and load is still ambiguous.  

Finally, the weather element solar radiation displays the most ambiguity. Higher 

illumination of surroundings is expected to increase the ambient temperature, thereby increasing 

the demand for electric cooling (Willis, 2002). However, one can argue that an increase in solar 

illumination also decreases the use of electric lighting devices.  

Therefore, despite a large body of work in this field, there is still significant ambiguity 

regarding the precise nature of the relationships between weather and electricity demand.  

 

2.2 Load Forecasting Models  

 

After reviewing the relationships between weather and electricity load, it is necessary to 

examine the various load forecasting modeling techniques currently available.  

As the first step, one must consider the two main approaches to load forecasting. 

Conventional electricity demand models are often applied to forecast the demand at the utility 

level. These kinds of forecasting methods are commonly employed when there is little or no 

knowledge about the appliance stocks and other grass-root level consumer details (Paatero and 
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Lund, 2006). On the other hand, End-use models represent a bottom-up demand modeling 

approach, the accuracy of which depend on the easy availability of grass-root level consumption 

details. Due to this limitation of end-use models, the most prevalent approach is the conventional 

approach to load forecasting. In our study we utilize the conventional approach as opposed to the 

end-use methodology in light of the significant paucity of household level electricity 

consumption data.  

Next, since electricity load is related with various factors such as the time of day, day of 

week, season, climatic conditions, and the past usage patterns, several methods have been 

utilized to model these relationships and generate load forecasts. The different load forecasting 

modeling techniques can be broadly categorized into the following categories: 

 

1. Statistical Models: These models include multiple regressions, exponential smoothing, 

adaptive load forecasting and time series analysis. They generally involve a mathematical 

model that represents load as function of different factors such as time, weather, customer 

class and past values.  

 

2. Computational Intelligence Techniques: These techniques are highly sophisticated. At 

present, they include neural networks, fuzzy logic and genetic algorithms.  

 

3. Knowledge-based Expert Systems: Knowledge-based Expert systems are a class of 

techniques which employ the knowledge and analogical reasoning of experienced human 

operators. They are designed employing artificial intelligence concepts to emulate human 

performance.  
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Third, we must consider the temporal aspect of load forecasting techniques as well. 

Srinivasan and Lee (1995) classified load forecasting in terms of the planning horizon‘s duration: 

up to 1 day for short-term load forecasting (STLF), 1 day to 1 year for medium-term load 

forecasting (MTLF), and 1 to 10 years for long-term load forecasting (LTLF).  

One of the most common STLF techniques utilized by electric utilities is the Similar-day 

approach. Under this approach, historical data is searched for days within recent years that have 

similar characteristics (such as weather, day of week, date etc.) to the forecast day. Therefore the 

load of that similar day is considered as the forecast for a specific day (Feinberg and Genethliou, 

2005). Often some adjustments are made to the anticipated load for observable factors, such as 

holidays, general trend and weather.  

The purpose of this study is to demonstrate load forecasting models that incorporate climate 

information to account for the impact of climate change on electricity load in the future. Keeping 

this in mind, we conclude that statistical models of load forecasting, due to their accessibility, 

low-cost and easy interpretation, are best suited for the purpose of this study. Moreover, given 

the time-series nature of our data, Box-Jenkins models are further scrutinized for their 

application to our data. 

Most popular statistical approaches to load forecasting involve using the Box-Jenkins time 

series models, specifically the purely autoregressive (AR) and ARMA (Autoregressive Moving 

Average) or ARIMA (Autoregressive Integrated Moving Average) models, which predict future 

load based solely on past load data. ARMA models are usually used for stationary processes 

while ARIMA is an extension of ARMA to non-stationary processes. Hagan and Behr (1987) 

argued that the Box-Jenkins models are well suited to load forecasting due to the procedures 

built-in into the models for developing, checking and updating them. These models have been 
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extensively applied to load forecasting (Weron, 2006).  

However, the ARMA and ARIMA model forecasts are essentially extrapolations of the 

previous load history and have problems when there is a sudden change in the weather (Hagan 

and Behr, 1987). Therefore, since the purpose our study is to aid in the climate change adaptation 

by electric utilities, we look beyond standard AR and ARMA/ARIMA models, to regression 

models with autoregressive or ARMA errors that can incorporate climate information. The 

selection and estimation of our hourly and monthly load forecasting models is detailed in 

Chapters 3 and 4, respectively.   
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CHAPTER 3 Hourly Load Forecasting Models 

 

Under this study, we seek to construct load forecasting models for two different temporal 

scales, specifically at the hourly and the monthly time scales. Selection of the appropriate models 

for each temporal scale depends on the inherent peculiarities of our datasets. The load and 

weather data for our research and model selection are further discussed in this chapter (Chapter 

3) and the next (Chapter 4) for the hourly and monthly load forecasting models, respectively.   

 

3.1 Data Description  

 

Electric utilities safeguard their electricity system load data due to concerns about the privacy 

of their clientele. Moreover, given the competitive nature of the electricity market, such data has 

strategic value.  For this research, hourly-level electric load data was provided by the Arizona 

Electric Power Cooperative (AEPCO). Specific information regarding clients and service region 

was suppressed for reasons of confidentiality.  

AEPCO is a not-for-profit rural electricity cooperative formed in 1961.Since then AEPCO 

has expanded its membership and undergone significant restructuring, splitting into 3 different 

organizations, with AEPCO retaining its role in power generation. Currently, AEPCO and its 

members serve customers in nine Arizona counties (Cochise, Coconino, Graham, Greenlee, 

Mohave, Pima, Pinal, Santa Cruz and Yavapai), one county in California (Riverside) and two 

counties in New Mexico (Hidalgo and Grant).  

We were provided with hourly load data for three of its members, Graham County Electric 

Cooperative (GCEC), Mohave Electric Cooperative (MEC) and Trico Electric Cooperative 
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(Trico).  For the reader‘s convenience, from here on we will refer to them as Graham, Mohave 

and Trico, respectively. Graham and Mohave serve the Safford and Bullhead City regions of 

Arizona and Trico serves to some parts of Marana and the Tucson Metropolitan Statistical Area 

(MSA).  The period covered starts in January 1993 and ends in December 2004.  

As detailed in Chapter 2, electricity demand or load is sensitive to changes in weather 

conditions. In order to effectively incorporate weather information in our hourly load forecasting 

models we obtained hourly weather data from the Arizona Meteorological Network (AZMET). 

AZMET is a University of Arizona Cooperative Extension project which collects of 

meteorological data from a network of 28 automated weather stations located in central and 

southern Arizona.  Temperature, precipitation, relative humidity, solar radiation and wind speed 

data, measured at the hourly level, were obtained from this source for the time period of the 

AEPCO load data. The three specific weather stations used for Trico, Graham and Mohave were 

Marana, Safford and Mohave, respectively. Issues regarding duplicate and missing observations 

in the AZMET dataset were corrected through deletion and averaging.   

Table 1 provides the summary statistics for the load and weather variables used in this study 

for each of the three cooperatives. All three regions display weather characteristics consistent 

with the general climatic conditions in central and southern Arizona. This is evident from the fact 

that all three service areas exhibit almost equivalent average relative humidity levels. Also, they 

each experience maximum precipitation in July and August, during the monsoon season. While 

all of them experience generally very high variation in temperature, Mohave, due to its location 

in the Mohave Desert region experiences the highest maximum temperature of 48.5 degree 

Celsius. Mohave also experiences the fastest blowing winds. The service area of Graham is on 

average cooler than that of Trico and Mohave.  The service area of the three AEPCO 
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cooperatives is represented in Appendix G. 
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3.2 Model Selection 

 

The complete dataset for all three cooperatives, Trico, Graham and Mohave, comprised of 

time series data on electricity load and weather variables for the time period starting January 

1993 to December 2004. Keeping this in mind, we reviewed literature on time series models in 

order to gain a better understanding of the construct of a successful model.  

While the presence of heteroskedasticity and autocorrelation in time series data violate 

significant assumptions of the linear regression models, purely Autoregressive (AR), Moving 

Average (MA) or even standard Autoregressive Moving Average (ARMA) models involve only 

univariate time series analysis. In order to account for the possibility of non-stationarity of our 

load data, as well as allow for the inclusion of weather factors as explanatory variables, the basic 

construct of the dynamic regression models was selected.  

Standard ARMA and ARIMA (Autoregressive Integrated Moving Average) models use only 

time and past load values as input variables. However, from Chapter 2 it is evident that 

electricity load also depends on weather variables. The dynamic regression models also known 

as ARIMAX or Transfer Function models, permit input time series which offer the potential for 

improved load forecasting. In their most basic form, these models involve a multivariate 

regression, with the errors (or ‗noise‘) exhibiting both autoregressive and moving average 

components.  

For example, consider the following model, where the noise series is assumed to be an 

ARMA (1,1) process: 

      (3.2)  
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Here, t indexes time,  is the mean term,   and  are the input series and  is the random 

error term, also referred to as white noise.  

Once the basic model construct was selected, it was necessary to study the nature and 

behavior of the variables to be included in the model and modify the basic construct accordingly.  

 

3.3 Model Variables 

 

Dependent Variable: For our Hourly load forecasting models, we utilized electricity load 

data (Load), collected at the hourly intervals, as our dependent variable. As a time series, this 

variable was fraught with concerns regarding stationarity and seasonality. Figure 2 shows the 

plots of average daily load over the time period of the study for the three AEPCO cooperatives.  

It is evident from these plots that average load exhibits an overall increasing trend (except for 

Graham) and seasonality. As mentioned earlier, average load for Graham exhibits a shift from 

1997 to 1998. However, in the absence of customer-related information, we cannot further 

pursue this line of study. 

A time series is said to be stationary if its statistical properties, specifically its mean, variance 

and autocorrelation structures do not change over time (Weron, 2006). It is necessary for a time 

series to be stationary to ensure that the variance is not explosive and that the predictions are 

reliable. 

For the purposes of our study we were concerned with the stationarity of the fitted residuals 

from the regression of hourly load on weather variables. In the absence of the input series, the 

response series (or the hourly load) and the ‗noise‘ series are the same. However, by including 

the input series, we are imposing the restriction of stationarity on the residuals after the effect of 
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the inputs is removed. From here on we will refer to these residuals as the residual series, to 

distinguish them from the white noise series introduced later in this section.   

We utilize the Augmented Dickey- Fuller (ADF) test as a formal test of stationarity for the 

residual series. The ADF test statistic is given by the following formula: 

 

    (3.3) 

 

The basic idea behind this test is to ascertain if the coefficients of the autoregressive part of an 

ARMA model fitted on the residual series are not equal to one, i.e., that none of the characteristic 

roots equal one. If all the characteristic roots are less than 1 in absolute value, then the residual 

series is stationary.  

Figure 2 shows that the load data for Trico, Graham and Mohave display increasing 

variation over time. In order to correct for this, we transformed the load variables by taking their 

natural logarithm.  

Box and Jenkins (2008) suggested that the first property that can indicate departure from 

stationarity is that the series, when graphed over time, does not appear to have a constant mean.  

Keeping this in mind, we see from Figure 2 that the hourly load series is non-stationary for all 

three AEPCO cooperatives. Therefore, to make the logged hourly load series was detrended by 

taking the first difference.   

After these transformations and differencing, we use the Augmented Dickey Fuller 

(ADF) test of stationarity on the residual series to determine the need for additional filtering. The 

results of the ADF test are shown by Table 2. It is evident from the associated p-values that we 

fail to reject the null hypothesis of a unit root. Therefore we conclude that the residual series for 
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all three cooperatives were not stationary. Considering the daily seasonality involved in load 

data, we further differenced the logged hourly load by 24 hours to make the resulting residual 

series stationary. Therefore our final dependent variable, after filtering, is the logged hourly load 

differenced twice, first by one and then by 24. This pattern of load differencing is similar to one 

utilized by Thompson and Cathers (2005). 
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Figure 2:  Average Daily Load for Trico, Graham and Mohave (1993-2004) 
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Table 2: Augmented Dickey-Fuller Test for log(Load) differenced by 1   

 

 

Type Lags Trico Graham Mohave 

    
Rho Pr < Rho Rho Pr < Rho Rho Pr < Rho 

Zero 

Mean 

1 -59,536.50 0.0001 -47,544.20 0.0001 -42,319.50 0.0001 

 2 -60,505.00 0.0001 -54,591.10 0.0001 -46,677.30 0.0001 

 3 -97,023.80 0.0001 -77,362.10 0.0001 -64,967.40 0.0001 

 4 -498,137.00 0.0001 -149,247.00 0.0001 -129,147.00 0.0001 

 12 49,402.04 0.9999 424,767.20 0.9999 44,648.53 0.9999 

 24 -1,721.75 0.0001 -1,311.09 0.0001 -1,901.66 0.0001 

 168 -587.51 0.0001 -402.50 0.0001 -644.06 0.0001 

Single 

Mean 

1 -59,536.50 0.0001 -47,544.20 0.0001 -42,319.50 0.0001 

 2 -60,505.00 0.0001 -54,591.10 0.0001 -46,677.30 0.0001 

 3 -97,023.80 0.0001 -77,362.10 0.0001 -64,967.40 0.0001 

 4 -498,137.00 0.0001 -149,247.00 0.0001 -129,147.00 0.0001 

 12 49,402.04 0.9999 424,767.10 0.9999 44,648.53 0.9999 

 24 -1,721.75 0.0001 -1,311.09 0.0001 -1,901.66 0.0001 

 168 -587.51 0.0001 -402.50 0.0001 -644.09 0.0001 

Trend 1 -59,546.10 0.0001 -47,544.20 0.0001 -42,322.30 0.0001 

 2 -60,520.40 0.0001 -54,591.20 0.0001 -46,681.80 0.0001 

 3 -97,069.40 0.0001 -77,362.20 0.0001 -64,977.20 0.0001 

 4 -499,421.00 0.0001 -149,248.00 0.0001 -129,188.00 0.0001 

 12 49,320.32 0.9999 424,723.60 0.9999 44,627.73 0.9999 

 24 -1,729.79 0.0001 -1,311.10 0.0001 -1,904.56 0.0001 

 168 -593.34 0.0001 -402.50 0.0001 -647.27 0.0001 

                
T= 152,192 
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Explanatory Variables: When a time series exhibits periodic fluctuations, it is said to 

display seasonality. From visual inspection of the pattern displayed by average loads plotted 

against time, it is evident that electric load data displays seasonality at the daily, weekly and 

annual time scale.  

 

 Hourly Variability of Load:  Figure 3 shows the variation of electric load throughout a 

day. For this study we define the time period of the five seasons experienced in Arizona 

as below: 

 

1. Winter:  December and January 

2. Spring: February, March and April 

3. Dry Summer: May and June 

4. Monsoon Summer: July and August 

5. Fall: September, October and November 

  

While a bimodal distribution of load is evident during wintertime, during the rest of the 

year the distribution is unimodal, with daily peak load occurring around. From both these 

cases it is evident that the hours from 8 am to 8 pm behave differently from the rest of the 

day. Therefore we can designate this time period as peak hours of the day. The 

coefficient associated with the dummy variable for this peak period (Peakhr) is expected 

to have a positive sign since demand for electricity appears to be at a higher magnitude 

during the peak hours relatively to the rest of the day. 
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Figure 3: Monthly Averaged Load for 2004 
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 Day-of-Week Variability of Load: By plotting average electric load against 

weekdays, we observe a unique pattern (Figure 4) for all three of the AEPCO 

cooperatives. Sunday has the least average load in a week, followed by Saturday and 

then Friday. Therefore we can incorporate a dummy variable for weekends to model 

this phenomenon.  We expect that the coefficients associated with this dummy 

variable will have a negative coefficient.  
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Figure 4: Average Load by Day of Week 
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 Monthly Seasonality: It is evident from Figure 5 below that the annual average load 

curves for Trico,  and Mohave peak during the monsoon season i.e., during the month 

of July or August. This is consistent with the fact that high humidity during this 

period, by raising the heat retentive capacity of air, raises the overall ambient 

temperature. It is also important to note the use of swamp coolers and air conditioners 

in the study regions. Due to high levels of humidity and temperature during the 

monsoon season, people shift from evaporative cooling to air conditioners. Since air 

conditioners use more electricity than swamp coolers, this could explain the incidence 

of annual peak loads during the monsoon seasons.  Average load is lowest during the 

winter months, gradually rising over spring, and then rapidly increasing during the 

dry summer season, starting from beginning of May to the end of June. For our study 

regions, this can be explained by the blended use of natural gas and electricity for 

household heating and cooling. Shifting from natural gas-powered heating in winter 

to electricity-based cooling in summer can explain the higher load over the two 

summer seasons. Therefore, load appears to vary over seasons, which can be modeled 

using dummy variables. We expect that the coefficient associated with the monsoon 

dummy variable to be positive. 
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Figure 5: Average of Monthly Load 

 

 

In order to deal with these different levels of seasonality, we utilized dummy variables 

for weekdays (keeping Monday as baseline), the peak hours during a day and for four of 

the five seasons in Arizona (with the winter season as baseline).   

 

Holidays (Hol): It is commonly understood that on holidays consumers indulge in 

modified consumption and demand behavior. We assume that this applies to the 

electricity demand as well by including a dummy variable for holidays that do not fall on 

weekends (Hol). However, the expected coefficient on this variable is ambiguous. This is 

because while some holidays encourage higher demand for electricity, others may lead to 

a reduction in electric load. For example, Christmas Day is well known to be a holiday 

where people tend to congregate and utilize decorative lighting. Therefore load demand is 

likely to be higher on Christmas. However, it is unclear whether load is likely to increase 

or decrease on significant travel holidays, such as Thanksgiving, given that the 
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destinations are often unclear and varied. 

 

Hourly weather data from AZMET included temperature, precipitation, relative 

humidity, solar radiation and wind speed.  

 

 Temperature (Temp) : Given the non-linear relationship between temperature and 

electricity load (discussed in Chapter 2), we modeled this relationship in a quadratic 

manner by including a linear term, a squared term and interaction terms for 

temperature with  relative humidity (int1) and temperature with wind speed (int2). 

Despite the availability of more sophisticated techniques, due to the inherent 

simplicity and convenience of this approach, a quadratic function was selected.  

While we expect the coefficient associated with the linear term to be positive, we 

expect that the squared term to have a positive coefficient in order to satisfy the non-

linear relationship between load and temperature. 

 

 Precipitation (Precip): Precipitation lowers the ambient temperature, thereby 

lowering load demand. Therefore we expect the coefficient associated with 

precipitation to have a negative sign. It should be noted that for all three of the study 

regions, Tucson, Graham and Mohave, a lack of precipitation for most of the year 

implies that the variable Precip has many values (approximately 98 percent of 

observations) close to zero. Since we cannot ignore the role of precipitation in our 

study regions, we created a precipitation dummy variable (Precipdum) to be included 

instead. The same rationale applies regarding our expectation of the associated model 
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coefficient. Moreover, due to the cooling effect of precipitation, we expect 

precipitation to interact with temperature and affect electric load inversely. Therefore, 

we also include an interaction term of precipitation with temperature (int3) in our 

hourly load forecasting models.  

 

 Relative humidity (RH): As mentioned earlier in Chapter 2, at higher levels, 

humidity is known to increase the heat-retention capacity of air (Willis, 2002), 

leading us to expect a positive coefficient associated with the interaction term 

between temperature and humidity. However, due to the extremely dry weather in the 

study regions, one can also consider that an increase in relative humidity may provide 

relief and make weather conditions more pleasant, decreasing the demand for electric 

cooling. This would imply a negative coefficient associated with a linear humidity 

term. 

 

 Solar radiation (Solrad): Higher illumination of surroundings is expected to 

increase the ambient temperature, thereby increasing the demand for electric cooling 

(Willis, 2002). However, many argue that an increase in solar illumination also 

decreases the use of electric lighting devices. In Arizona, the former effect is more 

likely due to the predominantly sunny weather of the region. Therefore, it is expected 

that a linear solar radiation term will have a positive coefficient.   

 

 Wind speed (Windspd): Rapid winds are known to generate a chilling sensation, 

decreasing the need for electric cooling. However, they also augment the need for 
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heating during the winter months. Therefore, it is expected that in the model the 

coefficient of the interaction term with temperature is negative. In Tucson, fast 

blowing winds are unobstructed due to the predominantly flat landscape, giving rise 

to dust storms. Since people are forced indoors, it is expected that the increased 

electricity consumption on windy (and hence dusty) days implies a positive 

coefficient for the wind speed linear term.   

 

Table 3 summarizes this discussion by clearly stating the input series variables used 

in our three hourly load forecasting models, and our expectation regarding the signs of 

the associated model coefficients. Further detail regarding the values of dummy variables 

is given in Appendix F. 
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Table 3: Expected Signs of Hourly Model Coefficients 

 

Variable Description 
Expected 

Sign 

Temp Temperature Negative 

SqTemp Temperature
2
 Positive  

RH Relative humidity Negative 

Solrad Solar radiation  Positive 

Windspd Wind speed Positive 

Int1 Temp*Humidity Positive 

Int2 Temp*Windspeed Negative 

Int3 Temp* Precipitation Negative 

Precipdum Precipitation dummy   Negative 

Weekend Weekend dummy Negative 

Hol  Holiday dummy Positive 

Peakhr Peak load hours dummy Positive 

Spring 

 
 

 

Negative 

Drysummer 
      Seasonal dummies 

Positive 

Monssummer 
 

Positive 

Fall   Negative 

T=105,192 

   

 

 

3.4 Model Estimation 

 

In the previous sections of this chapter, we selected a dynamic regression model as our basic 

model construct and identified the relevant weather and seasonal model variables. We also 

transformed our dependent variable, hourly load, by taking its natural log and differencing it 
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twice to make the residual series stationary. From here on we will refer to this new dependent 

variable as the transformed load.   

 

Using the construct of a dynamic regression model, our hourly load forecasting models 

consist of two key components: 

1. The Transfer function which consists of the input variables, i.e., the weather variables 

and seasonal dummies.  

2. The ARMA model fitted to the residual series obtained after regressing the transformed 

load on the input variables.  

 

Fitting an ARMA model to the residual series is a crucial step. We use the following steps to 

fit an appropriate ARMA model for the residual series:  

 

1. First we need to obtain the residual series and confirm stationarity using the Augmented 

Dickey Fuller test. This was already achieved through the creation of the transformed 

load variable.   

 

2. Next we test for the presence of white noise in the residual series using the Ljung-Box 

test. The test statistic for this model is a Chi-Square given by the following formula:  

 

   (3.4.1)   
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where  is the sample autocorrelation at lag k, n is the sample size  and h is the number 

of lags being tested. The null hypothesis of this test is that all of the autocorrelations up to 

the stated lag are jointly zero i.e., the residual series is white noise. The results of our 

Ljung-Box test on the residual series are shown by Table 4. The extremely large and 

highly significant Chi-square values imply that we reject the null hypothesis. 

Consequently, the residual series are not white noise and a model can be fit to the 

residual series.  

 

Table 4: Results of Ljung-Box Test for White Noise on residual series 

To 

Lag 
Trico Graham Mohave 

  Chi-

Square 
DF 

Pr > 

ChiSq 

Chi-

Square 
DF 

Pr > 

ChiSq 

Chi-

Square 
DF 

Pr > 

ChiSq 

6 9999.99 6 <.0001 1264.17 6 <.0001 9999.99 6 <.0001 

12 9999.99 12 <.0001 1489.48 12 <.0001 9999.99 12 <.0001 

18 9999.99 18 <.0001 1549.4 18 <.0001 9999.99 18 <.0001 

24 9999.99 24 <.0001 9999.99 24 <.0001 9999.99 24 <.0001 

30 9999.99 30 <.0001 9999.99 30 <.0001 9999.99 30 <.0001 

36 9999.99 36 <.0001 9999.99 36 <.0001 9999.99 36 <.0001 

42 9999.99 42 <.0001 9999.99 42 <.0001 9999.99 42 <.0001 

48 9999.99 48 <.0001 9999.99 48 <.0001 9999.99 48 <.0001 

                    

           

3. Third, we use the associated Autocorrelation function (ACF), Partial autocorrelation 

function (PACF) and the Inverse autocorrelation function (IACF) plots to determine 

order of autoregressive (p) and moving average terms (q). However, no clear patterns are 

evident for all three cooperatives. 
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4. Therefore, next we utilize the Extended Sample Autocorrelation Function (ESACF) and 

the Minimum Information Criterion (MINIC) procedures in SAS‘s PROC ARIMA to 

tentatively identify potential p and q values. While the ESACF method can tentatively 

identify the orders of an ARMA process based on iterated least squares estimates of the 

autoregressive parameters, the MINIC method is based on selecting an autoregressive 

order that minimizes the Akaike information criterion (AIC). AIC is calculated by the 

following formula: 

 

    (3.4.2) 

 

 

where MSE is the Mean Squared Error, n is the model sample size and k is the number of 

parameters. However ARMA models fit to the residual series based on outputs from these 

procedures fail to pass the test for white noise. This means that the error terms generated 

after fitting an ARMA model to the residual series are autocorrelated. In simpler terms 

this implies that since these errors still hold explanatory power, the fit of the ARMA 

model is poor. We observe that the values of the Ljung-Box Chi-square statistics remain 

very large and highly significant (with p values <0.0001). Results from the Godfrey-

Lagrange multiplier test for serial autocorrelation (Appendix B) further support these 

findings. Leamer (1978) argues that this may be due to the large sample size of our study. 

He states that the null hypothesis is more frequently rejected in large samples than in 

small because as the sample size increases, discrepancies in estimates, that were 

undetectable in smaller samples, get magnified in larger ones. Therefore it is possible that 

we may be rejecting the null hypothesis of the white noise test when in reality the error 

series are white noise. However, since we repeatedly reject the null hypothesis, we must 
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look towards models that can at least significantly diminish autocorrelations between the 

errors.  

 

5. Keeping this discussion in mind, we select an alternative modeling technique for the 

residual series which can account for the remaining seasonality from the hourly load data. 

We utilize the following multiplicative seasonal ARIMA model presented by Hagan and 

Behr (1987): 

 

        (3.4.3) 

 

 

Here  is the residual series,  is the random error and  refers to the lag operator such 

that  .  , ,  ,  and  are parameters to be estimated. This model 

was selected because it reduces the Ljung-Box Chi-square statistics and the associated 

residual series autocorrelations (shown by Table 5, 6 and 7). This is due to the rich 

interaction pattern between the autoregressive and moving average terms, which is 

captured with a small number of coefficients. The major limitation of such a model is that 

since the estimates of the AR and MA coefficients are interrelated, we can expect a larger 

error sum of squares than if the coefficient restrictions were not applied (Enders, 2004). 
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Table 5: Ljung-Box Test Results for Trico with multiplicative seasonal ARIMA residuals 

 

To Lag Chi-Square DF Pr > ChiSq Autocorrelations 

6 1314.76 1 <.0001 -0.007 0.039 -0.065 -0.015 -0.055 -0.059 

12 2795.6 7 <.0001 -0.078 -0.074 -0.028 -0.037 -0.012 -0.018 

18 3489 13 <.0001 -0.022 -0.036 -0.048 -0.023 -0.042 -0.013 

24 5086.44 19 <.0001 -0.001 0.004 0.022 0.012 0.120 0.009 

30 7107.89 25 <.0001 0.133 -0.011 0.011 -0.023 0.000 -0.029 

36 7309.55 31 <.0001 -0.021 -0.029 -0.015 0.002 -0.018 -0.008 

42 7714.81 37 <.0001 -0.027 -0.023 -0.042 -0.027 -0.011 -0.004 

48 8154.69 43 <.0001 0.012 0.005 0.039 0.036 0.011 0.034 

                    

 

 

 

 

Table 6: Ljung-Box Test Results for Graham with multiplicative seasonal ARIMA 

residuals 
 

To Lag Chi-Square DF Pr > ChiSq Autocorrelations 

6 426.98 1 <.0001 0.000 -0.002 -0.014 -0.032 -0.036 -0.040 

12 1601.71 7 <.0001 -0.055 -0.056 -0.041 -0.043 -0.030 -0.025 

18 2340.81 13 <.0001 -0.037 -0.035 -0.041 -0.040 -0.030 -0.014 

24 3568.11 19 <.0001 0.003 0.012 0.025 0.044 0.094 0.001 

30 4455.58 25 <.0001 0.078 0.028 0.001 -0.010 -0.022 -0.031 

36 4657.55 31 <.0001 -0.030 -0.024 -0.016 -0.009 -0.007 -0.008 

42 4790.96 37 <.0001 -0.017 -0.021 -0.018 -0.013 -0.005 0.004 

48 4970.91 43 <.0001 0.007 0.015 0.021 0.027 0.017 0.003 
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Table 7: Ljung-Box Test Results for Mohave with multiplicative seasonal ARIMA residuals 
 

To Lag Chi-Square DF Pr > ChiSq Autocorrelations 

6 491.56 1 <.0001 -0.002 0.010 -0.024 0.016 -0.034 -0.051 

12 2356.84 7 <.0001 -0.081 -0.048 -0.053 -0.048 -0.047 -0.039 

18 3393.04 13 <.0001 -0.047 -0.057 -0.046 -0.039 -0.025 -0.011 

24 5144.85 19 <.0001 0.012 0.022 0.047 0.048 0.107 0.005 

30 6269.64 25 <.0001 0.093 0.026 0.016 -0.001 -0.014 -0.030 

36 6604.03 31 <.0001 -0.030 -0.028 -0.014 -0.022 -0.022 -0.018 

42 6987.63 37 <.0001 -0.022 -0.032 -0.039 -0.021 -0.012 -0.003 

48 7519.18 43 <.0001 0.005 0.018 0.033 0.045 0.031 0.024 

                    

 

 

Therefore, our final model for hourly load forecasting is given by the following equation: 

 

      (3.4.5)  

 

 

where the residual series is modeled as   , j refers to number of 

input series variables and  refers to weather and seasonal dummy variables in the transfer 

function.  
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CHAPTER 4  Monthly Load Forecasting Model 

 

4.1 Data Description  

 

This component of our study involves creating a medium-term time series model for 

predicting monthly electricity load in the Tucson MSA. The load data consisted of hourly 

measurements of total electricity provided by the Tucson Electric Power (TEP) company for the 

time period of 10 years, starting January 2000 and ending December 2009. It was converted to 

monthly averages for the purposes of this model. Similar confidentiality restrictions applies to 

the TEP load data as in case of the AEPCO load data used for the short-term models.   

The Tucson Electric Power Company (TEP) is a publicly held utility engaged in the 

generation, purchase, transmission, distribution, and sale of electricity to customers in Tucson, 

Arizona, and the surrounding area. Its service area roughly covers most of the Tucson MSA, 

including some of the operating copper mines in the region. It must be noted that for the monthly 

load forecasting model, we used Tucson MSA data and Pima County data interchangeably since 

Tucson MSA geographically coincides with Pima County.  

To control for seasonality we used both weather and socio-economic explanatory variables. 

Monthly average measurements for temperature, precipitation, relative humidity, solar radiation 

and wind speed data were available from the Arizona Meteorological Network (AZMET). Socio-

economic data was acquired from a variety of sources. While U.S. Census annual population 

estimates were used, they were supplemented with 1999 estimates from the Arizona Department 

of Economic Security. Monthly population estimates were constructed using traffic count data 

from the Pima County Department of Transportation. Copper mine production data was obtained 
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from the Arizona Department of Mines and Mineral Resources (AZDMMR) and from the U.S. 

Geological Survey (USGS) .Finally, annual per capita income data was sourced from the U.S. 

Department of Commerce and the University of Arizona Economic and Business Research 

Center. Table 8 shows the summary statistics for the different key variables included in our 

model.  

Table 8: Summary Statistics for the Monthly Load Forecasting Model 

 

Variable Units Mean Std Dev Minimum Maximum 

Load MW 1,099.68 213.66 818.47 1,593.08 

Temp ° F 68.23 13.86 46.00 89.00 

Precip mm 0.03 0.04 0.00 0.18 

RH % 40.61 13.12 16.00 69.00 

Windspd m/s 4.11 0.65 2.50 5.50 

SolRad MJ/m
2 482.39 143.99 247.00 754.00 

Cuprod Metric ton 12,005.58 2,880.45 7,640.32 17,913.83 

PCY $/person 29,708.63 3,494.60 24,885.50 34,058.00 

Popnch 
Change in number 

of Persons 
1,095.28 1,538.53 -3,570.76 2,297.63 

            

T=120 

      

 

 

4.2 Model Variables  

 

4.2.1 Dependent Variable  

 

The dependent variable for our model is average monthly measurements of TEP 

electricity load for the Tucson MSA region, obtained from averaging load values 
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measured at the hourly level for each month. In effect the dependent variable is a 

representative value of the average hourly load during a particular month of a specific 

year.  This variable behaves in a manner consistent with our rationale used in the short-

term load forecasting models.  Figure 6 shows that average monthly load exhibits 

considerable seasonality and has a gradually increasing trend. As explained in Chapter 3, 

the seasonality at the monthly level is explained by the close relationship between 

electricity load and seasonal weather conditions. As shown previously for the AEPCO 

data, TEP load data shows similar peaks during the monsoon months of July and August, 

and relative troughs during the rest of the year.  

 

Figure 6: Average Monthly Load for TEP (2000-2009) 

 
 

 

 

4.2.2 Explanatory Variables: 

 

In order to adapt medium-term load forecasting models to climate change, we needed 
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to include weather data as some of our explanatory variables. Therefore similar to the 

short-term load forecasting models, our medium-term model included the following 

weather variables: 

 

 Temperature (Temp): To model non-linearity of the relationship between load and 

temperature, we included a linear term (Temp), a squared term (Sqtemp) and 

interaction variable with wind speed (Int2). 

 Precipitation (Precip): Unlike the hourly measurements of precipitation, which 

suffered from very minute magnitudes, monthly average precipitation measurements 

were found to be more substantial.  

 Relative humidity (RH) 

 Solar radiation (Solrad) 

 Wind speed (Windspd) 

 

Based on our previous analysis of the impact of weather on electric load, we had 

similar expectations for the signs associated with each of weather variable coefficients.  

To account for the seasonality displayed by monthly load, we include the following 

socio-economic variables in our analysis:  

 

 Change in monthly population (Popnch): Since population increases are generally 

associated with increase in electricity consumption by households, associated 

businesses and infrastructure, we expect the monthly population variable to have a 

positive coefficient. In Tucson, monthly population shows significant variation over 
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the calendar year due to the departure of college students in the summer and the 

arrival of vacationers during the mild winter months. However, the annual U.S. 

Census estimates were unable to capture this phenomenon adequately. Therefore, as 

part of this study, a monthly population estimate was created utilizing traffic count 

data for Pima County. The underlying assumption of this new monthly estimate is 

that variations in traffic count are directly related to changes in the population, i.e., an 

increase in traffic count implies an increase in population. 

The U.S. Census provides a snapshot of the population at a particular point of 

time, indicated as July 1st
 
of the respective year. This date is selected for the 

convenience of governmental agencies and congressional activities. However, for the 

purposes of this study we assume that the annual population estimates provided by 

the U.S. Census, are beginning-of-year estimates, thereby reflecting total change over 

a calendar year.  This assumption was necessary due to the significant lack of reliable 

beginning-of-year population estimates and mathematical convenience in 

constructing the estimates.  

Average monthly traffic count data for six critical traffic intersections was 

selected based on geographical location and data availability (Refer to Appendix C). 

These traffic count values had been adjusted for the number of days in each month 

through averaging. The following formula was utilized to estimate population for 

month j in year t: 

  (4.2.2) 

 

where  j = 1, 2,….12 refers to months of the year 
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t = 1,2,…..10 refers to years starting 2000 to 2009 

i = 1, 2,….120  refers to the total number of sample observation 

multiplying, given by  i = j x t 

    TCj = Average Traffic Count for month j  

   CenPopnt = Annual Census Population estimate for year t  

 

 Per Capita Income (PCY): It is expected that an increase in per capita income leads 

to increased purchase and utilization of a varied range of power-consuming 

appliances. Therefore, the coefficient associated with a linear term is expected to be 

positive. Annual per capita income data was obtained from the US Census. This data 

was scaled down to the monthly level, assuming equal incremental increases in per 

capita income from month to month.  

 

 Copper Mine production (Cuprod): Due to confidentiality issues, the actual 

composition of the TEP load data was not disclosed. However based on general 

information regarding TEP‘s clientele, it was evident that TEP provides electricity to 

three major copper mines in the region, namely, Mission Complex, Sierrita and Silver 

Bell mines. Therefore, in lieu of specific data on electricity used by each mine, this 

study included total copper mine production data from the Arizona Department of 

Mines and Mineral Resources (AZDMMR) for these three mines. Since this data was 

annual, monthly data was obtained through extrapolation based on newspaper reports 

related to strikes and shutdowns at each of the mines. This allowed for sufficient 
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month to month variation in this variable. It is expected that the associated coefficient 

displays a positive coefficient.  

 

Table 9 shows the expected signs of coefficients associated with the model variables. 

 

Table 9: Expected Signs of Coefficients for Monthly model 

 

Variable Description Expected Sign 

Temp Temperature Negative 

Temp
2 

Temperature
2 

Positive  

RH Relative humidity Negative 

Solrad  Solar radiation Positive 

Precip Precipitation Negative 

Windspd Wind speed Positive 

PCY Per capita income Positive 

Popnch Population change Positive 

Cuprod Copper mine production Positive 

Int2 Temp*Windspd Negative 

      T=120 

 

4.3 Model Estimation  

 

In order to estimate the monthly load forecasting model using Ordinary Least Squares (OLS), 

it was necessary to confirm that the errors were spherical, i.e., errors were homoskedastic and are 

not correlated with each other. Therefore, next the data was tested for heteroskedasticity and 

autocorrelation.   

The data was analyzed for heteroskedasticity using the White‘s test. It was evident from this 
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test statistic that we failed to reject the null hypothesis of homoskedasticity (Refer to Table 10). 

These findings were further supported by the Breusch-Pagan test. This implies that there was no 

heteroskedasticity.  

Table 10: Tests of Heteroskedasticity 

 

Test Test Statistic DF Pr > ChiSq 

White‘s Test  74.53  62  0.1322  

Breusch-Pagan  13.91  11  0.1769  

 

However, based on the highly significant Durbin-Watson test statistic of 0.8947 (Refer to 

Table 11); it was evident that the errors exhibited autocorrelation since the null hypothesis of no 

autocorrelation was rejected. These findings were further supported by the Godfrey-Lagrange 

multiplier test (Refer to Table 12) where the null hypothesis of uncorrelated residuals was 

rejected. This was anticipated not only because the model is based on a time series, but also 

because weather variables are expected to be highly correlated with each other.  

 

Table 11: Durbin Watson Test for Autocorrelation 

 

Order Durbin-Watson  Pr < DW Pr > DW 

1 0.8947 <.0001 1 
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Table 12: Godfrey-Lagrange Multiplier Test for Autocorrelation 

 

Equation Alternative LM Pr > LM 

Load 1 35.50 <.0001 

 
2 35.50 <.0001 

 
3 38.24 <.0001 

 
4 38.24 <.0001 

 

Due to the presence of autocorrelation, OLS could no longer be utilized for estimating 

this model. This is because the calculated OLS estimates would have been inefficient. Therefore 

we utilized Feasible Generalized Least Squares (FGLS), as opposed to OLS, for estimating a 

monthly load forecasting model with autoregressive terms.    
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CHAPTER 5 Analysis of Results 

 

The purpose of our study is to construct hourly and monthly load forecasting models 

which generate improved load forecasts as compared to the load forecasting techniques 

commonly used by electric utilities. As explained in the previous chapters, we attempt to 

specifically examine the effects of incorporating weather variables and seasonality indicators in 

the generally used purely autoregressive and ARIMA models.  

In this chapter, we first describe the criteria used to evaluate the performance of the new 

load forecasting models, followed by results related to the specific models and a brief discussion 

on the significance of the coefficient estimates in each of the models. Finally, we generate 

forecasts for the next model year based on two theoretical climate change scenarios.   

 

5.1 Criteria for Evaluating Load Forecasting Models 

 

Murphy (1993) recognized three 3 types of ―goodness‖ of forecasts, namely, consistency, 

quality and economic value.  

 

 Consistency: A forecast is said to be consistent if it corresponds to the forecaster‘s best 

judgment derived from his/her knowledge base (Murphy, 1993). In this study we achieve this 

through an in-depth literature review to inform our expectations regarding the signs of our 

model coefficients. We check the consistency of our load forecasts by determining if the 

estimated coefficients of our load forecasting models were consistent with our expectations 

stated in Chapter 4.  Models conforming to our expectations are considered more consistent.   
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 Quality: If the forecast corresponds closely to the observed values at (or during) the valid 

time of the forecast, it is generally considered to be of superior quality. This has been the 

primary focus of most forecasting studies, often calculated using measures of mean absolute 

error, the mean-square error and various skill scores. Keeping in mind the key parties 

involved in load forecasting, the electricity industry and the forecasters, we utilize two 

familiar measures of forecast quality, Mean Absolute Percentage Error (MAPE) for the 

former and Root Mean Squared Error (RMSE) for the latter. MAPE is given by the following 

formula: 

      (5.1.1) 

 

where   is the actual value,  is the forecast and T is the size of forecasting sample. This 

measure of error is comparable across different models since it is unitless. It also assigns 

equal weights, in absolute terms, to both positive and negative errors. It must be noted that 

MAPE will be undefined when the actual value is zero. However, this is not a significant 

concern since electricity load data in our study does not include zero values. 

Another relevant measure of error is the Root Mean Squared Error (RMSE). It is 

calculated by the following formula: 

 

      (5.1.2) 

 

Since errors are squared, giving greater weight to large errors, the RMSE is very sensitive to 

the presence of large magnitudes of errors. Another key difference between MAPE and 

RMSE is the fact that RMSE across models can only be compared if they are measured in the 

same units.   
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Both MAPE and RMSE are well-known single measures of predictive power which move 

in tandem i.e. a ‗good‘ (or ‗bad‘) model will perform well (or ‗poorly‘) in terms of both 

MAPE and RMSE.  

In addition to MAPE and RMSE, we also report the Peak Load Error as a percentage. 

This measure further illustrates the quality of forecasts generated by our models. in term of 

its accuracy in predicting the peak load during the given forecasting time period. It is 

calculated by the following formula: 

 

   (5.1.3) 

 

 

 Economic Value: Forecasts are said to have economic value is there are incremental 

economic and/or other benefits realized by decision makers through the use of the forecasts. 

Electric utilities experience cost savings through the use of more accurate forecasts, by 

avoiding scenarios of over and underproduction. Using International Energy Agency (IEA) 

estimates of costs of production under different generation technologies, we are able to 

provide reasonable estimates of these cost savings. Other benefits from using forecasts which 

perform better on the last two criteria include improved capacity planning and operational 

efficiency. While there are other policy implications and social benefits of using ‗good‘ 

forecasts, we discuss them further in the next chapter.  

 

Therefore, we use these three approaches to evaluate the overall performance of our load 

forecasting models.  
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Due to the absence of additional load data for evaluating forecasts, accuracy of our model 

forecasts was tested through the use of ‗hold-out‘ samples. With this technique, the time period 

of the load data used to fit the models ends before the end of the data series. The remainder of 

the load data is retained as a period of evaluation. Therefore, with respect to the ‗fit‘period, the 

hold-out sample is a period in the future, used to compare the forecasting accuracy of the models 

fit to past data. This ‗hold-out‘ sample approach can be further illustrated using an example. For 

instance, for the Trico hourly model we first determine the peak load days during the dry-

summer and the monsoon seasons of 2004. Next, we estimate our model parameters by fitting 

the model only to the available data up till the midnight of the day before the peak load day of 

the respective season. Finally, using these model parameters and actual weather data for the peak 

load days, we forecast load for the entire 24 hours of the peak load day.  Therefore we forecast 

out-of-sample for a single day i.e., the peak load day that occurs during the dry-summer season 

(from May to June 2004) and for another peak load day in the monsoon season (from July to 

August 2004) of 2004.  

As shown in the previous chapter, our study regions display their annual peak loads during 

the dry-summer and monsoon seasons. Given the importance of annual peak loads for capital 

investment and supply reliability, electric utilities are particularly interested in forecasting the 

summer peak load values. Consequently we focus on forecasting 24 hour load values for the 

peak load days of the two summer seasons of 2004. .  

For the monthly model,  we utilize the hold-out sample approach by keeping the year 2009 as 

our hold-out sample, and fitting our forecasting model to data up till December 2008.  

We acknowledge that the use of actual weather data, as opposed to daily or seasonal weather 

forecasts, may overestimate the accuracy of our models. The hold-out sample approach described 
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above assumes perfect knowledge of weather events. In reality, next-day or next-month weather 

forecasts are utilized by electric utilities. Therefore, the quality of weather forecasts utilized in 

forecasting is also an issue to be taken into consideration. However, for the purposes of this 

study we use actual weather data as opposed to forecasts. Future work based on this study can 

investigate the use of weather forecasts in load forecasting. 

In order to study the implications of the load forecasts in light of the changing climate, we 

generate forecasts for a year based on two theoretical climate scenarios: 

 

1. Simple Change Scenario: In this scenario, following up on the most likely impact of climate 

change in the Southwest (Dominguez et. al.,2010) temperature is increased at the rate of  

3.52 ° C (or 6.33 °F) per month as compared to the identical month in the previous year. 

However, precipitation is diminished by 10 percent every month as compared to the previous 

year.  

 

2. More Intense Summer Shift (MISS) Scenario: This scenario assumes a 50 percent decline 

in monsoon precipitation and warmer temperatures during the summer months from May to 

August (specifically an increase of 4 ° C or  7.2 °F) and a general increase in temperature by 

2.5° C (or 4.5 °F)  for the rest of the year.  

 

It must be noted that in both the scenarios, all other factors are held constant.  

 

5.2 Hourly Load Forecasting Models 

 

As shown in Chapter 3, we estimate three hourly load forecasting models using dynamic 
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regression model with seasonal multiplicative ARMA errors.  We evaluate the forecasting 

performance of each of our models, referred to as ‗Full‘ models, with the forecasting 

performance of the ‗No Weather‘ models. As the name suggests, the latter models do not include 

any weather variables, including only autoregressive and moving average terms along with 

dummies for the work hours of the day (peakhr), weekend, seasons (drysummer, monssummer, 

fall and spring) and holidays (hol). 

Table 13, Table 14 and Table 15 show the hourly model coefficient estimates with their 

associated standard deviations for the three AEPCO cooperatives, Trico, Graham and Mohave, 

respectively. It must be noted that since the dependent variable is the log of hourly load, the 

coefficient and standard errors cannot be easily interpreted with regard to their magnitude.  

While both temperature coefficients are statistically significant, they have the opposite signs 

from what was expected. This means that the temperature coefficient has a negative coefficient 

and the squared temperature coefficient has a positive coefficient. This is a puzzling 

phenomenon which merits further investigation regarding the nature of hourly temperature for 

these three regions in Arizona. 

The humidity coefficients are also significant. The linear term has a positive coefficient, 

while the coefficient of the interaction term with temperature (int1) is negative. Therefore the 

signs of these coefficients also do not match our expectations.  

Solar radiation is significant at the 0.001 level and displays a positive coefficient. This 

implies that the theory that solar radiation is affects electricity consumption by raising the 

ambient temperature holds for all three service regions of Trico, Graham and Mohave. 

The dummy variable for precipitation (precipdum) is not significant for all three regions. It 

must be noted that this might be due to the large number of zero values for this variable. 
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Wind speed is significant at the 0.01 level only for the Tucson MSA region. It has a negative 

coefficient, which does not meet our expectations. Its interaction term with temperature is highly 

significant and has the expected negative sign for Mohave alone. Mohave, in general, 

experiences the fastest blowing winds of all the three regions included in our study. This may 

serve to increase the impact of wind speed on electricity load for only the Mohave service area. 

Except for Mohave, Trico and Graham have highly significant and negative coefficients for 

the interaction term between precipitation and temperature (int3).  This may imply that for these 

two regions the cooling effect of precipitation is significant enough to inversely affect electric 

load. 

The peak hours of the day dummy (peakhr) is only significant for Mohave, and has an 

unexpected negative sign.  This implies that from 8 am to 8 pm in a day, consumers in the 

Mohave service region use less electricity than during the early mornings and late nights. This is 

highly counter-intuitive, and therefore merits further study. One possible explanation of this 

result is the presence of a major electricity user in Mohave who primarily utilizes electricity 

during the night. However since we do not have information regarding specific AEPCO 

customers in this region, at present this claim cannot be verified. 

The weekend dummy is significant at the 0.001 level for Trico and Mohave alone. It also 

exhibits the expected negative sign, implying that consumers in these regions consume less 

electricity during the weekends, as compared to the rest of the week. 

We also included dummy variables for the five seasons in the state of Arizona, taking winter 

as the baseline. None of these seasonal dummies were significant throughout the sample. This 

may imply that they might have failed to capture the impact of seasonal changes on electricity 

load. 
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The dummy variable for holidays is also not significant for all three of the AEPCO service 

areas. Therefore it is still unclear whether the incidence of holidays increases or decreases 

electricity load.  
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Table 13: Trico Hourly Model Maximum Likelihood Estimates 

 

  Full Model No Weather Model 

Parameter Estimate Std. Error Estimate Std. Error 

Intercept -0.0001165 0.0003015 0.0004322*** 0.0001224 

MA(24) 0.67438*** 0.0030698 0.67446*** 0.0030696 

MA(48) 0.20304*** 0.0030372 0.20202*** 0.003035 

AR(1) 0.50786*** 0.0031047 0.50894*** 0.0031041 

AR(2) -0.08274*** 0.0031147 -0.08302*** 0.0031137 

AR(168) 0.32566*** 0.0030539 0.32563*** 0.0030536 

Temp 0.00007757*** 0.00002002 
  

Sqtemp -0.00000137*** 3.55E-07 

  
RH 0.00001258*** 3.18E-06 

  
SolRad 0.0001585*** 0.00002651 

  
Precipdum 0.00079 0.0004302 

  
Windspd -0.0002008** 0.00006829 

  
Int1 -0.000000742*** 1.75E-07 

  
Int2 0.00000102 2.83E-06 

  
Int3 -0.0000285*** 5.46E-06 

  
Peakhr -0.000045 0.00004642 -7.3481E-08 3.444E-05 

Weekend -0.0015027*** 0.0003779 -0.0015044*** 0.0003784 

Spring -0.0000202 0.00007474 3.03713E-06 0.0000697 

Drysummer -0.0000539 0.0001019 3.23715E-06 7.429E-05 

Monssummer 0.0001695 0.0001311 -4.3518E-06 7.397E-05 

Fall 0.00000885 0.00008618 0.00001283 6.873E-05 

Hol -0.0005587 0.0006193 -0.0004829 0.0006154 

     

Significance Levels *=0.05  **=0.01  ***=0.001 
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Table 14: Graham Hourly Model Maximum Likelihood Estimates 

 

  Full Model No Weather Model 

Parameter Estimate Std Error Estimate Std Error 

Intercept -0.0001492 0.0001873 0.0001149 8.4E-05 

MA(24) 0.79004*** 0.0030917 0.79081*** 0.00309 

MA(48) 0.09507*** 0.0030855 0.09398*** 0.00308 

AR(1) 0.0094457** 0.003103 0.01094*** 0.0031 

AR(2) -0.06222*** 0.0030837 -0.06224*** 0.00308 

AR(168) 0.15757*** 0.0031478 0.15707*** 0.00315 

Temp 0.00003905** 0.0000124 

  
Sqtemp -0.00000060292** 2.42E-07 

  
RH 0.00000696252*** 2.08E-06 

  
SolRad 0.00009296*** 0.00001962 

  
Precipdum 0.0008743 0.0005767 

  
Windspd -0.0000863 0.00005399 

  
Int1 -0.00000037312** 1.31E-07 

  
Int2 -6.285E-07 2.29E-06 

  
Int3 -0.0000865*** 9.23E-06 

  
Peakhr -0.0000456 0.00004683 -3.7861E-06 2.7E-05 

Weekend -0.0004277 0.0002579 -0.0004171 0.00026 

Spring -2.807E-06 0.00005454 8.57337E-06 4.8E-05 

Drysummer -0.0000432 0.00007987 6.86651E-06 5E-05 

Monssummer 0.00003952 0.0001004 -6.7969E-06 0.00005 

Fall -0.000045 0.00006439 0.00001512 4.7E-05 

Hol -0.0001768 0.000512 0.00002949 0.0005 

          

Significance Levels *=0.05  **=0.01  ***=0.001 
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Table 15: Mohave Hourly Model Maximum Likelihood Estimates 

 

  
Full Model No Weather Model 

Parameter Estimate Std Error Estimate Std Error 

Intercept -0.0006131* 0.0002794 0.0003319*** 8.67E-05 

MA(24) 0.67324*** 0.0030782 0.67336*** 0.003077 

MA(48) 0.15382*** 0.0030633 0.15389*** 0.003062 

AR(1) 0.47516*** 0.00309 0.47616*** 0.00309 

AR(2) -0.0812*** 0.0030858 -0.08101*** 0.003085 

AR(168) 0.14763*** 0.0031273 0.14741*** 0.003128 

Temp 0.00009776*** 0.00001886 

  
Sqtemp -0.000001225*** 2.85E-07 

  
RH 0.00001589*** 3.41E-06 

  
SolRad 0.0001921*** 0.00002625 

  
Precipdum -0.0003892 0.0004525 

  
Windspd 0.00002981 0.00005315 

  
Int1 -0.0000011435*** 1.84E-07 

  
Int2 -0.0000073768** 2.37E-06 

  
Int3 -9.0233E-06 8.75E-06 

  
Peakhr -0.0000997* 0.00004423 1.18839E-06 3.28E-05 

Weekend -0.0011562*** 0.0002405 -0.0011483*** 0.000241 

Spring -0.0000668 0.00007245 4.19253E-07 6.37E-05 

Drysummer -0.0000791 0.00009871 4.11565E-06 6.82E-05 

Monssummer 0.0001969 0.0001221 -0.000014 6.79E-05 

Fall -0.0000287 0.00008167 7.86876E-06 6.28E-05 

Hol -0.0005779 0.0005534 -0.0003758 0.00055 

          

Significance Levels *=0.05  **=0.01  ***=0.001 
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The signs of the coefficients explain only part of the relationship between the dependent 

variable (i.e., hourly load) and the explanatory variables (specifically the weather variables) 

included the model. In order to fully comprehend the impact of the weather variables on hourly 

load, we need to study their marginal effects. In our study, marginal effects measure the expected 

instantaneous change in hourly load as a function of a change in a particular weather variable, 

holding all the other explanatory variables constant.  

Marginal effects were calculated for each of the hourly models, but only for those 

weather variables which were found to be significant. Due to inherent complexity of the hourly 

models, marginal effects were estimated using the following steps: 

 

1. First, we estimated the long term value of the dependent variable, i.e., the twice 

differenced natural log of hourly load ( , using the following formula: 

 

 
 

 

where i = 1, 2 ….16 is the number of explanatory variables and t= -168, -11,.., 0,..,1, 

2, ,400 refers to a specific hour in a total time period of  569 hours. This time period 

occurred in January 2004, which was selected arbitrarily since the date selected is 

inconsequential in the calculation of marginal effects. is the intercept term estimate 

from the model results.  ,  and,  are estimated model coefficients for the AR 

(1), AR (2) and AR (168) terms, and  refers to model coefficient for explanatory 

variable .  
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2. Next, we assume that the estimated value of the dependent variable (  for the first 

168 hours is equal to the long term value calculated in the previous step. The 

estimated value of the dependent variable for the remaining time periods (i.e., from 

t=0 to t=400) is calculated by the following formula at the mean values for the 

explanatory variables : 

 

 
 

where  is the shock to significant explanatory variable  in time period t 

 

3. In the above formula, we introduce a unit change (or unit shock) by increasing the 

initial value of the shock term  by one (from zero) for variable , whose 

marginal effect we are trying to estimate, holding all other variables constant at their 

respective means. The resulting is recorded. Similarly a sustained shock is 

introduced by increasing all the shock values for an explanatory variable  by one, 

holding all other variables constant at their respective means. The calculated based 

on the sustained shock is also recorded.  

 

4. Since we are interested in the marginal effect of the explanatory weather variables on 

hourly load (which is not our dependent variable), we use the following equation to 

obtain our estimated hourly load ( ) from  values under both the initial and 

sustained shock scenarios: 
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We do not adjust our estimation of estimated hourly load from the log values by using 

standard deviation values because the next step makes such an adjustment irrelevant. 

The  ,  and  values are estimated as the 

average of the logged values of hourly load for the first 168 hours (from t=-168 to t=-

1) and using the following formula for the remaining time period (from t=0 to t=400): 

 

 
 

 

5. Finally, marginal effect of an explanatory variable on the hourly load is calculated as 

the difference between   after the introduction of the shock and  in the 

absence of shock. These are calculated for both scenarios i.e., one scenario where 

only the initial shock is introduced, and another scenario where the variable of 

interest suffers a sustained shock.   

 

The estimated marginal effects of the relevant significant weather variables for Trico, 

Graham and Mohave are illustrated by Figures 7, 8 and 9, respectively. These figures show 

marginal effects for the entire selected time period of 400 hours. The tabulated results for all 

three AEPCO utilities are presented in Appendix I. It must be noted that while we have estimated 

marginal effects for the entire selected time period (i.e., 400 hours), for sake of brevity, we 

present our tabulated results only for the first 48 hours of our total time period.  
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Figure 7: Marginal Effects for Trico 

 

(a) Temperature 

  Initial Shock     Sustained Shock 

 
 

 

(b) Wind Speed 

  Initial Shock     Sustained Shock 
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(c) Relative Humidity 

  Initial Shock     Sustained Shock 

  

 

(d) Solar Radiation 

  Initial Shock     Sustained Shock 
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Figure 8: Marginal Effects for Graham 

 

(a) Temperature 

  Initial Shock     Sustained Shock 

  

 

(b) Relative Humidity 

  Initial Shock     Sustained Shock 
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(c) Solar Radiation 

  Initial Shock     Sustained Shock 

  

 

Figure 9: Marginal Effects for Mohave 

 

(a) Temperature 

  Initial Shock     Sustained Shock 
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(b) Relative Humidity 

  Initial Shock     Sustained Shock 

  

 

(c) Solar Radiation 

  Initial Shock     Sustained Shock 
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The marginal effects for all three AEPCO utilities reflect the non-stationarity of the 

original hourly load data. This is evident from the fact that neither of the marginal effects shows 

dampening over time. For example, for Trico, Graham and Mohave the marginal impact of a 1 

°Fahrenheit increase in temperature decreases hourly load at an increasing rate over time, both in 

case of an initial shock or a sustained shock to temperature. As mentioned earlier, this counter-

intuitive relationship between temperature and hourly load is puzzling and merits further 

investigation  

Relative Humidity shows varied marginal effects for the three regions. For Trico and 

Mohave, a single percentage increase in relative humidity decreases hourly load consumption. 

However, for Graham, such an increase results in a positive change in hourly load.  

Moreover, for Trico, an increase in wind speed, through its consequent chilling effect, 

brings about a decrease in hourly load. The marginal effects of solar radiation show that by 

increasing the ambient temperature, a unit increase in solar radiation has a positive impact on the 

hourly load for all three AEPCO service regions. 

As mentioned in previous section of this chapter, in order to evaluate forecasting 

performance of the hourly load models, we compare the accuracy of our model forecasts (Full 

Model) with those of the so-called ‗No Weather‘ models, which do not include the weather 

variables. We use the last year in our dataset, 2004, and forecast 24-hour load profiles for the 

following two days of the year: 

 

1. Peak load day occurring in the dry summer season, i.e., during the time period from May 

to June 2004. 
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2. Peak load day occurring in the monsoon season i.e., during the time period from July to 

August 2004.  

The results of this evaluation are shown for all three AEPCO utilities in Table 16. 

 

Table 16: Evaluating Hourly Load Forecast Models 

 

    
Dry Summer  Monsoon  

    

Full Model 
No Weather 

Model 
Full Model 

No Weather 

Model 

Trico 

     
MAPE 6.027 5.876 3.932 3.934 

RMSE 3.391 3.269 4.603 4.648 

Peak Load Error% -6.701 -6.256 -3.211 -2.490 

     

Graham 

     
MAPE 2.595 2.970 1.781 1.799 

RMSE 1.026 1.252 0.589 0.589 

Peak Load Error% 3.935 5.118 -1.203 0.120 

     

Mohave 

     
MAPE 3.180 3.176 8.295 7.746 

RMSE 4.457 4.551 14.456 13.765 

Peak Load Error% 4.249 4.608 -6.495 -5.254 

          

 

 

From Table 16 it is evident that our hourly load models have varied performance across 

the seasons and regions. Our hourly model (Full model) performs well for both the dry summer 

and monsoon seasons of Graham, showing improvement of around 0.5 percent and 00.018 

percent over the Basic model. According to MAPE, the Full model performs better than the No 

Weather model in the monsoon season for Graham. However, peak load percentage error shows 



81 

 

that the Full model over-predicts by a greater percentage than the No Weather model under-

predicts. For Trico, the Full model shows improvement over the Basic No Weather  model only 

for the  monsoon season, with an improvement of 0.002 percent than the No Weather model. 

This improvement is also reflected in the RMSE. However, for Trico in the monsoon season, the 

No Weather model appears to forecast the peak load better than the Full model. In the dry-

summer season, the No Weather model performs better than the Full model according to all three 

measures of error. Mohave shows a reverse trend, with an improved forecasting performance in 

the dry summer season, but a poor performance in the monsoon season due to under-prediction.  

Generally lower performance in the monsoon season can be explained by the erratic 

weather conditions experienced during this season. For example, sudden rainfall often brings 

about a precipitous drop on temperature, bringing about sudden changes in electricity 

consumption. These effects are exacerbated at the hourly time scale, introducing further 

difficulties in predicting hourly load. Therefore we obtain mixed results from evaluating the 

performance of our hourly load forecasting models. These findings are further illustrated by 

forecast plots for the evaluation time periods given in Appendix D. 

 

5.3 Monthly Load Forecasting Model 

 

Table 17 shows the monthly model coefficient estimates with their associated standard 

deviations. In our monthly load forecasting model, except for solar radiation and relative 

humidity, the coefficients of all other variable are significant either at less than 0.001 level or at 

less than 0.05 level of significance. Therefore we cannot clearly establish the relationship 

between these weather elements and electricity load.  

Moreover, save relative humidity and precipitation, all other variables show the expected 
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signs. This implies that the generally assumed cooling effect of precipitation is not valid for the 

Tucson MSA region. In fact, the positive coefficient on precipitation lends credence to the theory 

that rainfall in Tucson pushes people indoors, increasing their consumption of electricity.  

Per capita income and change in population coefficients are clearly positive and significant, 

implying that load demand increases with population and per capita income. The positive and 

highly significant coefficient associated with copper mine production is consistent with the fact 

that the three mines in the region (Sierrita, Mission Complex and Silver Bell) are significant TEP 

customers and contributors to the load demand.  

The highly significant autoregressive lags of order 1, 3 and 12 were included in the monthly 

model to account for autocorrelation. This can be interpreted as stating that the load in the 

current month is also determined by load in the previous month, in the previous season and the 

previous year.  The coefficients associated with these terms indicate that while load in the current 

month is directly related to the load in the previous season, electric load in the previous month 

and the previous year have a negative impact on the current monthly load. This is an unexpected 

result which merits deeper investigation through future studies.  

From Table 17 we can clearly see that the Full model i.e. the hourly model which uses 

weather and socio-economic variables, performs better in terms of RMSE and MAPE of 2009 

load forecasts than the purely autoregressive model (referred to as the Basic model) used by 

electric utilities. In other words, on average the Full model forecasts are 4.73 percent more 

accurate than the forecasts from the Basic model. 

The marginal effects for the monthly load forecasting model were also calculated at the mean 

values for those explanatory variables which were found to be significant (Refer to Appendix J 

for details).  
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Based on per unit generation cost estimates provided in the  2008 study, ―Powering Arizona‖ 

(Considine & McLaren, 2008) , Table 18 shows that cost savings from utilizing the Full model as 

opposed to the Basic model are substantial.  This shows the economic value of improved load 

forecasts by incorporating weather information. We consider the following two situations in the 

electricity spot market: 

 

CASE A: Penalty for purchasing electricity in the spot market is equal to the cost of 

generating a unit of electricity.  

 

CASE B: Penalty for purchasing electricity in the spot market is equal to twice the cost of 

generating units of electricity, i.e., losses are asymmetrical. 

 

For calculations please refer to Appendix E. Here the ‗penalty‘ in the spot market 

actually refers to the spot market price for electricity. Due to absence of reliable data for our 

relevant region and cooperatives, we assume the above two situations. While these two cases 

provide a simple explanation of the monetary value of improved forecasts, future work can 

further study the impact of asymmetry of losses in the electricity spot market on the economic 

value of forecasts.  
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Table 17: Monthly Model Yule –Walker Estimates 

 

 

Variable   Full Model Basic Model 

Intercept 

 

1797*** 1099*** 

  

(121.323) (23.0153) 

Temp 

 

-62.907*** 
 

  

(2.864) 
 

Sqtemp 

 

0.601*** 
 

  

(0.024) 
 

RH 

 

0.729 
 

  

(0.374) 
 

SolRad 

 

0.002 
 

  

(0.053) 
 

Precip 

 

184.390* 
 

  

(75.140) 
 

Windspd 

 

75.384** 
 

  

(24.488) 
 

Int2 

 

-1.294** 
 

  

(0.355) 
 

PCY 

 

0.022*** 
 

  

(0.001) 
 

Popnch 

 

0.007** 
 

  

(0.002) 
 

Cuprod 

 

0.004** 
 

  

(0.001) 
 

Lag1 

 

-0.456** -0.585** 

  
(0.085) (0.06) 

Lag3 

 

0.188** 0.262** 

  

(0.083) (0.042) 

Lag12 

 

-0.236** -0.446** 

  
(0.083) (0.055) 

    AIC   1,077.22 1,364.44 

SBC 

 

1,116.13 1,375.59 

        

Forecasts for 2009     

RMSE 

 

34.80 94.24 

MAPE 

 

2.80 7.33 

        
Significance Levels *=0.05  **=0.01  ***=0.001 
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Table 18: Annual Cost Savings from Improved Monthly Forecasts for 2009 

 

Technology 

Average Cost of 

Generation* 

($ /MWh) 

Spot Market 

Penalty** 

($/MWh) 

CASE A: 

Annual Cost Savings 

($) 

CASE B: 

Annual Cost Savings 

($) 

Scrubbed Coal 51.5 103 23,802,647.86 42,249,940.55 

Conventional Gas 106 212 48,991,857.74 86,961,042.68 

*2008: Powering Arizona by Timothy Considine 

** Spot Market Penalty= 2 x Average Cost of Generation 

 

 

 

 

Next, Figure 10 illustrates load demand response under the Simple Change scenario 

(temperature increased by 6.336 °F per month and precipitation diminished by 10 percent per 

month ).We observe that the forecasted peak load is approximately 300 MW higher than  the 

previous 2009 year level. There is also a clearly discernable spike in load in the month of 

January. However, on the whole, monthly load appears to follow a similar seasonal pattern. It 

increases as the average load increases, and declines when the average monthly load curve 

declines. 

In Figure 11, monthly load forecasts in case of the More Intense Summer Shift (MISS) 

scenario show the expected load response when temperatures and precipitation change 

dramatically. Under this scenario, we assume a 50 percent decline in monsoon precipitation and 

warmer temperatures during the summer months from May to August (specifically an increase of 

4 ° C or 7.2 °F) and a general increase in temperature by 2.5° C (or 4.5 °F)  for the rest of the 

year.  We observe that the annual peak load, while still occurring in July, is more pronounced 

and is greater than the load under the Simple Change scenario in the same month in 2009. It must 

be noted that the seasonal patterns remain intact in either of the scenarios. Moreover, in both 
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scenarios load demand at the beginning of the year shows an unexpected spike. However, in 

MISS the load curve appears to be more highly peaked in July, as compared to the simple change 

scenario. 

 

Figure 10: Simple Change Scenario for Monthly Model  
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Figure 11: More Intense Summer Shift Scenario for Monthly Model 

 

 

 

The economic and policy implications of the more pronounced seasonal effects are 

further discussed in the final Chapter.  

The marginal effects for the monthly load forecasting model were calculated at the mean 

values ( ) for those explanatory variables which were found to be significant. Since the 

coefficients associated with relative humidity and solar radiation were not significant, their 

marginal effects were not calculated. Due to the presence of autoregressive terms at lags 1, 3 and 

12, we utilized an approach similar to that used for estimating the marginal effects for the hourly 

load forecasting models. Therefore, the marginal effects of the significant explanatory variables 

in the monthly model were estimated using the following steps: 

 

1. First, we estimated the long term value of the dependent variable, average hourly load 
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in a specific month ( , using the following formula: 

 

 
 

 

where i = 1, 2 ….10 is the number of explanatory variables and t= -12, -11,.., 0,..,1, 2, 

,107 refers to a specific month in time period of 120 months. is the intercept term 

estimate from the model results and  ,  and ,  are estimated model 

coefficients for the AR(1), AR(3) and AR(12)  terms.  refers to model coefficient 

for explanatory variable   

 

2. Next, we assume that the estimated value of the dependent variable (  for the first 

12 time periods (i.e., first 12 months) is equal to the long term value calculated in the 

previous step. The estimated value of the dependent variable for the remaining time 

periods (i.e., from t=0 to t=107) is calculated by the following formula at the mean 

values for the explanatory variables : 

 

 
 

where  is the shock to significant explanatory variable  in time period t 

 

3. In the above formula, we introduce a unit change (or unit shock) by increasing the 

initial value of the shock term  by one (from zero) for variable , whose 

marginal effect we are trying to estimate, holding all other variables constant at their 
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respective means. The resulting is recorded.  

 

4. Similarly a sustained shock is introduced by increasing all the shock values for an 

explanatory variable  by one, holding all other variables constant at their respective 

means. The calculated based on the sustained shock is also recorded.  

 

 

5. Marginal effects are calculated as the difference between  after the introduction of 

the shock and in the absence of shock. These are calculated for both scenarios i.e., 

one scenario where only the initial shock is introduced, and another scenario where 

the variable of interest suffers a sustained shock.   

 

The estimated marginal effects for the monthly model are illustrated by Figure 12 for the 

time period of 60 months (i.e., from t=0 to t=60).  For sake of brevity, the marginal effects 

results for only 48 months (i.e., from t=0 to t=48) are tabulated in Appendix J.  
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Figure 12: Marginal Effects for Monthly Model 

 

(a) Temperature 

Initial Shock      Sustained Shock 

 

  

 

(b) Precipitation 

 

Initial Shock      Sustained Shock 
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(c) Wind Speed 

 

Initial Shock      Sustained Shock 

 

  

 

 

(d) Per Capita Income 

 

Initial Shock      Sustained Shock 

 

  



92 

 

(e) Change in Population 

 

Initial Shock      Sustained Shock 

 

  

 

(f) Copper Mine Production 

 

Initial Shock      Sustained Shock 
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The marginal effects indicate that when temperature rises by 1 °Fahrenheit from the 

mean, the average hourly load in a specific month at increases in the first period, by 

approximately 14 MW, and then decreases precipitously in the next by around 6 MW, following 

a pattern of rise and fall in alternate periods until the marginal effect due to an initial shock to 

temperature damps out by the 60
th
 month in the future. A sustained shock to temperature by 1 

°Fahrenheit increases the average hourly load in a month such that the new long term mean is 

also increased to a higher level by approximately 9 MW.  

Precipitation, per capita income, population change and copper mine production displays 

a similar trend. A sustained unit shock has a positive long term impact on average hourly load in 

a month. However, a unit increase in wind speed brings about a chilling effect, reducing the 

average hourly load in a specific month by almost 13 MW in the first period. In the next period, 

this initial shock results in an increase of 6 MW, followed by another crest-trough pattern, in 

dampening manner. It must be noted that a unit sustained shock to wind speed negatively 

impacts the long term value of average hourly load in a month by around 9 MW.  
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CHAPTER 6 Conclusion 

 

6.1 Significant Findings 

 

As is evident from the increased incidence of extreme weather events worldwide, climate 

change is already underway globally. Most global climate models (GCMs) predict hotter and 

drier weather for the southwestern United States. Despite the variety of load forecasting tools 

available, electric utilities tend to utilize the simplest approach of using past load data to predict 

future load profiles.  In light of climate change, electric utilities need to adapt their current load 

forecasting techniques to avoid significant losses through inaccuracies in predictions.  

In this study we investigate the potential for adapting the current load forecasting techniques 

to climate change by incorporating weather variables into the current models used by electric 

utilities. We constructed three hourly load forecasting models for three AEPCO cooperatives 

(Trico, Graham and Mohave) and one monthly load forecasting model for the TEP utility in the 

Tucson MSA.  

The hourly load forecasting model followed the basic construct of a transfer function with 

seasonal multiplicative ARMA errors. Our results suggest that the new hourly load forecasting 

models have varied performance across regions and seasons. For the Graham electric cooperative 

our hourly model showed improvement over the Basic model (model without weather variables 

and seasonal dummies) for both the monsoon as well as the dry summer peak day evaluation 

periods. Our hourly models for Trico and Mohave performed well in the dry summer season, but 

showed a higher forecast error percentage in case of the monsoon season. This hints at the 

possibility that our hourly models failed to capture some aspects of seasonality and weather 
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variations. Moreover, the highly erratic weather conditions during the monsoon season further 

complicated the process of generating accurate load forecasts for the study regions  

Our monthly load forecasting model for TEP involved a regression with autoregressive 

terms. It showed modest improvement in terms of forecast accuracy (approximately 5 percent 

improvement) over the purely autoregressive model.  

 

6.2 Policy Implications and Future Research 

 

We recognize the potential for improving the performance of our hourly load forecasting 

models by going beyond the use of seasonal dummies and utilizing more sophisticated 

techniques to model the complex seasonality which exists at the hourly time scale. Future 

research in this field can explore the use of complex sinusoidal functions or polynomials, such as 

those discussed by Tanimoto (2008).    Also, in order to further improve forecasting ability, 

additional information regarding load attributable to various customer class types will be very 

valuable and particularly helpful for modeling seasonality. This is because each customer class 

responds in a different manner to changes in weather, seasons, time of day, day of week etc. For 

example, household consumption of electricity on weekends is higher than that of commercial 

customers. However, information regarding individual customer class load was suppressed due 

to confidentiality reasons in our current load data.  

While our models have assumed static seasons, i.e. we assume seasonal time periods to have 

remained static over the period of our study; we recognize the impact of climate change on the 

time period and severity of the seasons. This is a growing concern among the scientific 

community, as is reflected in the increased interest in the changing patterns in the growing 
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seasons of crops (Backlund, 2008). As shown by the results of our monthly model, the annual 

peak load occurs during the monsoon season. Therefore, the monsoon season is of critical 

importance for the electricity industry. We recommend the utilization of dew point readings as 

opposed to fixed dates for the beginning and the end of the monsoon season. Future research can 

focus on the creation of such seasonal shift indicators to further adapt load forecasting models to 

climate change.  

Furthermore, we acknowledge that the use of actual weather data in  out-of-sample prediction 

(based on the hold-out sampling approach) assumes perfect knowledge of weather events. Since 

electric utilities use weather forecasts in reality, the quality of weather forecasts used is a crucial 

consideration in assessing forecasting performance. Future work can involve assessing the 

forecasting performance of our models based on daily and seasonal weather forecasts. 

Despite these shortcomings, improved forecasts from our monthly models exhibit potential 

for applications in a variety of areas. For example, the load forecasting models presented in this 

study can also be used to predict the hour of the day as well as the day of the year when the 

annual peak load is likely to occur. While this has not been shown explicitly in this study, further 

research can explore this aspect of our models. 

The most evident benefit from more accurate load forecasts is the economic value due to 

minimizing exposure to the volatile spot markets. As we have already mentioned, electric load 

demand exhibits seasonal fluctuations due to changing climatic conditions. Since the supply side 

is also vulnerable to these changes, this translates into seasonal behavior of spot market prices as 

well. Moreover, spot electricity prices exhibit infrequent, but large jumps. This is the 

consequence of the fact that electricity to be delivered at a specific hour cannot be substituted for 

electricity available shortly after or before, since it has to be consumed at the same time as it is 
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produced. Any severe fluctuations in demand or even small increments in demand when the 

demand level is high, causes huge price spikes (Weron, 2006). Keeping these factors in mind we 

may assume that, in response to climate change, the future spot market conditions will grow 

increasingly volatile. Therefore, more accurate load forecasting models that incorporate the 

changing climate information will minimize a utility‘s need for engaging in the volatile 

electricity spot markets.  

Moreover, electric utilities are likely to reap economic benefits from using improved load 

forecasts in contract evaluations and evaluations of various sophisticated financial products on 

energy pricing offered by the market. 

More accurate load forecasts can also aid in reducing the carbon footprint of electric utilities 

by ensuring efficient utilization of resources and reduced GHG emissions.  

For obtaining a more comprehensive picture of the impact of climate change on the 

electricity industry, future work can focus on using dynamically downscaled GCM data to 

predict future load profiles in light of different climate change scenarios. These predicted load 

profiles can then influence discussions on the economic and environmental viability of 

investment in generation technologies. For example, in Arizona, the Renewable Energy Portfolio 

Standard (RPS) requires electricity providers to supply 15 percent of their electricity from 

renewable sources by the year 2025. For this region, solar energy is considered a natural 

alternative to current generating technologies. However, the inhibiting factor for the installation 

of large solar thermal power plants is their high water demand (Pasqualetti, 2010). .Moreover, 

since 2007, Georgia, Idaho, Arizona, and Montana have denied permits for conventional power 

plants because there was not enough water to run them (Glennon 2009). Using improved 

climate-sensitive load forecasts and water-use estimates for alternative generation technologies, 
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one can study the water-use implications of solar energy prospects in the water-scarce Arizona 

under various climate change scenarios.  
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APPENDIX A List of Abbreviations 

 

ACF Autocorrelation function  

ADF Augmented Dickey Fuller  

AEPCO Arizona Power Cooperative 

ARIMA Autoregressive Integrated Moving Average 

ARMA Autoregressive Moving Average 

AZDMMR Arizona Department of Mines and Mineral Resources  

AZMET Arizona Meteorological Network  

CDC Carbon Disclosure Project 

EPRI Electric Power Research Institute  

ESACF Extended Sample Autocorrelation Function  

GCEC Graham County Electric Cooperative 

GCM Global Climate Model 

GHG Green House Gas 

IACF Inverse autocorrelation function  

IPCC Intergovernmental Panel on Climate Change 

LTLF Long-term load forecasting  

MAPE Mean Absolute Percentage Error  

MEC Mohave Electric Cooperative 

MINIC Minimum Information Criterion  

MISS More Intense Summer Shift  

MSA Metropolitan Statistical Area  

MTLF Medium-term load forecasting  

PACF Partial Autocorrelation function  

RMSE Root Mean Squared Error  

RPS Renewable Energy Portfolio Standard  
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STLF Short-term load forecasting  

TEP Tucson Electric Power  

UNFCCC United Nations Framework Convention on Climate Change  

USGCRP U.S. Global Change Research Program  

USGS U.S. Geological Survey 
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APPENDIX B Godfrey Lagrange Multiplier Test for Serial Autocorrelation 

 

  Trico Graham Mohave 

Alternative LM Pr>LM LM Pr > LM LM Pr > LM 

1 161.6 <.0001 0.3 0.586 10.73 0.0011 

2 167.6 <.0001 0.48 0.7884 11.34 0.0034 

3 606.4 <.0001 21.64 <.0001 69.46 <.0001 

4 638.2 <.0001 126.6 <.0001 95.03 <.0001 

5 903.6 <.0001 263.5 <.0001 217.1 <.0001 

6 1318 <.0001 432.3 <.0001 499.6 <.0001 

7 1954 <.0001 761.5 <.0001 1166 <.0001 

8 2605 <.0001 1128 <.0001 1428 <.0001 

9 2733 <.0001 1349 <.0001 1743 <.0001 

10 2994 <.0001 1614 <.0001 2033 <.0001 

11 3106 <.0001 1793 <.0001 2323 <.0001 

12 3253 <.0001 1953 <.0001 2593 <.0001 

13 3509 <.0001 2259 <.0001 3011 <.0001 

14 3933 <.0001 2575 <.0001 3668 <.0001 

15 4587 <.0001 3005 <.0001 4208 <.0001 

16 4895 <.0001 3465 <.0001 4736 <.0001 

17 5488 <.0001 3848 <.0001 5139 <.0001 

18 5793 <.0001 4082 <.0001 5419 <.0001 

19 5962 <.0001 4201 <.0001 5532 <.0001 

20 6167 <.0001 4275 <.0001 5605 <.0001 

21 6247 <.0001 4297 <.0001 5606 <.0001 

22 6400 <.0001 4300 <.0001 5606 <.0001 

23 6949 <.0001 4681 <.0001 6034 <.0001 

24 7013 <.0001 4755 <.0001 6120 <.0001 

25 7964 <.0001 5081 <.0001 6536 <.0001 

26 7980 <.0001 5109 <.0001 6552 <.0001 

27 7986 <.0001 5110 <.0001 6553 <.0001 

28 7993 <.0001 5122 <.0001 6555 <.0001 

29 7994 <.0001 5151 <.0001 6564 <.0001 

30 8004 <.0001 5206 <.0001 6588 <.0001 

31 8006 <.0001 5259 <.0001 6618 <.0001 

32 8024 <.0001 5294 <.0001 6624 <.0001 

33 8024 <.0001 5303 <.0001 6626 <.0001 

34 8027 <.0001 5305 <.0001 6626 <.0001 

35 8041 <.0001 5307 <.0001 6626 <.0001 
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36 8045 <.0001 5308 <.0001 6627 <.0001 

37 8085 <.0001 5330 <.0001 6629 <.0001 

38 8117 <.0001 5361 <.0001 6665 <.0001 

39 8266 <.0001 5390 <.0001 6753 <.0001 

40 8320 <.0001 5411 <.0001 6787 <.0001 

41 8351 <.0001 5422 <.0001 6816 <.0001 

42 8374 <.0001 5425 <.0001 6839 <.0001 

43 8381 <.0001 5430 <.0001 6856 <.0001 

44 8420 <.0001 5432 <.0001 6867 <.0001 

45 8432 <.0001 5434 <.0001 6867 <.0001 

46 8433 <.0001 5434 <.0001 6874 <.0001 

47 8456 <.0001 5434 <.0001 6876 <.0001 

48 8462 <.0001 5491 <.0001 6890 <.0001 
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APPENDIX C Traffic Count-based Monthly Population Estimate 

 

Step 1: Selection of  Permanent Traffic Counter based on region:  Table C1 lists the Permanent 

Traffic Counter ID numbers designated for each region of the Pima County. For every year, one 

from each region was selected to ensure that the total traffic count from all counters were 

representative of the whole county. 

Table C1: Pima County Traffic Counter ID Numbers by Region 

North 

(n=1) 

South 

(n=2) 

Southeast 

(n=3) 

Southwest 

(n=4) 

Northwest 

(n=5) 

Northeast 

(n=6) 

1 28 21 4 25 26 

10 13 22 5 19 8 

6 31 9 30 33 23 

24 22 

  

20 3 

35 27 

   

3 

12 

     

 

Step 2: Calculate Average Monthly Traffic Count for each month: The Average monthly traffic 

count ( ) for each month of the year was calculated by the following formula: 

 

where  = Traffic count from the selected regional Pima County Traffic Counter in region ‗n‘ 

 j = 1, 2,….12 refers to months of the year 

t = 1,2,…..10 refers to years starting 2000 to 2009 
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n = 1,2,…..6 refers to the region of Pima County 

 Approximately 12 percent of the traffic count values (88 out of 720 values) were missing. These 

missing values were filled in using averages, and are italicized in Tables C2 to C11. .  

 

Step 3: Calculate monthly population estimate using   and census population estimates: The 

following formula was utilized to estimate population for month j in year t: 

   

where  i = 1, 2,….120  refers to the total number of sample observations  

CenPopnt = Annual Census Population estimate for year t  

 



105 

 

Table C2: Pima County Traffic Count Values for Year 2000 

 

Traffic 

Intersection Region Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total 

Alvernon S of 
Irvington S 19561 20535 20279 19584 19140 18297 18029 19028 18085 18693 18432 18569 228232 

Ina RD E of 

La Canada N 35437 37672 37259 37047 36079 35805 34347 35374 34982 36236 36790 38523 435551 

Kolb Rd S of 
Valencia SE 10836 11690 11392 10865 9854 9470 9216 9487 9531 10624 10321 10349 123635 

Mission RD S 
of Wyoming 
Strt SW 20935 22206 22315 21984 21185 20865 21583 22750 22861 22838 22683 23145 265350 
Tanque 
Verde Rd E 

of Pio 
Decimo NE 47964 49164 50555 50406 49436 48553 46970 47589 49073 49079 47666 49798 586253 

La Cholla 
Blvd North of 
Sunset Rd NW 24650 26074 26254 26370 25698 25446 25744 25194 26042 26994 26288 26568 311322 

  Average  26,563.83 27,890.17 28,009.00 27,709.33 26,898.67 26,406.00 25,981.50 26,570.33 26,762.33 27,410.67 27,030.00 27,825.33 325,057.17 

  Weight 0.0817 0.0858 0.0862 0.0852 0.0828 0.0812 0.0799 0.0817 0.0823 0.0843 0.0832 0.0856 1.00 
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Table C3: Pima County Traffic Count Values for Year 2001 

 

Traffic 

Intersection Region Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total 

Alvernon S of 
Irvington S 18811 19719 20429 19877 19132 19574 18305 19126 18035 19112 19080 18795 229995 

Ina RD E of 

La Canada N 37517 38034 38342 37442 36552 35802 34881 35340 33398 34181 34953 36244 432686 

Kolb Rd S of 
Valencia SE 11004 11807 11816 11308 10584.5 10584.5 9861 10245 9811 10609 11110 9306 128046 

Mission RD S 
of Wyoming 
Strt SW 22601 24278 24696 24705 24653 24141 24869 25539 24987 25064 24413 24773 294719 
Tanque 
Verde Rd E 
of Pio 
Decimo NE 48537 51231 50501 50113 48532 46678 48187 48852 49549 50622 47813 48902.5 589517.5 

La Cholla 
Blvd North of 
Sunset Rd NW 25650 27956 27476 27125 26485 26489 25098 23772 20132 20137 19769 20028 290117 

  Average  27,353.33 28,837.50 28,876.67 28,428.33 27,656.42 27,211.42 26,866.83 27,145.67 25,985.33 26,620.83 26,189.67 26,341.42 327,513.42 

  Weight 0.0835 0.0880 0.0882 0.0868 0.0844 0.0831 0.0820 0.0829 0.0793 0.0813 0.0800 0.0804 1.00 
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Table C4: Pima County Traffic Count Values for Year 2002 

 

Traffic 

Intersection Region Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total 

Alvernon S of 
Irvington S 18247 19940 20141 20148 19761 19460 18403 19902 20154 20406 19895 19822 236279 

Ina RD E of 

La Canada N 34876 35647 36057 35596 35075 33437 31043 32812 32446 32402 32591 34566 406548 

Kolb Rd S of 
Valencia SE 10468 11763 11974 11512 10689 10445.5 10202 11436 12670 10544 10932.5 10168.5 132804.5 

Mission RD S 
of Wyoming 
Strt SW 25160 25629 24446 24536 22886 22401 21007 22777 23554 24252 24402 24342 285392 
Tanque 
Verde Rd E 

of Pio 
Decimo NE 47902 49043 49991 50316 49087 46976 44558 45780 47002 49505 47458 48007 575625 
River Rd East 
of Shannon 
Rd NW 16858 17613 18730 18591 18821 18659 18295 19526 19843 20875 21441 22007 231259 

  Average  25,585.17 26,605.83 26,889.83 26,783.17 26,053.17 25,229.75 23,918.00 25,372.17 25,944.83 26,330.67 26,119.92 26,485.42 311,317.92 

  Weight 0.0822 0.0855 0.0864 0.0860 0.0837 0.0810 0.0768 0.0815 0.0833 0.0846 0.0839 0.0851 1.00 
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Table C5: Pima County Traffic Count Values for Year 2003 

 

Traffic 

Intersection Region Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total 

Alvernon S of 
irvington S 19535.5 20976 21008 20672 20166 20487 19327 19876 20356 20346 20022 19698 242469.5 

Ina RD E of 

La Canada N 31130 33481 33183 33070 32744 31813 29967 32622 31169 29716 34511 35607 389013 

Kolb Rd S of 
Valencia SE 10855 11873.25 12349.5 11849.5 11154 11506 10401 9996 9927 10479 10755 11031 132176.25 

Mission RD S 
of Wyoming 
Strt SW 23836 24667 24534 24141 23350 22655 22145 22494.5 22890.5 23482.5 23165 22470 279830.5 
Tanque 
Verde Rd E 

of Pio 
Decimo NE 48642 48269 49807 50749 50693 49686 47615 48096 46898.5 49708.5 49175 49408 588747 
River Rd East 
of Shannon 
Rd NW 21944 22930 22743 22595 22673 22306 21581 23361 22869 23414 23421 20612 270449 

  Average  25,990.42 27,032.71 27,270.75 27,179.42 26,796.67 26,408.83 25,172.67 26,074.25 25,685.00 26,191.00 26,841.50 26,471.00 317,114.21 

  Weight 0.0820 0.0852 0.0860 0.0857 0.0845 0.0833 0.0794 0.0822 0.0810 0.0826 0.0846 0.0835 1.00 
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Table C6: Pima County Traffic Count Values for Year 2004 

 

Traffic 

Intersection Region Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total 

Alvernon S of 
irvington S 20824 21469 22010 21776 21110 23450 24328 24069 23197 24340 23642 23502 273717 

Ina RD E of 

La Canada N 35430 37092 37623 36888 36528 34112.5 32853.5 34133.5 33359.5 33161 37128 38061 426370 

Kolb Rd S of 
Valencia SE 11242 11983.5 12725 12187 11200 10985 10575 11382 11237 12340 12703 12602 141161.5 

Mission RD S 
of Wyoming 
Strt SW 23441 24111 24280 23823 23318 22530 21453 22212 22227 22713 21928 21436 273472 
Tanque 
Verde Rd E 

of Pio 
Decimo NE 49671 50217 51842 51378 50656 49146 46300 48863 46795 49912 48589 48870 592239 
River Rd East 
of Shannon 
Rd NW 22888 21011.5 19936 23687 22680 22346 20975.5 22472 18170 18353 18840 19217 250576 

  Average  27,249.33 27,647.33 28,069.33 28,289.83 27,582.00 27,094.92 26,080.83 27,188.58 25,830.92 26,803.17 27,138.33 27,281.33 326,255.92 

  Weight 0.0835 0.0847 0.0860 0.0867 0.0845 0.0830 0.0799 0.0833 0.0792 0.0822 0.0832 0.0836 1.00 
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Table C7: Pima County Traffic Count Values for Year 2005 

 

Traffic 

Intersection Region Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total 

Alvernon S of 
irvington S 24374 25237 25721 25627 25372 23293 21999 24436 22013 22603 22184 22236 285095 

Ina RD E of 

La Canada N 37667 39186 39360 38715 37927 36412 35740 35645 35550 36606 37007 37210 447025 

Kolb Rd S of 
Valencia SE 43466 45091 46107 45198 42997 41748 40497 41094 40445 42657 42111 41956 513367 

Mission RD S 
of Wyoming 
Strt SW 22634 23188 23359 23651 22739 21943 21062 21956 21763 22402 22173 21844 268714 
Tanque 
Verde Rd E 

of Pio 
Decimo NE 49593 49386 50516 51040 49871 48702 46768 47431 48094 48312 48530 47839 586082 
River Rd East 
of Shannon 
Rd NW 18849 19093 17129 16852 16998 16785 20370 21583 20391 21301 21108 22230 232689 

  Average  32,763.83 33,530.17 33,698.67 33,513.83 32,650.67 31,480.50 31,072.67 32,024.17 31,376.00 32,313.50 32,185.50 32,219.17 388,828.67 

  Weight 0.0843 0.0862 0.0867 0.0862 0.0840 0.0810 0.0799 0.0824 0.0807 0.0831 0.0828 0.0829 1.00 
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Table C8: Pima County Traffic Count Values for Year 2006 

 

Traffic 

Intersection Region Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total 

Alvernon S of 
irvington S 24150 23968 23615 23435 22854 24100 21182 21874 22551 22587 22067 22102 274485 

Ina RD E of 

La Canada N 36804 38211 37775 37700 36310 34974 33897 37399 35387 35602 36432 37027 437518 

Kolb Rd S of 
Valencia SE 13220 13651 13678 13108 11848 11666 11194 11623 12061 12984 13554 14151 152738 
Mission RD S 
of Wyoming 
Strt SW 23194 24486.5 23098 22973 22536 21684 20783 21707 22449 22924 23422 23861 273117.5 

Tanque 
Verde Rd E 
of Pio 
Decimo NE 47759 48665 49508 49260 48219 46270 43810 46353 47097 47245 46293 46187 566666 
River Rd East 
of Shannon 
Rd NW 22022 21814 21370 20937 20465 20163 19823 21011 20908 20712 20891 21902 252018 

  Average  27,858.17 28,465.92 28,174.00 27,902.17 27,038.67 26,476.17 25,114.83 26,661.17 26,742.17 27,009.00 27,109.83 27,538.33 326,090.42 

  Weight 0.0854 0.0873 0.0864 0.0856 0.0829 0.0812 0.0770 0.0818 0.0820 0.0828 0.0831 0.0844 1.00 
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Table C9: Pima County Traffic Count Values for Year 2007 

 

Traffic 

Intersection Region Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total 

Alvernon S of 
irvington S 22137 23127 23537 23460 22892 22822 24078 24181 24045 24328 23186 21690.5 279483.5 

Ina RD E of 

La Canada N 35821 36928 36712 36542 34232 34945 35284 36856 37004 36614 36829 37693 435460 

Kolb Rd S of 
Valencia SE 13829 14496 14729 14113 13034 13350 12708 13402 13990 17015 14020 14069.75 168755.75 

Mission RD S 
of Wyoming 
Strt SW 23754 25785 26618 25912 25325 25018 23851 24886.5 25922 24796 22503 22082 296452.5 
Tanque 
Verde Rd E 

of Pio 
Decimo NE 46080 47716 49094 48578 48016 46445 44195 46184 47343 47500 46402 45681 563234 

Ruthrauff Rd 
S of 
Seabrooke Dr NW 10886 14272 14728 19189 18884 21255 23489 24764 24545 23653 21795 20951 238411 

  Average  25,417.83 27,054.00 27,569.67 27,965.67 27,063.83 27,305.83 27,267.50 28,378.92 28,808.17 28,984.33 27,455.83 27,027.88 330,299.46 

  Weight 0.0770 0.0819 0.0835 0.0847 0.0819 0.0827 0.0826 0.0859 0.0872 0.0878 0.0831 0.0818 1.00 
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Table C10: Pima County Traffic Count Values for Year 2008 

 

Traffic 

Intersection Region Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total 

Alvernon Wy 
S of Irvington 
Rd  S 21860 22955 23201 22829 23150 24689 24275 25643 29100 22617 21433 21279 283031 

Ina RD E of 
La Canada N 37162 37068 39028 37772 36958 35262 32325 35183 34838 36047 35829 36520 433992 

Kolb Rd S of 
Valencia SE 14148 15070 15134 14448 13144 12703 12252 13242 13577 15435 13925 13929 167004 

Mission RD S 
of Wyoming 
Strt SW 22445 22807 22896 22947 22075 20819 19977 21150 21433 22134 21926 21891 262500 
Tanque 
Verde Rd E 
of Pio 

Decimo NE 46239 47629 48997 47698 47444 45050 42942 44799 45159 46374 45519 45175 553025 

River Rd E of 
Shannon Rd NW 19154 21374 19709 19595 19045 17650 17383 18272 18095 18415 19789 21367 229848 

  Average  26,834.42 27,817.17 28,160.83 27,548.17 26,969.33 26,028.83 24,859.00 26,381.33 27,033.58 26,836.99 26,403.44 26,693.45 321,566.55 

  Weight 0.0834 0.0865 0.0876 0.0857 0.0839 0.0809 0.0773 0.0820 0.0841 0.0835 0.0821 0.0830 1.00 
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Table C11: Pima County Traffic Count Values for Year 2009 

 

Traffic 

Intersection Region Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total 

Alvernon Wy 
S of Irvington S 21582 22783 22865 22198 25007 26088 26117 34057 25533 24885 24777 24764 300656 

Ina RD E of 

La Canada N 35720 37166 37061 36470 35419 34114 32623 33509 32672 32368 34814 34871 416807 

Kolb Rd S of 
Valencia SE 14466 14999 15532 14625 13393 13142 12703 13081 13163 13854 13898 13899 166755 

Valencia Rd 
E of Camino 
De Oeste SW 24117 25258 25250 24715 25060 24267 23772 24691 24285 24355 24336 24333 294439 

Ruthrauff Rd 
S of 
Seabrooke Dr NW 20819 24178 25106 24668 24611 24168 22036 20797 19651 20426 24725 24697 275882 

Sabino 
Canyon Rd S 
of Cloud Rd NE 38139 39381 42242 47291 54238 40794 54665 41929 38285 51094 42532 42663 533253 

  Average  25,807.17 27,294.17 28,009.33 28,327.83 29,621.33 27,095.50 28,652.67 28,010.67 25,598.13 27,830.27 27,513.68 27,537.85 331,298.60 

  Weight 0.0779 0.0824 0.0845 0.0855 0.0894 0.0818 0.0865 0.0845 0.0773 0.0840 0.0830 0.0831 1.00 

 

 



The figure below shows the incremental changes in Pima county population from month 

to month in the years 2000 and 2001. It is evident that monthly population shows significant 

variation over the calendar year due to the departure of college students in the summer and the 

arrival of vacationers during the mild winter months.  
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APPENDIX D Comparing 24-Hour Peak Day Load Forecasts with Actual Load  

 

1. Trico Dry Summer  (May 29, 2004)  

 

2. Trico Monsoon (August 11, 2004) 
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3. Graham Dry Summer (June 3, 2004) 

 

 

4. Graham Monsoon (July 21, 2004) 
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5. Mohave Dry Summer (June 24, 2004) 

 

6. Mohave Monsoon (August 11. 2004) 
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APPENDIX E Calculating Annual Cost Savings from Monthly Model 2009 Forecasts 

 

In order to calculate annual cost savings from the use of improved forecasts from the Full 

model as compared to the Basic model, we follow the steps as listed below: 

 

1. We obtain estimates of average per unit generation costs for different technologies. In our 

study we utilized 2009 estimates provided by Timothy Considine in his study ―Powering 

Arizona‖ (2010). This estimate for scrubbed coal is $ 51.5/MW, while for conventional 

gas is $ 106/MW. 

 

2. We calculate forecast errors for each month of the year 2009, whose absolute value is 

multiplied by the number of hours in a month, per unit generation cost and a spot market 

indicator to obtain losses due to forecast errors for the respective model. We apply this 

calculation to both the Full and Basic model forecasts for the year 2009. The spot market 

indicator is defined in the following manner: 

 

where   

Therefore a positive forecast error implies under-production by the electric utility, 

necessitating its entry into the spot market (spot market indicator=2), where it pays twice 

as much for a unit of electricity than if it generated it (i.e., CASE B). Under this scenario 

we assume that the losses in the spot market are asymmetrical, depending upon whether 

the utility is under-producing or over-producing electricity. We incorporate this 

asymmetry by assuming that the loss per MW incurred by the electric utility in case of 
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underproduction is twice the generation cost per unit of electricity 

 

However, in absence of specific data regarding the spot market, we also assume a simple 

scenario where the losses per MW incurred by the electric utility in case of 

overproduction or underproduction are equivalent (i.e., CASE A). This means that even if 

the utility generates less electricity than required, it incurs a purchase price per unit of 

electricity in the spot market that we assume is equal to the cost of generation per unit.  

 

3. Next, we calculate the annual cost savings using the following formula: 

 

 

 

 

 

These calculations are illustrated by Tables E1 to E4 for Case A and Tables E5 to E8 for 

Case B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Annual Cost 

Savings    

(in $) 

= 

Total losses due to 

forecast errors from 

Basic Model  

- 

Total losses due 

to forecast errors 

in Full Model 
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Table E1 : CASE A Full Model with Scrubbed Coal Technology 

       Month Hours 
in 

Month 

(1) 

Actual 
Load (2) 

Forecast 
(3) 

Error        
(4)=(2)-(3) 

Spot 
Market 

Indicator 

(5) 

Losses                                           
(6) = |(4)|x 51.5 x (1) x (5)  

Jan 744 967.27 979.54 -12.28 1 470,392.88 

Feb 672 962.81 976.84 -14.03 1 485,528.74 

Mar 744 928.97 971.27 -42.30 1 1,620,739.31 

Apr 720 966.29 1,002.88 -36.58 1 1,356,560.54 

May 744 1,207.80 1,264.59 -56.79 1 2,175,860.95 

Jun 720 1,285.39 1,335.60 -50.21 1 1,861,604.22 

Jul 744 1,551.38 1,581.89 -30.51 1 1,169,008.29 

Aug 744 1,519.35 1,535.80 -16.46 1 630,519.35 

Sep 720 1,341.40 1,340.45 0.95 1 35,144.42 

Oct 744 1,044.57 1,065.32 -20.75 1 794,973.79 

Nov 720 934.49 984.85 -50.36 1 1,867,320.34 

Dec 744 991.65 1,025.40 -33.75 1 1,293,061.46 

          Total (7) 13,760,714.29 

       

 
Table E2 : CASE A Basic Model with Scrubbed Coal Technology 

       Month Hours 

in 
Month 

(1) 

Actual 

Load (2) 
Forecast 

(3) 
Error        

(4)=(2)-(3) 
Spot 

Market 
Indicator 

(5) 

Losses                                           

(6) = |(4)|x 51.5 x (1) x (5)  

Jan 744 967.27 999.42 -32.15 1 1,231,923.15 

Feb 672 962.81 1,030.31 -67.51 1 2,336,302.41 

Mar 744 928.97 1,023.75 -94.78 1 3,631,541.40 

Apr 720 966.29 1,037.21 -70.91 1 2,629,418.31 

May 744 1,207.80 1,077.08 130.72 1 5,008,846.07 

Jun 720 1,285.39 1,258.76 26.63 1 987,589.09 

Jul 744 1,551.38 1,373.64 177.74 1 6,810,308.65 

Aug 744 1,519.35 1,442.72 76.62 1 2,935,918.78 

Sep 720 1,341.40 1,374.30 -32.91 1 1,220,143.20 

Oct 744 1,044.57 1,189.78 -145.21 1 5,563,933.74 

Nov 720 934.49 1,001.04 -66.55 1 2,467,662.84 

Dec 744 991.65 920.14 71.50 1 2,739,774.51 

          Total (8) 37,563,362.15 

    Annual Cost Savings (9)=(8)-(7)= 23,802,647.86 
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Table E3 : CASE A Full Model with Conventional Gas Technology 

       Month Hours 
in 

Month 

(1) 

Actual 
Load (2) 

Forecast 
(3) 

Error        
(4)=(2)-

(3) 

Spot 
Market 

Indicator 

(5) 

Losses                                           
(6) = |(4)|x 106 x (1) x (5)  

Jan 744 967.27 979.54 -12.28 1 968,187.29 

Feb 672 962.81 976.84 -14.03 1 999,340.71 

Mar 744 928.97 971.27 -42.30 1 3,335,890.62 

Apr 720 966.29 1,002.88 -36.58 1 2,792,144.03 

May 744 1,207.80 1,264.59 -56.79 1 4,478,471.09 

Jun 720 1,285.39 1,335.60 -50.21 1 3,831,651.41 

Jul 744 1,551.38 1,581.89 -30.51 1 2,406,114.14 

Aug 744 1,519.35 1,535.80 -16.46 1 1,297,767.99 

Sep 720 1,341.40 1,340.45 0.95 1 72,336.08 

Oct 744 1,044.57 1,065.32 -20.75 1 1,636,256.73 

Nov 720 934.49 984.85 -50.36 1 3,843,416.62 

Dec 744 991.65 1,025.40 -33.75 1 2,661,446.88 

          Total (7) 28,323,023.59 

       

 
Table E4 : CASE A Basic Model with Conventional Gas Technology 

       Month Hours 

in 
Month 

(1) 

Actual 

Load (2) 
Forecast 

(3) 
Error        

(4)=(2)-
(3) 

Spot 

Market 
Indicator 

(5) 

Losses                                           

(6) = |(4)|x 106 x (1) x (5)  

Jan 744 967.27 999.42 -32.15 1 2,535,608.82 

Feb 672 962.81 1,030.31 -67.51 1 4,808,700.11 

Mar 744 928.97 1,023.75 -94.78 1 7,474,628.90 

Apr 720 966.29 1,037.21 -70.91 1 5,412,006.61 

May 744 1,207.80 1,077.08 130.72 1 10,309,469.59 

Jun 720 1,285.39 1,258.76 26.63 1 2,032,707.65 

Jul 744 1,551.38 1,373.64 177.74 1 14,017,334.31 

Aug 744 1,519.35 1,442.72 76.62 1 6,042,861.95 

Sep 720 1,341.40 1,374.30 -32.91 1 2,511,362.71 

Oct 744 1,044.57 1,189.78 -145.21 1 11,451,980.13 

Nov 720 934.49 1,001.04 -66.55 1 5,079,073.02 

Dec 744 991.65 920.14 71.50 1 5,639,147.53 

          Total (8) 77,314,881.33 

    Annual Cost Savings (9)=(8)-(7)= 48,991,857.74 
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Table E5 : CASE B Full Model with Scrubbed Coal Technology 

       Month Hours 
in 

Month 

(1) 

Actual Load 
(2) 

Forecast 
(3) 

Error        
(4)=(2)-(3) 

Spot 
Market 

Indicator 

(5) 

Losses                                           
(6) = |(4)|x 51.5 x (1) x 

(5)  

Jan 744 967.27 979.54 -12.28 1 470,392.88 

Feb 672 962.81 976.84 -14.03 1 485,528.74 

Mar 744 928.97 971.27 -42.30 1 1,620,739.31 

Apr 720 966.29 1,002.88 -36.58 1 1,356,560.54 

May 744 1,207.80 1,264.59 -56.79 1 2,175,860.95 

Jun 720 1,285.39 1,335.60 -50.21 1 1,861,604.22 

Jul 744 1,551.38 1,581.89 -30.51 1 1,169,008.29 

Aug 744 1,519.35 1,535.80 -16.46 1 630,519.35 

Sep 720 1,341.40 1,340.45 0.95 2 70,288.84 

Oct 744 1,044.57 1,065.32 -20.75 1 794,973.79 

Nov 720 934.49 984.85 -50.36 1 1,867,320.34 

Dec 744 991.65 1,025.40 -33.75 1 1,293,061.46 

          Total (7) 13,795,858.71 

       

  
Table E6 : CASE B Basic Model with Scrubbed Coal Technology 

       Month Hours 

in 
Month 

(1) 

Actual Load 

(2) 
Forecast 

(3) 
Error        

(4)=(2)-(3) 
Spot 

Market 
Indicator 

(5) 

Losses                                           

(6) = |(4)|x 51.5 x (1) x 
(5)  

Jan 744 967.27 999.42 -32.15 1 1,231,923.15 

Feb 672 962.81 1,030.31 -67.51 1 2,336,302.41 

Mar 744 928.97 1,023.75 -94.78 1 3,631,541.40 

Apr 720 966.29 1,037.21 -70.91 1 2,629,418.31 

May 744 1,207.80 1,077.08 130.72 2 10,017,692.15 

Jun 720 1,285.39 1,258.76 26.63 2 1,975,178.19 

Jul 744 1,551.38 1,373.64 177.74 2 13,620,617.30 

Aug 744 1,519.35 1,442.72 76.62 2 5,871,837.56 

Sep 720 1,341.40 1,374.30 -32.91 1 1,220,143.20 

Oct 744 1,044.57 1,189.78 -145.21 1 5,563,933.74 

Nov 720 934.49 1,001.04 -66.55 1 2,467,662.84 

Dec 744 991.65 920.14 71.50 2 5,479,549.01 

          Total (8) 56,045,799.26 

      Annual Cost Savings (9)=(8)-(7)= 42,249,940.55 
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Table E7 : CASE B Full Model with Conventional Gas Technology 

       Month Hours 
in 

Month 

(1) 

Actual 
Load (2) 

Forecast 
(3) 

Error        
(4)=(2)-(3) 

Spot 
Market 

Indicator 

(5) 

Losses                                           
(6) = |(4)|x 106 x (1) x (5)  

Jan 744 967.27 979.54 -12.28 1 968,187.29 

Feb 672 962.81 976.84 -14.03 1 999,340.71 

Mar 744 928.97 971.27 -42.30 1 3,335,890.62 

Apr 720 966.29 1,002.88 -36.58 1 2,792,144.03 

May 744 1,207.80 1,264.59 -56.79 1 4,478,471.09 

Jun 720 1,285.39 1,335.60 -50.21 1 3,831,651.41 

Jul 744 1,551.38 1,581.89 -30.51 1 2,406,114.14 

Aug 744 1,519.35 1,535.80 -16.46 1 1,297,767.99 

Sep 720 1,341.40 1,340.45 0.95 2 144,672.17 

Oct 744 1,044.57 1,065.32 -20.75 1 1,636,256.73 

Nov 720 934.49 984.85 -50.36 1 3,843,416.62 

Dec 744 991.65 1,025.40 -33.75 1 2,661,446.88 

          Total (7) 28,395,359.67 

       

 
Table E8 : CASE B Basic Model with Conventional Gas Technology 

       Month Hours 

in 
Month 

(1) 

Actual 

Load (2) 
Forecast 

(3) 
Error        

(4)=(2)-(3) 
Spot 

Market 
Indicator 

(5) 

Losses                                           

(6) = |(4)|x 106 x (1) x (5)  

Jan 744 967.27 999.42 -32.15 1 2,535,608.82 

Feb 672 962.81 1,030.31 -67.51 1 4,808,700.11 

Mar 744 928.97 1,023.75 -94.78 1 7,474,628.90 

Apr 720 966.29 1,037.21 -70.91 1 5,412,006.61 

May 744 1,207.80 1,077.08 130.72 2 20,618,939.18 

Jun 720 1,285.39 1,258.76 26.63 2 4,065,415.30 

Jul 744 1,551.38 1,373.64 177.74 2 28,034,668.62 

Aug 744 1,519.35 1,442.72 76.62 2 12,085,723.91 

Sep 720 1,341.40 1,374.30 -32.91 1 2,511,362.71 

Oct 744 1,044.57 1,189.78 -145.21 1 11,451,980.13 

Nov 720 934.49 1,001.04 -66.55 1 5,079,073.02 

Dec 744 991.65 920.14 71.50 2 11,278,295.05 

          Total (8) 115,356,402.36 

    Annual Cost Savings (9)=(8)-(7)= 86,961,042.68 
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APPENDIX F Explanation of Hourly Model Dummy Variables  

 

 

Variable Description Values 

Precipdum Precipitation dummy   =1 when precip >0 , else =0 

Weekend 
Weekend dummy =1 when Saturday or Sunday, else=0 

Hol 
 Holiday dummy =1 when non-weekend holiday, else=0 

Peakhr 
Peak load hours dummy =1 when 8 am < hours < 8 pm, else=0 

Spring 

 
 

 

=1 when January or February, else =0 

Drysummer 

      Seasonal dummies 

=1 when May or June, else =0 

Monssummer 

 

=1 when July or August, else =0 

Fall   
=1 when September or October or 

November, else =0 
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APPENDIX G  Service Areas of AEPCO Cooperatives   

 

The map below shows the approximate service areas of Trico,, GCEC and MEC in Arizona. 
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APPENDIX H Major Copper Mines Production Data 

 

For our monthly model, we used copper mine production data in lieu of actual electricity 

consumed by the three major copper mines (Sierrita, Silver Bell and Mission Complex) in the 

TEP service area. Annual measures for these 3 mines were available for the years 2000 to 2007 

using the Arizona Department of Mines and Mineral Resources Mining Update reports from 

2002 to 2007.  These reports also provided information regarding activities which disrupted or 

altered the normal monthly production at these mines. Therefore, based on this information we 

were able to generate monthly estimates for each of the copper mines, using not just 

interpolation, but also adjusting monthly averages based on reports of strikes and shutdowns. 

The monthly copper mining estimates from 2000 to 2007 are shown in Table H1.  
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Table H1: Monthly Total TEP Copper Mine Production Estimates (2000-2007) in metric 

tons 

Month 2000 2001 2002 2003 2004 2005 2006 2007 

Jan  17,913.83 15,971.28 12,688.69 9,501.13 9,693.88 9,962.21 11,492.82 12,018.14 

Feb 17,913.83 15,971.28 12,688.69 9,501.13 9,693.88 9,962.21 11,492.82 12,018.14 

Mar 17,913.83 15,971.28 12,688.69 9,501.13 9,693.88 9,962.21 11,492.82 12,018.14 

Apr 17,913.83 15,971.28 12,688.69 9,501.13 9,693.88 9,962.21 11,492.82 12,018.14 

May 17,913.83 15,971.28 12,688.69 9,501.13 9,693.88 9,962.21 11,492.82 12,018.14 

Jun 17,913.83 15,971.28 12,688.69 9,501.13 9,693.88 9,962.21 11,492.82 12,018.14 

Jul 17,913.83 15,971.28 7,460.32 9,501.13 9,693.88 7,796.67 11,492.82 12,018.14 

Aug 17,913.83 15,971.28 7,460.32 9,501.13 9,693.88 7,796.67 11,492.82 12,018.14 

Sep 17,913.83 15,971.28 7,460.32 9,501.13 9,693.88 7,796.67 11,492.82 12,018.14 

Oct 17,913.83 15,971.28 7,460.32 9,501.13 9,693.88 7,796.67 11,492.82 12,018.14 

Nov 17,913.83 15,971.28 7,460.32 9,501.13 9,693.88 9,962.21 11,492.82 12,018.14 

Dec 17,913.83 15,971.28 12,688.69 9,501.13 9,693.88 9,962.21 11,492.82 12,018.14 

          

 

As is evident, from the change in monthly production numbers, adjustments for strikes 

and shutdowns were made for the years 2002 and 2005. Data on shutdowns and strikes from the 

AZDMMR mining updates resulted in estimates of zero production at specific mines in specific 

months (See Tables H2 and H3). 
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Table H2: Monthly Total TEP Copper Mine Production Estimates (2002) in metric tons 

 

Month Mission SilverBell Sierrita Monthly Total 

Jan  5,228.38 1,700.68 5,759.64 12,688.69 

Feb 5,228.38 1,700.68 5,759.64 12,688.69 

Mar 5,228.38 1,700.68 5,759.64 12,688.69 

Apr 5,228.38 1,700.68 5,759.64 12,688.69 

May 5,228.38 1,700.68 5,759.64 12,688.69 

Jun 5,228.38 1,700.68 5,759.64 12,688.69 

Jul 0.00 1,700.68 5,759.64 7,460.32 

Aug 0.00 1,700.68 5,759.64 7,460.32 

Sep 0.00 1,700.68 5,759.64 7,460.32 

Oct 0.00 1,700.68 5,759.64 7,460.32 

Nov 0.00 1,700.68 5,759.64 7,460.32 

Dec 5,228.38 1,700.68 5,759.64 12,688.69 

 

 

  Table H3: Monthly Total TEP Copper Mine Production Estimates (2005) in metric tons 

 

Month Mission SilverBell Sierrita Monthly Total 

Jan  1,802.72 2,165.53 5,993.95 9,962.21 

Feb 1,802.72 2,165.53 5,993.95 9,962.21 

Mar 1,802.72 2,165.53 5,993.95 9,962.21 

Apr 1,802.72 2,165.53 5,993.95 9,962.21 

May 1,802.72 2,165.53 5,993.95 9,962.21 

Jun 1,802.72 2,165.53 5,993.95 9,962.21 

Jul 1,802.72 0.00 5,993.95 7,796.67 

Aug 1,802.72 0.00 5,993.95 7,796.67 

Sep 1,802.72 0.00 5,993.95 7,796.67 

Oct 1,802.72 0.00 5,993.95 7,796.67 

Nov 1,802.72 2,165.53 5,993.95 9,962.21 

Dec 1,802.72 2,165.53 5,993.95 9,962.21 
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For the years 2008 and 2009, copper mine production data for these 3 mines was no 

longer available as it had been for prior years.  Therefore we utilized a different approach to 

obtain monthly estimates for these two years.  

First, using data of total copper mine production by these 3 mines from 2000 to 2007, we 

estimated the annual percentage share of these 3 mines in the total annual copper mine 

production of the United States and Arizona. Next, we averaged this percentage share to obtain 

average percentage share of these 3 mines for years 2008 and 2009. This process is illustrated by 

Table H4. 

 

Table H4: Estimating 2008 & 2009 National and State Share of TEP Copper Mine 

Production (in cubic million pounds) 

Year Sierritta Mission  
Silver 

Bell 

Total 
of 3 

Mines 

Arizona 

Copper 

Mine 

Production 

% Share 
of 

Arizona  

US Copper 
Mine 

Production 

% of US 
Copper Mine 

Production 

2000 245.00 189.00 40.00 474.00 2,062.00 22.99 3,197.25 14.83 

2001 241.80 138.90 41.90 422.60 1,959.80 21.56 2,954.70 14.30 

2002 152.40 80.70 45.00 278.10 1,706.80 16.29 2,513.70 11.06 

2003 151.20 51.60 48.60 251.40 1,640.60 15.32 2,469.60 10.18 

2004 155.00 54.00 47.50 256.50 1,602.10 16.01 2,557.80 10.03 

2005 158.60 38.20 47.70 244.50 1,526.20 16.02 2,513.70 9.73 

2006 161.60 95.60 46.90 304.10 1,569.80 19.37 2,646.00 11.49 

2007 150.00 121.30 46.70 318.00 1,619.70 19.63 2,579.85 12.33 

2008         1,843.38 18.40* 2,888.55 11.74* 

2009         1,567.76 18.40* 2,601.90 11.74* 

*Estimated percentage based on average of 2000-2007 
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Finally using available 2008 and 2009 estimates of annual U.S. copper mine production 

and annual Arizona copper mine production, we determine annual total estimates for these 3 

mines. This is shown by Table H5. 

 

Table H5: Calculating Annual TEP Copper Mine Production (in cubic million pounds) 

 

Year 
 

Arizona 
Copper 

Mine 

Production 

% Share of 

Arizona 

Estimated 

Total of 3 
Mines 

US Copper 

Mine 
Production 

% of US 
Copper 

Mine 

Production 

Estimated 

Total of 3 
Mines 

2008 
 

1,843.38 18.40 339.19 2,888.55 11.74 339.21 

2009 
 

1,567.76 18.40 288.47 2,601.90 11.74 305.54 

 

 

Since estimates based on U.S. copper mine production were found to be more consistent 

with reality, we used only the following measures as annual estimates of total copper mine 

production for the 3 mines included in our study. Interpolation was used to obtain monthly 

estimates from these annual estimates. 
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APPENDIX I Marginal Effects for Hourly Load Forecasting Models 

 

A. Temperature for Trico  

  
Sustained Shock  Initial Shock  

Time 

Period (t) 
Before 

Shock 
After Shock Marginal Effect 

Before 

Shock 
After Shock 

Marginal 

Effect 

0 51.96982813 51.96920386 -0.000624273 51.96982813 51.96920386 -0.000624273 

1 51.966363 51.96479753 -0.001565472 51.966363 51.96542175 -0.000941251 

2 51.9628981 51.96028223 -0.002615870 51.9628981 51.96184757 -0.001050534 

3 51.95943343 51.95573803 -0.003695406 51.95943343 51.95835367 -0.001079766 

4 51.955969 51.95118839 -0.004780611 51.955969 51.95488347 -0.001085528 

5 51.95250479 51.9466386 -0.005866186 51.95250479 51.9514188 -0.001085994 

6 51.94904081 51.94208943 -0.006951385 51.94904081 51.9479551 -0.001085713 

7 51.94557707 51.9375408 -0.008036265 51.94557707 51.94449158 -0.001085489 

8 51.94211356 51.93299264 -0.009120919 51.94211356 51.9410282 -0.001085358 

9 51.93865027 51.92844488 -0.010205388 51.93865027 51.93756501 -0.001085268 

10 51.93518722 51.92389754 -0.011289686 51.93518722 51.93410203 -0.001085191 

11 51.9317244 51.91935058 -0.012373816 51.9317244 51.93063928 -0.001085118 

12 51.92826181 51.91480403 -0.013457778 51.92826181 51.92717676 -0.001085046 

13 51.92479945 51.91025788 -0.014541573 51.92479945 51.92371448 -0.001084974 

14 51.92133732 51.90571212 -0.015625202 51.92133732 51.92025242 -0.001084901 

15 51.91787543 51.90116676 -0.016708662 51.91787543 51.9167906 -0.001084829 

16 
 

51.91441376 51.8966218 -0.017791956 51.91441376 51.913329 -0.001084757 

17 51.91095232 51.89207724 -0.018875083 51.91095232 51.90986764 -0.001084684 

18 51.90749112 51.88753308 -0.019958042 51.90749112 51.90640651 -0.001084612 

19 51.90403014 51.88298931 -0.021040834 51.90403014 51.9029456 -0.001084540 

20 51.9005694 51.87844594 -0.022123459 51.9005694 51.89948493 -0.001084468 

21 51.89710889 51.87390297 -0.023205917 51.89710889 51.89602449 -0.001084395 

22 51.89364861 51.8693604 -0.024288208 51.89364861 51.89256428 -0.001084323 

23 51.89018855 51.86481822 -0.025370331 51.89018855 51.8891043 -0.001084251 

24 51.88326914 51.8561957 -0.027073440 51.88326914 51.88156182 -0.001707327 

25 51.87635066 51.84725832 -0.029092337 51.87635066 51.87432709 -0.002023563 

26 51.86943309 51.83821339 -0.031219701 51.86943309 51.86730065 -0.002132439 

27 51.86251645 51.82914081 -0.033375638 51.86251645 51.86035505 -0.002161401 

28 51.85560073 51.820064 -0.035536729 51.85560073 51.85343379 -0.002166936 

29 51.84868593 51.81098824 -0.037697690 51.84868593 51.84651874 -0.002167185 

30 51.84177205 51.80191428 -0.039857775 51.84177205 51.83960537 -0.002166687 

31 51.8348591 51.79284206 -0.042017042 51.8348591 51.83269285 -0.002166248 

32 51.82794707 51.78377148 -0.044175583 51.82794707 51.82578117 -0.002165900 

33 51.82103595 51.77470251 -0.046333440 51.82103595 51.81887036 -0.002165593 
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34 51.81412577 51.76563514 -0.048490626 51.81412577 51.81196046 -0.002165300 

35 51.8072165 51.75656935 -0.050647145 51.8072165 51.80505149 -0.002165011 

36 51.80030815 51.74750515 -0.052802997 51.80030815 51.79814343 -0.002164722 

37 51.79340073 51.73844254 -0.054958183 51.79340073 51.79123629 -0.002164434 

38 51.78649422 51.72938152 -0.057112704 51.78649422 51.78433008 -0.002164145 

39 51.77958864 51.72032208 -0.059266558 51.77958864 51.77742478 -0.002163857 

40 51.77268398 51.71126423 -0.061419747 51.77268398 51.77052041 -0.002163568 

41 51.76578023 51.70220796 -0.063572270 51.76578023 51.76361696 -0.002163280 

42 51.75887741 51.69315329 -0.065724127 51.75887741 51.75671442 -0.002162991 

43 51.75197551 51.68410019 -0.067875320 51.75197551 51.74981281 -0.002162703 

44 51.74507453 51.67504869 -0.070025847 51.74507453 51.74291212 -0.002162414 

45 51.73817447 51.66599876 -0.072175709 51.73817447 51.73601235 -0.002162126 

46 51.73127533 51.65695043 -0.074324907 51.73127533 51.7291135 -0.002161838 

47 51.72437711 51.64790367 -0.076473439 51.72437711 51.72221556 -0.002161549 

48 51.71403151 51.63479519 -0.079236322 51.71403151 51.71124922 -0.002782292 
 

B. Wind Speed for Trico 

  Sustained Shock  Initial Shock  

Time 

Period (t) 
Before 

Shock 
After Shock Marginal Effect 

Before 

Shock 
After Shock 

Marginal 

Effect 

0 51.96982813 51.95939364 -0.010434494 51.96982813 51.95939364 -0.010434494 

1 51.966363 51.94020046 -0.026162544 51.966363 51.9506311 -0.015731905 

2 51.9628981 51.919188 -0.043710103 51.9628981 51.94533996 -0.017558143 

3 51.95943343 51.8976948 -0.061738637 51.95943343 51.9413868 -0.018046629 

4 51.955969 51.87611311 -0.079855883 51.955969 51.93782608 -0.018142919 

5 51.95250479 51.85453142 -0.097973372 51.95250479 51.93435408 -0.018150711 

6 51.94904081 51.83296219 -0.116078625 51.94904081 51.93089481 -0.018146006 

7 51.94557707 51.81140444 -0.134172625 51.94557707 51.92743479 -0.018142277 

8 51.94211356 51.78985665 -0.152256901 51.94211356 51.92397348 -0.018140077 

9 51.93865027 51.76831812 -0.170332153 51.93865027 51.9205117 -0.018138573 

10 51.93518722 51.74678861 -0.188398611 51.93518722 51.91704992 -0.018137296 

11 51.9317244 51.72526806 -0.206456337 51.9317244 51.91358832 -0.018136077 

12 51.92826181 51.70375647 -0.224505344 51.92826181 51.91012694 -0.018134868 

13 51.92479945 51.68225381 -0.242545636 51.92479945 51.90666579 -0.018133660 

14 51.92133732 51.66076011 -0.260577218 51.92133732 51.90320487 -0.018132452 

15 51.91787543 51.63927533 -0.278600091 51.91787543 51.89974418 -0.018131243 

16 
 

51.91441376 51.6177995 -0.296614260 51.91441376 51.89628372 -0.018130034 

17 51.91095232 51.59633259 -0.314619729 51.91095232 51.8928235 -0.018128825 

18 51.90749112 51.57487462 -0.332616501 51.90749112 51.8893635 -0.018127616 

19 51.90403014 51.55342556 -0.350604579 51.90403014 51.88590374 -0.018126408 

20 51.9005694 51.53198543 -0.368583968 51.9005694 51.8824442 -0.018125199 
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21 51.89710889 51.51055422 -0.386554671 51.89710889 51.8789849 -0.018123991 

22 51.89364861 51.48913191 -0.404516693 51.89364861 51.87552582 -0.018122782 

23 51.89018855 51.46771852 -0.422470035 51.89018855 51.87206698 -0.018121574 

24 51.88326914 51.43255511 -0.450714032 51.88326914 51.85473651 -0.028532634 

25 51.87635066 51.39217457 -0.484176081 51.87635066 51.84253474 -0.033815912 

26 51.86943309 51.3500194 -0.519413695 51.86943309 51.83379832 -0.035634766 

27 51.86251645 51.30741511 -0.555101332 51.86251645 51.82639786 -0.036118587 

28 51.85560073 51.26474995 -0.590850775 51.85560073 51.81938968 -0.036211042 

29 51.84868593 51.22211139 -0.626574538 51.84868593 51.81247074 -0.036215193 

30 51.84177205 51.17951174 -0.662260316 51.84177205 51.80556517 -0.036206878 

31 51.8348591 51.13694999 -0.697909106 51.8348591 51.79865956 -0.036199537 

32 51.82794707 51.09442462 -0.733522449 51.82794707 51.79175334 -0.036193722 

33 51.82103595 51.05193489 -0.769101060 51.82103595 51.78484735 -0.036188602 

34 51.81412577 51.00948057 -0.804645192 51.81412577 51.77794206 -0.036183709 

35 51.8072165 50.96706157 -0.840154930 51.8072165 51.77103762 -0.036178874 

36 51.80030815 50.92467784 -0.875630316 51.80030815 51.7641341 -0.036174050 

37 51.79340073 50.88232935 -0.911071378 51.79340073 51.7572315 -0.036169228 

38 51.78649422 50.84001608 -0.946478145 51.78649422 51.75032982 -0.036164405 

39 51.77958864 50.79773799 -0.981850645 51.77958864 51.74342906 -0.036159583 

40 51.77268398 50.75549507 -1.017188909 51.77268398 51.73652922 -0.036154761 

41 51.76578023 50.71328727 -1.052492964 51.76578023 51.72963029 -0.036149940 

42 51.75887741 50.67111457 -1.087762840 51.75887741 51.72273229 -0.036145120 

43 51.75197551 50.62897695 -1.122998567 51.75197551 51.71583521 -0.036140300 

44 51.74507453 50.58687436 -1.158200172 51.74507453 51.70893905 -0.036135481 

45 51.73817447 50.54480679 -1.193367686 51.73817447 51.70204381 -0.036130662 

46 51.73127533 50.5027742 -1.228501136 51.73127533 51.69514949 -0.036125844 

47 51.72437711 50.46077656 -1.263600553 51.72437711 51.68825609 -0.036121027 

48 51.71403151 50.40532973 -1.308701781 51.71403151 51.66754182 -0.046489686 
 

C. Solar Radiation for Trico 

  Sustained Shock  Initial Shock  

Time 

Period (t) 
Before 

Shock 
After Shock Marginal Effect 

Before 

Shock 
After Shock 

Marginal 

Effect 

0 51.96982813 51.978066 0.008237871 51.96982813 51.978066 0.008237871 

1 51.966363 51.98702352 0.020660518 51.966363 51.97878423 0.012421227 

2 51.9628981 51.99742634 0.034528234 51.9628981 51.97676168 0.013863582 

3 51.95943343 52.00821824 0.048784802 51.95943343 51.97368284 0.014249402 

4 51.955969 52.01908945 0.063120454 51.955969 51.97029445 0.014325455 

5 51.95250479 52.02997006 0.077465267 51.95250479 51.9668364 0.014331610 

6 51.94904081 52.04085017 0.091809360 51.94904081 51.96336871 0.014327894 

7 51.94557707 52.05173057 0.106153503 51.94557707 51.95990202 0.014324949 
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8 51.94211356 52.06261246 0.120498907 51.94211356 51.95643677 0.014323212 

9 51.93865027 52.0734964 0.134846122 51.93865027 51.9529723 0.014322024 

10 51.93518722 52.08438255 0.149195328 51.93518722 51.94950824 0.014321016 

11 51.9317244 52.09527097 0.163546571 51.9317244 51.94604445 0.014320053 

12 51.92826181 52.10616167 0.177899860 51.92826181 51.94258091 0.014319099 

13 51.92479945 52.11705465 0.192255195 51.92479945 51.9391176 0.014318145 

14 51.92133732 52.1279499 0.206612577 51.92133732 51.93565451 0.014317190 

15 51.91787543 52.13884743 0.220972006 51.91787543 51.93219166 0.014316236 

16 
 

51.91441376 52.14974724 0.235333482 51.91441376 51.92872904 0.014315281 

17 51.91095232 52.16064933 0.249697007 51.91095232 51.92526665 0.014314327 

18 51.90749112 52.1715537 0.264062579 51.90749112 51.92180449 0.014313373 

19 51.90403014 52.18246034 0.278430201 51.90403014 51.91834256 0.014312418 

20 51.9005694 52.19336927 0.292799872 51.9005694 51.91488086 0.014311464 

21 51.89710889 52.20428048 0.307171592 51.89710889 51.9114194 0.014310510 

22 51.89364861 52.21519397 0.321545363 51.89364861 51.90795816 0.014309556 

23 51.89018855 52.22610974 0.335921185 51.89018855 51.90449716 0.014308601 

24 51.88326914 52.24182452 0.358555374 51.88326914 51.90580225 0.022533111 

25 51.87635066 52.26175071 0.385400052 51.87635066 51.90305857 0.026707917 

26 51.86943309 52.28313619 0.413703097 51.86943309 51.89757843 0.028145340 

27 51.86251645 52.30491963 0.442403180 51.86251645 51.89104416 0.028527716 

28 51.85560073 52.32678967 0.471188948 51.85560073 51.88420151 0.028600788 

29 51.84868593 52.34867603 0.499990100 51.84868593 51.87729 0.028604071 

30 51.84177205 52.37056876 0.528796703 51.84177205 51.87036955 0.028597502 

31 51.8348591 52.39246863 0.557609533 51.8348591 51.8634508 0.028591703 

32 51.82794707 52.41437688 0.586429810 51.82794707 51.85653417 0.028587109 

33 51.82103595 52.43629405 0.615258092 51.82103595 51.84961902 0.028583065 

34 51.81412577 52.45822033 0.644094563 51.81412577 51.84270497 0.028579200 

35 51.8072165 52.48015577 0.672939274 51.8072165 51.83579188 0.028575382 

36 51.80030815 52.50210039 0.701792235 51.80030815 51.82887972 0.028571572 

37 51.79340073 52.52405418 0.730653453 51.79340073 51.82196849 0.028567762 

38 51.78649422 52.54601715 0.759522929 51.78649422 51.81505818 0.028563953 

39 51.77958864 52.56798931 0.788400669 51.77958864 51.80814878 0.028560145 

40 51.77268398 52.58997065 0.817286675 51.77268398 51.80124031 0.028556336 

41 51.76578023 52.61196119 0.846180953 51.76578023 51.79433276 0.028552528 

42 51.75887741 52.63396092 0.875083505 51.75887741 51.78742613 0.028548721 

43 51.75197551 52.65596985 0.903994336 51.75197551 51.78052043 0.028544914 

44 51.74507453 52.67798798 0.932913449 51.74507453 51.77361564 0.028541108 

45 51.73817447 52.70001532 0.961840850 51.73817447 51.76671177 0.028537302 

46 51.73127533 52.72205187 0.990776541 51.73127533 51.75980883 0.028533496 

47 51.72437711 52.74409764 1.019720526 51.72437711 51.7529068 0.028529692 

48 51.71403151 52.77099794 1.056966429 51.71403151 51.75075734 0.036725830 
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D. Relative Humidity for Trico 

  Sustained Shock  Initial Shock  

Time 

Period (t) 
Before 

Shock 
After Shock Marginal Effect 

Before 

Shock 
After Shock 

Marginal 

Effect 

0 51.96982813 51.96970413 -0.000124007 51.96982813 51.96970413 -0.000124007 

1 51.966363 51.96605203 -0.000310971 51.966363 51.96617603 -0.000186973 

2 51.9628981 51.96237847 -0.000519630 51.9628981 51.96268942 -0.000208681 

3 51.95943343 51.95869935 -0.000734082 51.95943343 51.95921895 -0.000214488 

4 51.955969 51.95501933 -0.000949662 51.955969 51.95575336 -0.000215633 

5 51.95250479 51.95133947 -0.001165320 51.95250479 51.95228906 -0.000215725 

6 51.94904081 51.94765991 -0.001380907 51.94904081 51.94882514 -0.000215669 

7 51.94557707 51.94398064 -0.001596434 51.94557707 51.94536144 -0.000215625 

8 51.94211356 51.94030164 -0.001811920 51.94211356 51.94189796 -0.000215599 

9 51.93865027 51.9366229 -0.002027372 51.93865027 51.93843469 -0.000215581 

10 51.93518722 51.93294443 -0.002242794 51.93518722 51.93497166 -0.000215566 

11 51.9317244 51.92926621 -0.002458187 51.9317244 51.93150885 -0.000215551 

12 51.92826181 51.92558826 -0.002673549 51.92826181 51.92804627 -0.000215537 

13 51.92479945 51.92191057 -0.002888883 51.92479945 51.92458393 -0.000215523 

14 51.92133732 51.91823314 -0.003104186 51.92133732 51.92112181 -0.000215508 

15 51.91787543 51.91455597 -0.003319460 51.91787543 51.91765993 -0.000215494 

16 
 

51.91441376 51.91087905 -0.003534704 51.91441376 51.91419828 -0.000215479 

17 51.91095232 51.9072024 -0.003749919 51.91095232 51.91073686 -0.000215465 

18 51.90749112 51.90352601 -0.003965104 51.90749112 51.90727567 -0.000215451 

19 51.90403014 51.89984988 -0.004180260 51.90403014 51.90381471 -0.000215436 

20 51.9005694 51.89617401 -0.004395385 51.9005694 51.90035398 -0.000215422 

21 51.89710889 51.89249841 -0.004610482 51.89710889 51.89689348 -0.000215408 

22 51.89364861 51.88882306 -0.004825548 51.89364861 51.89343321 -0.000215393 

23 51.89018855 51.88514797 -0.005040585 51.89018855 51.88997317 -0.000215379 

24 51.88326914 51.87789011 -0.005379031 51.88326914 51.88292999 -0.000339150 

25 51.87635066 51.87057041 -0.005780241 51.87635066 51.87594869 -0.000401970 

26 51.86943309 51.86323007 -0.006203021 51.86943309 51.86900949 -0.000423598 

27 51.86251645 51.85588495 -0.006631493 51.86251645 51.8620871 -0.000429351 

28 51.85560073 51.84853972 -0.007061005 51.85560073 51.85517028 -0.000430450 

29 51.84868593 51.84119542 -0.007490504 51.84868593 51.84825543 -0.000430500 

30 51.84177205 51.83385221 -0.007919844 51.84177205 51.84134165 -0.000430401 

31 51.8348591 51.82651006 -0.008349036 51.8348591 51.83442878 -0.000430314 

32 51.82794707 51.81916897 -0.008778098 51.82794707 51.82751682 -0.000430245 

33 51.82103595 51.81182892 -0.009207038 51.82103595 51.82060577 -0.000430184 

34 51.81412577 51.80448991 -0.009635859 51.81412577 51.81369564 -0.000430125 

35 51.8072165 51.79715194 -0.010064562 51.8072165 51.80678643 -0.000430068 

36 51.80030815 51.789815 -0.010493148 51.80030815 51.79987814 -0.000430011 

37 51.79340073 51.78247911 -0.010921615 51.79340073 51.79297077 -0.000429953 
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38 51.78649422 51.77514426 -0.011349964 51.78649422 51.78606433 -0.000429896 

39 51.77958864 51.76781044 -0.011778195 51.77958864 51.7791588 -0.000429839 

40 51.77268398 51.76047767 -0.012206308 51.77268398 51.77225419 -0.000429781 

41 51.76578023 51.75314593 -0.012634303 51.76578023 51.76535051 -0.000429724 

42 51.75887741 51.74581523 -0.013062180 51.75887741 51.75844775 -0.000429667 

43 51.75197551 51.73848557 -0.013489939 51.75197551 51.7515459 -0.000429609 

44 51.74507453 51.73115695 -0.013917580 51.74507453 51.74464498 -0.000429552 

45 51.73817447 51.72382937 -0.014345104 51.73817447 51.73774498 -0.000429495 

46 51.73127533 51.71650282 -0.014772510 51.73127533 51.7308459 -0.000429438 

47 51.72437711 51.70917732 -0.015199797 51.72437711 51.72394773 -0.000429380 

48 51.71403151 51.69828222 -0.015749285 51.71403151 51.71347882 -0.000552690 
 

 

E. Temperature for Graham 

  Sustained Shock  Initial Shock  

Time 

Period (t) 
Before 

Shock 
After Shock Marginal Effect 

Before 

Shock 
After Shock 

Marginal 

Effect 

0 18.46234771 18.46233048 -0.000017230 18.46234771 18.46233048 -0.000017230 

1 18.47094156 18.47090693 -0.000034638 18.47094156 18.47092416 -0.000017401 

2 18.47953942 18.47948842 -0.000050992 18.47953942 18.47952308 -0.000016337 

3 18.48814127 18.48807393 -0.000067340 18.48814127 18.48812494 -0.000016325 

4 18.49674713 18.49666336 -0.000083770 18.49674713 18.49673073 -0.000016399 

5 18.50535699 18.50525677 -0.000100217 18.50535699 18.50534058 -0.000016408 

6 18.51397086 18.51385419 -0.000116675 18.51397086 18.51395445 -0.000016412 

7 18.52258874 18.5224556 -0.000133148 18.52258874 18.52257232 -0.000016419 

8 18.53121064 18.531061 -0.000149637 18.53121064 18.53119421 -0.000016427 

9 18.53983654 18.5396704 -0.000166142 18.53983654 18.53982011 -0.000016435 

10 18.54846646 18.5482838 -0.000182661 18.54846646 18.54845002 -0.000016442 

11 18.5571004 18.55690121 -0.000199196 18.5571004 18.55708395 -0.000016450 

12 18.56573836 18.56552261 -0.000215746 18.56573836 18.5657219 -0.000016458 

13 18.57438034 18.57414803 -0.000232312 18.57438034 18.57436387 -0.000016465 

14 18.58302634 18.58277744 -0.000248893 18.58302634 18.58300986 -0.000016473 

15 18.59167636 18.59141087 -0.000265489 18.59167636 18.59165988 -0.000016481 

16 
 

18.60033041 18.60004831 -0.000282101 18.60033041 18.60031393 -0.000016488 

17 18.60898849 18.60868977 -0.000298728 18.60898849 18.608972 -0.000016496 

18 18.6176506 18.61733523 -0.000315370 18.6176506 18.6176341 -0.000016504 

19 18.62631675 18.62598472 -0.000332028 18.62631675 18.62630023 -0.000016511 

20 18.63498692 18.63463822 -0.000348701 18.63498692 18.6349704 -0.000016519 

21 18.64366113 18.64329574 -0.000365390 18.64366113 18.64364461 -0.000016527 

22 18.65233938 18.65195729 -0.000382094 18.65233938 18.65232285 -0.000016534 
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23 18.66102167 18.66062286 -0.000398814 18.66102167 18.66100513 -0.000016542 

24 18.67839838 18.6779652 -0.000433173 18.67839838 18.67836439 -0.000033989 

25 18.69579126 18.6953235 -0.000467761 18.69579126 18.69575708 -0.000034185 

26 18.71320034 18.71269901 -0.000501328 18.71320034 18.71316721 -0.000033132 

27 18.73062563 18.7300907 -0.000534937 18.73062563 18.73059249 -0.000033142 

28 18.74806715 18.74749848 -0.000568674 18.74806715 18.74803391 -0.000033241 

29 18.76552491 18.76492243 -0.000602477 18.76552491 18.76549164 -0.000033274 

30 18.78299892 18.78236259 -0.000636337 18.78299892 18.78296562 -0.000033300 

31 18.80048921 18.79981895 -0.000670260 18.80048921 18.80045588 -0.000033331 

32 18.81799578 18.81729154 -0.000704245 18.81799578 18.81796242 -0.000033363 

33 18.83551866 18.83478036 -0.000738293 18.83551866 18.83548526 -0.000033394 

34 18.85305785 18.85228545 -0.000772404 18.85305785 18.85302442 -0.000033425 

35 18.87061337 18.86980679 -0.000806578 18.87061337 18.87057992 -0.000033456 

36 18.88818524 18.88734443 -0.000840814 18.88818524 18.88815176 -0.000033487 

37 18.90577348 18.90489836 -0.000875114 18.90577348 18.90573996 -0.000033518 

38 18.92337809 18.92246861 -0.000909477 18.92337809 18.92334454 -0.000033549 

39 18.94099909 18.94005519 -0.000943903 18.94099909 18.94096551 -0.000033581 

40 18.9586365 18.95765811 -0.000978392 18.9586365 18.95860289 -0.000033612 

41 18.97629034 18.9752774 -0.001012944 18.97629034 18.9762567 -0.000033643 

42 18.99396062 18.99291306 -0.001047560 18.99396062 18.99392694 -0.000033675 

43 19.01164734 19.0105651 -0.001082240 19.01164734 19.01161364 -0.000033706 

44 19.02935054 19.02823356 -0.001116983 19.02935054 19.02931681 -0.000033737 

45 19.04707023 19.04591844 -0.001151790 19.04707023 19.04703646 -0.000033769 

46 19.06480641 19.06361975 -0.001186660 19.06480641 19.06477261 -0.000033800 

47 19.08255911 19.08133751 -0.001221595 19.08255911 19.08252528 -0.000033832 

48 19.10921916 19.10794415 -0.001275010 19.10921916 19.10916744 -0.000051712 

 

 

F. Relative Humidity for Graham 

  Sustained Shock  Initial Shock  

Time 
Period (t) 

Before 
Shock 

After Shock Marginal Effect 
Before 
Shock 

After Shock 
Marginal 

Effect 

0 18.46234771 18.46235123 0.000003515 18.46234771 18.46235123 0.000003515 

1 18.47094156 18.47094863 0.000007067 18.47094156 18.47094511 0.000003550 

2 18.47953942 18.47954982 0.000010403 18.47953942 18.47954275 0.000003333 

3 18.48814127 18.48815501 0.000013738 18.48814127 18.4881446 0.000003330 

4 18.49674713 18.49676422 0.000017090 18.49674713 18.49675047 0.000003346 

5 18.50535699 18.50537744 0.000020446 18.50535699 18.50536034 0.000003347 

6 18.51397086 18.51399467 0.000023803 18.51397086 18.51397421 0.000003348 

7 18.52258874 18.52261591 0.000027164 18.52258874 18.52259209 0.000003350 
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8 18.53121064 18.53124116 0.000030528 18.53121064 18.53121399 0.000003351 

9 18.53983654 18.53987044 0.000033895 18.53983654 18.5398399 0.000003353 

10 18.54846646 18.54850373 0.000037265 18.54846646 18.54846982 0.000003354 

11 18.5571004 18.55714104 0.000040639 18.5571004 18.55710376 0.000003356 

12 18.56573836 18.56578237 0.000044015 18.56573836 18.56574172 0.000003358 

13 18.57438034 18.57442773 0.000047395 18.57438034 18.5743837 0.000003359 

14 18.58302634 18.58307711 0.000050778 18.58302634 18.5830297 0.000003361 

15 18.59167636 18.59173053 0.000054164 18.59167636 18.59167972 0.000003362 

16 
 

18.60033041 18.60038797 0.000057553 18.60033041 18.60033378 0.000003364 

17 18.60898849 18.60904944 0.000060945 18.60898849 18.60899186 0.000003365 

18 18.6176506 18.61771494 0.000064340 18.6176506 18.61765397 0.000003367 

19 18.62631675 18.62638448 0.000067739 18.62631675 18.62632011 0.000003369 

20 18.63498692 18.63505806 0.000071140 18.63498692 18.63499029 0.000003370 

21 18.64366113 18.64373568 0.000074545 18.64366113 18.6436645 0.000003372 

22 18.65233938 18.65241734 0.000077953 18.65233938 18.65234276 0.000003373 

23 18.66102167 18.66110304 0.000081364 18.66102167 18.66102505 0.000003375 

24 18.67839838 18.67848675 0.000088374 18.67839838 18.67840531 0.000006934 

25 18.69579126 18.69588669 0.000095431 18.69579126 18.69579823 0.000006974 

26 18.71320034 18.71330262 0.000102279 18.71320034 18.7132071 0.000006759 

27 18.73062563 18.73073477 0.000109136 18.73062563 18.73063239 0.000006761 

28 18.74806715 18.74818317 0.000116019 18.74806715 18.74807393 0.000006782 

29 18.76552491 18.76564782 0.000122915 18.76552491 18.7655317 0.000006788 

30 18.78299892 18.78312875 0.000129823 18.78299892 18.78300572 0.000006794 

31 18.80048921 18.80062595 0.000136744 18.80048921 18.80049601 0.000006800 

32 18.81799578 18.81813946 0.000143678 18.81799578 18.81800259 0.000006806 

33 18.83551866 18.83566928 0.000150625 18.83551866 18.83552547 0.000006813 

34 18.85305785 18.85321543 0.000157584 18.85305785 18.85306467 0.000006819 

35 18.87061337 18.87077793 0.000164556 18.87061337 18.8706202 0.000006825 

36 18.88818524 18.88835679 0.000171541 18.88818524 18.88819208 0.000006832 

37 18.90577348 18.90595202 0.000178539 18.90577348 18.90578032 0.000006838 

38 18.92337809 18.92356364 0.000185550 18.92337809 18.92338493 0.000006845 

39 18.94099909 18.94119167 0.000192574 18.94099909 18.94100594 0.000006851 

40 18.9586365 18.95883612 0.000199611 18.9586365 18.95864336 0.000006857 

41 18.97629034 18.976497 0.000206660 18.97629034 18.9762972 0.000006864 

42 18.99396062 18.99417434 0.000213723 18.99396062 18.99396749 0.000006870 

43 19.01164734 19.01186814 0.000220798 19.01164734 19.01165422 0.000006876 

44 19.02935054 19.02957843 0.000227887 19.02935054 19.02935743 0.000006883 

45 19.04707023 19.04730521 0.000234988 19.04707023 19.04707712 0.000006889 

46 19.06480641 19.06504851 0.000242103 19.06480641 19.0648133 0.000006896 

47 19.08255911 19.08280834 0.000249230 19.08255911 19.08256601 0.000006902 

48 19.10921916 19.10947929 0.000260129 19.10921916 19.10922971 0.000010550 
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G. Solar Radiation for Graham 

  Sustained Shock  Initial Shock  

Time 

Period (t) 
Before 

Shock 
After Shock Marginal Effect 

Before 

Shock 
After Shock 

Marginal 

Effect 

0 18.46234771 18.46406405 0.001716340 18.46234771 18.46406405 0.001716340 

1 18.47094156 18.47439222 0.003450659 18.47094156 18.47267492 0.001733359 

2 18.47953942 18.48461941 0.005079993 18.47953942 18.48116684 0.001627424 

3 18.48814127 18.49485024 0.006708967 18.48814127 18.48976743 0.001626163 

4 18.49674713 18.50509336 0.008346231 18.49674713 18.49838068 0.001633548 

5 18.50535699 18.51534234 0.009985351 18.50535699 18.50699149 0.001634497 

6 18.51397086 18.52559659 0.011625728 18.51397086 18.51560571 0.001634847 

7 18.52258874 18.5358565 0.013267759 18.52258874 18.52422434 0.001635592 

8 18.53121064 18.54612212 0.014911486 18.53121064 18.53284702 0.001636379 

9 18.53983654 18.55639343 0.016556886 18.53983654 18.54147368 0.001637142 

10 18.54846646 18.56667042 0.018203958 18.54846646 18.55010437 0.001637902 

11 18.5571004 18.57695311 0.019852705 18.5571004 18.55873907 0.001638665 

12 18.56573836 18.58724149 0.021503127 18.56573836 18.56737779 0.001639428 

13 18.57438034 18.59753556 0.023155227 18.57438034 18.57602053 0.001640191 

14 18.58302634 18.60783534 0.024809005 18.58302634 18.58466729 0.001640954 

15 18.59167636 18.61814083 0.026464463 18.59167636 18.59331808 0.001641718 

16 
 

18.60033041 18.62845202 0.028121602 18.60033041 18.6019729 0.001642482 

17 18.60898849 18.63876892 0.029780423 18.60898849 18.61063174 0.001643247 

18 18.6176506 18.64909153 0.031440928 18.6176506 18.61929462 0.001644012 

19 18.62631675 18.65941986 0.033103117 18.62631675 18.62796152 0.001644777 

20 18.63498692 18.66975391 0.034766993 18.63498692 18.63663246 0.001645543 

21 18.64366113 18.68009369 0.036432557 18.64366113 18.64530744 0.001646308 

22 18.65233938 18.69043919 0.038099809 18.65233938 18.65398646 0.001647075 

23 18.66102167 18.70079042 0.039768751 18.66102167 18.66266951 0.001647841 

24 18.67839838 18.72159733 0.043198952 18.67839838 18.68178433 0.003385954 

25 18.69579126 18.74244384 0.046652580 18.69579126 18.69919679 0.003405526 

26 18.71320034 18.7632052 0.050004855 18.71320034 18.71650094 0.003300596 

27 18.73062563 18.7839875 0.053361865 18.73062563 18.73392726 0.003301624 

28 18.74806715 18.80479956 0.056732406 18.74806715 18.75137857 0.003311418 

29 18.76552491 18.82563487 0.060109957 18.76552491 18.7688396 0.003314692 

30 18.78299892 18.84649284 0.063493918 18.78299892 18.78631629 0.003317362 

31 18.80048921 18.86737391 0.066884701 18.80048921 18.80380965 0.003320435 

32 18.81799578 18.88827814 0.070282360 18.81799578 18.82131934 0.003323553 

33 18.83551866 18.90920554 0.073686878 18.83551866 18.83884531 0.003326649 

34 18.85305785 18.93015611 0.077098265 18.85305785 18.85638759 0.003329745 

35 18.87061337 18.95112991 0.080516532 18.87061337 18.87394622 0.003332846 

36 18.88818524 18.97212693 0.083941690 18.88818524 18.89152119 0.003335949 

37 18.90577348 18.99314723 0.087373750 18.90577348 18.90911253 0.003339055 
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38 18.92337809 19.01419081 0.090812721 18.92337809 18.92672025 0.003342165 

39 18.94099909 19.03525771 0.094258614 18.94099909 18.94434437 0.003345277 

40 18.9586365 19.05634795 0.097711440 18.9586365 18.9619849 0.003348392 

41 18.97629034 19.07746155 0.101171210 18.97629034 18.97964185 0.003351510 

42 18.99396062 19.09859855 0.104637934 18.99396062 18.99731525 0.003354631 

43 19.01164734 19.11975897 0.108111623 19.01164734 19.0150051 0.003357754 

44 19.02935054 19.14094283 0.111592287 19.02935054 19.03271142 0.003360881 

45 19.04707023 19.16215016 0.115079937 19.04707023 19.05043424 0.003364011 

46 19.06480641 19.18338099 0.118574584 19.06480641 19.06817355 0.003367143 

47 19.08255911 19.20463535 0.122076238 19.08255911 19.08592939 0.003370279 

48 19.10921916 19.23665068 0.127431523 19.10921916 19.11437093 0.005151777 

 

 

H. Temperature for Mohave 

  Sustained Shock  Initial Shock  

Time 

Period (t) 
Before 

Shock 
After Shock Marginal Effect 

Before 

Shock 
After Shock 

Marginal 

Effect 

0 68.21617315 68.21469534 -0.001477810 68.21617315 68.21469534 -0.001477810 

1 68.21105236 68.20739488 -0.003657483 68.21105236 68.20739488 -0.003657483 

2 68.20593196 68.19988159 -0.006050368 68.20593196 68.19988159 -0.006050368 

3 68.20081194 68.19232464 -0.008487298 68.20081194 68.19232464 -0.008487298 

4 68.19569231 68.18476474 -0.010927570 68.19569231 68.18476474 -0.010927570 

5 68.19057306 68.17720748 -0.013365580 68.19057306 68.17720748 -0.013365580 

6 68.1854542 68.16965223 -0.015801970 68.1854542 68.16965223 -0.015801970 

7 68.18033572 68.16209822 -0.018237498 68.18033572 68.16209822 -0.018237498 

8 68.17521762 68.15454515 -0.020672475 68.17521762 68.15454515 -0.020672475 

9 68.17009991 68.14699293 -0.023106985 68.17009991 68.14699293 -0.023106985 

10 68.16498258 68.13944154 -0.025541044 68.16498258 68.13944154 -0.025541044 

11 68.15986564 68.13189099 -0.027974653 68.15986564 68.13189099 -0.027974653 

12 68.15474908 68.12434127 -0.030407809 68.15474908 68.12434127 -0.030407809 

13 68.14963291 68.1167924 -0.032840513 68.14963291 68.1167924 -0.032840513 

14 68.14451712 68.10924435 -0.035272764 68.14451712 68.10924435 -0.035272764 

15 68.13940171 68.10169715 -0.037704564 68.13940171 68.10169715 -0.037704564 

16 
 

68.13428669 68.09415078 -0.040135910 68.13428669 68.09415078 -0.040135910 

17 68.12917205 68.08660524 -0.042566805 68.12917205 68.08660524 -0.042566805 

18 68.1240578 68.07906055 -0.044997248 68.1240578 68.07906055 -0.044997248 

19 68.11894392 68.07151669 -0.047427238 68.11894392 68.07151669 -0.047427238 

20 68.11383044 68.06397366 -0.049856776 68.11383044 68.06397366 -0.049856776 

21 68.10871733 68.05643147 -0.052285863 68.10871733 68.05643147 -0.052285863 

22 68.10360462 68.04889012 -0.054714497 68.10360462 68.04889012 -0.054714497 
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23 68.09849228 68.0413496 -0.057142679 68.09849228 68.0413496 -0.057142679 

24 68.08826876 68.02722907 -0.061039687 68.08826876 68.02722907 -0.061039687 

25 68.07804678 68.01241137 -0.065635409 68.07804678 68.01241137 -0.065635409 

26 68.06782633 67.99738391 -0.070442412 68.06782633 67.99738391 -0.070442412 

27 68.05760741 67.98231543 -0.075291981 68.05760741 67.98231543 -0.075291981 

28 68.04739003 67.9672465 -0.080143528 68.04739003 67.9672465 -0.080143528 

29 68.03717418 67.95218271 -0.084991466 68.03717418 67.95218271 -0.084991466 

30 68.02695987 67.93712343 -0.089836436 68.02695987 67.93712343 -0.089836436 

31 68.01674709 67.92206789 -0.094679196 68.01674709 67.92206789 -0.094679196 

32 68.00653584 67.90701578 -0.099520054 68.00653584 67.90701578 -0.099520054 

33 67.99632612 67.89196703 -0.104359095 67.99632612 67.89196703 -0.104359095 

34 67.98611794 67.87692161 -0.109196335 67.98611794 67.87692161 -0.109196335 

35 67.97591129 67.86187952 -0.114031776 67.97591129 67.86187952 -0.114031776 

36 67.96570618 67.84684076 -0.118865416 67.96570618 67.84684076 -0.118865416 

37 67.95550259 67.83180534 -0.123697256 67.95550259 67.83180534 -0.123697256 

38 67.94530054 67.81677324 -0.128527296 67.94530054 67.81677324 -0.128527296 

39 67.93510002 67.80174448 -0.133355536 67.93510002 67.80174448 -0.133355536 

40 67.92490103 67.78671905 -0.138181977 67.92490103 67.78671905 -0.138181977 

41 67.91470357 67.77169695 -0.143006620 67.91470357 67.77169695 -0.143006620 

42 67.90450764 67.75667818 -0.147829464 67.90450764 67.75667818 -0.147829464 

43 67.89431325 67.74166273 -0.152650511 67.89431325 67.74166273 -0.152650511 

44 67.88412038 67.72665062 -0.157469760 67.88412038 67.72665062 -0.157469760 

45 67.87392904 67.71164183 -0.162287213 67.87392904 67.71164183 -0.162287213 

46 67.86373924 67.69663637 -0.167102870 67.86373924 67.69663637 -0.167102870 

47 67.85355096 67.68163423 -0.171916732 67.85355096 67.68163423 -0.171916732 

48 67.83827141 67.66009009 -0.178181327 67.83827141 67.66009009 -0.178181327 
 

 

I. Relative Humidity for Mohave 

  Sustained Shock  Initial Shock  

Time 

Period (t) 
Before 

Shock 
After Shock Marginal Effect 

Before 

Shock 
After Shock 

Marginal 

Effect 

0 68.21617315 68.21561821 -0.000554932 68.21617315 68.21561821 -0.000554932 

1 68.21105236 68.20967893 -0.001373434 68.21105236 68.21023381 -0.000818550 

2 68.20593196 68.20365994 -0.002272019 68.20593196 68.20503325 -0.000898707 

3 68.20081194 68.19762478 -0.003187165 68.20081194 68.1998966 -0.000915346 

4 68.19569231 68.19158872 -0.004103586 68.19569231 68.19477561 -0.000916703 

5 68.19057306 68.18555388 -0.005019178 68.19057306 68.18965711 -0.000915955 

6 68.1854542 68.17952002 -0.005934181 68.1854542 68.18453875 -0.000915448 

7 68.18033572 68.17348684 -0.006848882 68.18033572 68.17942049 -0.000915226 
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8 68.17521762 68.16745423 -0.007763397 68.17521762 68.1743025 -0.000915120 

9 68.17009991 68.16142216 -0.008677756 68.17009991 68.16918487 -0.000915046 

10 68.16498258 68.15539062 -0.009591966 68.16498258 68.16406761 -0.000914978 

11 68.15986564 68.14935961 -0.010506027 68.15986564 68.15895073 -0.000914910 

12 68.15474908 68.14332914 -0.011419940 68.15474908 68.15383424 -0.000914842 

13 68.14963291 68.13729921 -0.012333702 68.14963291 68.14871814 -0.000914773 

14 68.14451712 68.1312698 -0.013247315 68.14451712 68.14360241 -0.000914704 

15 68.13940171 68.12524093 -0.014160779 68.13940171 68.13848708 -0.000914636 

16 
 

68.13428669 68.1192126 -0.015074093 68.13428669 68.13337212 -0.000914567 

17 68.12917205 68.11318479 -0.015987257 68.12917205 68.12825755 -0.000914498 

18 68.1240578 68.10715752 -0.016900273 68.1240578 68.12314337 -0.000914430 

19 68.11894392 68.10113079 -0.017813138 68.11894392 68.11802956 -0.000914361 

20 68.11383044 68.09510458 -0.018725855 68.11383044 68.11291614 -0.000914293 

21 68.10871733 68.08907891 -0.019638421 68.10871733 68.10780311 -0.000914224 

22 68.10360462 68.08305378 -0.020550839 68.10360462 68.10269046 -0.000914155 

23 68.09849228 68.07702917 -0.021463107 68.09849228 68.09757819 -0.000914087 

24 68.08826876 68.0653415 -0.022927256 68.08826876 68.08680093 -0.001467833 

25 68.07804678 68.05339279 -0.024653986 68.07804678 68.07631602 -0.001730755 

26 68.06782633 68.04136615 -0.026460179 68.06782633 68.06601578 -0.001810550 

27 68.05760741 68.02932496 -0.028282447 68.05760741 68.05578046 -0.001826950 

28 68.04739003 68.01728449 -0.030105539 68.04739003 68.04556193 -0.001828098 

29 68.03717418 68.00524682 -0.031927357 68.03717418 68.03534703 -0.001827146 

30 68.02695987 67.99321173 -0.033748141 68.02695987 68.02513343 -0.001826434 

31 68.01674709 67.98117891 -0.035568176 68.01674709 68.01492108 -0.001826007 

32 68.00653584 67.96914826 -0.037387577 68.00653584 68.00471014 -0.001825696 

33 67.99632612 67.95711975 -0.039206378 67.99632612 67.99450071 -0.001825417 

34 67.98611794 67.94509336 -0.041024583 67.98611794 67.9842928 -0.001825143 

35 67.97591129 67.9330691 -0.042842192 67.97591129 67.97408642 -0.001824870 

36 67.96570618 67.92104697 -0.044659207 67.96570618 67.96388158 -0.001824596 

37 67.95550259 67.90902697 -0.046475626 67.95550259 67.95367827 -0.001824322 

38 67.94530054 67.89700909 -0.048291450 67.94530054 67.94347649 -0.001824049 

39 67.93510002 67.88499334 -0.050106678 67.93510002 67.93327624 -0.001823775 

40 67.92490103 67.87297972 -0.051921312 67.92490103 67.92307753 -0.001823501 

41 67.91470357 67.86096822 -0.053735350 67.91470357 67.91288034 -0.001823227 

42 67.90450764 67.84895885 -0.055548794 67.90450764 67.90268469 -0.001822953 

43 67.89431325 67.8369516 -0.057361643 67.89431325 67.89249057 -0.001822680 

44 67.88412038 67.82494648 -0.059173898 67.88412038 67.88229797 -0.001822406 

45 67.87392904 67.81294348 -0.060985559 67.87392904 67.87210691 -0.001822132 

46 67.86373924 67.80094261 -0.062796625 67.86373924 67.86191738 -0.001821859 

47 67.85355096 67.78894386 -0.064607097 67.85355096 67.85172937 -0.001821585 

48 67.83827141 67.77130811 -0.066963307 67.83827141 67.83589839 -0.002373018 
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J. Solar Radiation for Mohave 

  Sustained Shock  Initial Shock  

Time 

Period (t) 
Before 

Shock 
After Shock Marginal Effect 

Before 

Shock 
After Shock 

Marginal 

Effect 

0 68.21617315 68.22927873 0.013105586 68.21617315 68.22927873 0.013105586 

1 68.21105236 68.24349294 0.032440583 68.21105236 68.23038463 0.019332267 

2 68.20593196 68.25960588 0.053673921 68.20593196 68.22715764 0.021225679 

3 68.20081194 68.27611759 0.075305652 68.20081194 68.22243069 0.021618747 

4 68.19569231 68.29266701 0.096974701 68.19569231 68.21734311 0.021650796 

5 68.19057306 68.30920437 0.118631310 68.19057306 68.21220619 0.021633126 

6 68.1854542 68.32573536 0.140281165 68.1854542 68.20707534 0.021621146 

7 68.18033572 68.34226673 0.161931011 68.18033572 68.20195162 0.021615905 

8 68.17521762 68.35880121 0.183583592 68.17521762 68.19683103 0.021613404 

9 68.17009991 68.37533958 0.205239665 68.17009991 68.19171157 0.021611658 

10 68.16498258 68.39188195 0.226899368 68.16498258 68.18659263 0.021610048 

11 68.15986564 68.40842835 0.248562705 68.15986564 68.18147408 0.021608442 

12 68.15474908 68.42497875 0.270229668 68.15474908 68.17635591 0.021606827 

13 68.14963291 68.44153316 0.291900252 68.14963291 68.17123811 0.021605207 

14 68.14451712 68.45809158 0.313574458 68.14451712 68.1661207 0.021603585 

15 68.13940171 68.474654 0.335252286 68.13940171 68.16100367 0.021601963 

16 
 

68.13428669 68.49122043 0.356933737 68.13428669 68.15588703 0.021600342 

17 68.12917205 68.50779086 0.378618812 68.12917205 68.15077077 0.021598720 

18 68.1240578 68.52436531 0.400307513 68.1240578 68.14565489 0.021597099 

19 68.11894392 68.54094376 0.421999839 68.11894392 68.1405394 0.021595478 

20 68.11383044 68.55752623 0.443695792 68.11383044 68.13542429 0.021593857 

21 68.10871733 68.57411271 0.465395373 68.10871733 68.13030957 0.021592236 

22 68.10360462 68.5907032 0.487098583 68.10360462 68.12519523 0.021590615 

23 68.09849228 68.6072977 0.508805423 68.09849228 68.12008127 0.021588994 

24 68.08826876 68.63192776 0.543658997 68.08826876 68.12293967 0.034670913 

25 68.07804678 68.66283379 0.584787015 68.07804678 68.11892997 0.040883200 

26 68.06782633 68.69566162 0.627835291 68.06782633 68.11059501 0.042768688 

27 68.05760741 68.72890273 0.671295319 68.05760741 68.10076363 0.043156225 

28 68.04739003 68.76219387 0.714803838 68.04739003 68.09057338 0.043183355 

29 68.03717418 68.79548495 0.758310767 68.03717418 68.08033504 0.043160859 

30 68.02695987 68.8287817 0.801821830 68.02695987 68.07010391 0.043144043 

31 68.01674709 68.86209091 0.845343822 68.01674709 68.05988104 0.043133956 

32 68.00653584 68.89541535 0.888879513 68.00653584 68.04966244 0.043126604 

33 67.99632612 68.9287558 0.932429673 67.99632612 68.03944613 0.043120006 

34 67.98611794 68.96211239 0.975994447 67.98611794 68.02923149 0.043113545 

35 67.97591129 68.99548514 1.019573847 67.97591129 68.01901838 0.043107088 

36 67.96570618 69.02887405 1.063167872 67.96570618 68.0088068 0.043100623 

37 67.95550259 69.06227912 1.106776524 67.95550259 67.99859675 0.043094155 
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38 67.94530054 69.09570035 1.150399810 67.94530054 67.98838822 0.043087685 

39 67.93510002 69.12913776 1.194037739 67.93510002 67.97818123 0.043081217 

40 67.92490103 69.16259135 1.237690317 67.92490103 67.96797578 0.043074749 

41 67.91470357 69.19606112 1.281357553 67.91470357 67.95777185 0.043068282 

42 67.90450764 69.2295471 1.325039455 67.90450764 67.94756946 0.043061816 

43 67.89431325 69.26304928 1.368736032 67.89431325 67.9373686 0.043055351 

44 67.88412038 69.29656767 1.412447290 67.88412038 67.92716927 0.043048888 

45 67.87392904 69.33010228 1.456173239 67.87392904 67.91697147 0.043042425 

46 67.86373924 69.36365312 1.499913886 67.86373924 67.9067752 0.043035963 

47 67.85355096 69.3972202 1.543669240 67.85355096 67.89658046 0.043029502 

48 67.83827141 69.43892949 1.600658081 67.83827141 67.89433247 0.056061061 
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APPENDIX J Marginal Effects for Monthly Load Forecasting Model 

 

 

A. Temperature  

   Sustained Shock  Initial Shock  

Time 
Period 

(t) 
Before Shock After Shock 

Marginal 

Effect 
Before 

Shock 
After Shock 

Marginal 

Effect 

0 641.276067 655.664187 14.388120000 641.276067 655.664187 14.388120000 

1 641.276067 649.1032042 7.827137280 641.276067 634.7150842 -6.560982720 

2 641.276067 652.0950124 10.818945400 641.276067 644.2678751 2.991808120 

3 641.276067 653.4357144 12.159647457 641.276067 642.616769 1.340702057 

4 641.276067 651.5908895 10.314822568 641.276067 639.4312421 -1.844824889 

5 641.276067 652.9945896 11.718522644 641.276067 642.679767 1.403700076 

6 641.276067 652.6065544 11.330487396 641.276067 640.8880317 -0.388035248 

7 641.276067 652.4366713 11.160604390 641.276067 641.1061839 -0.169883006 

8 641.276067 
 

652.7780336 11.501966655 641.276067 641.6174292 0.341362265 

9 641.276067 652.5494218 11.273354836 641.276067 641.0474551 -0.228611820 

10 641.276067 652.6217308 11.345663820 641.276067 641.3483759 0.072308985 

11 641.276067 652.652934 11.376867029 641.276067 641.3072702 0.031203209 

12 641.276067 649.20013 7.924063024 641.276067 637.8232629 -3.452804005 

13 641.276067 652.3365946 11.060527661 641.276067 644.4125316 3.136464637 

14 641.276067 650.2061662 8.930099273 641.276067 639.1456386 -2.130428388 

15 641.276067 650.2121087 8.936041780 641.276067 641.2820095 0.005942506 

16 641.276067 651.234433 9.958366023 641.276067 642.2983912 1.022324243 

17 641.276067 650.0364594 8.760392413 641.276067 640.0780933 -1.197973610 

18 641.276067 650.6754288 9.399361889 641.276067 641.9150364 0.638969476 

19 641.276067 650.6163481 9.340281155 641.276067 641.2169862 -0.059080734 

20 641.276067 650.3375084 9.061441436 641.276067 640.9972272 -0.278839719 

21 641.276067 650.638738 9.362670999 641.276067 641.5772965 0.301229562 

22 641.276067 650.4732052 9.197138220 641.276067 641.1105342 -0.165532779 

23 641.276067 650.4889023 9.212835343 641.276067 641.2917641 0.015697123 

24 641.276067 651.3532373 10.077170358 641.276067 642.140402 0.864335015 

25 641.276067 650.1877747 8.911707774 641.276067 640.1106044 -1.165462584 

26 641.276067 651.2249578 9.948890871 641.276067 642.3132501 1.037183097 

27 641.276067 650.9130949 9.637027930 641.276067 640.964204 -0.311862941 

28 641.276067 650.5949289 9.318861944 641.276067 640.957901 -0.318165986 

29 641.276067 651.2177248 9.941657828 641.276067 641.8988628 0.622795884 

30 641.276067 650.7243028 9.448235876 641.276067 640.782645 -0.493421952 

31 641.276067 650.9034311 9.627364134 641.276067 641.4551952 0.179128258 

32 641.276067 651.0046404 9.728573448 641.276067 641.3772763 0.101209314 

33 641.276067 650.7946355 9.518568497 641.276067 641.066062 -0.210004951 
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34 641.276067 650.9631396 9.687072603 641.276067 641.4445711 0.168504106 

35 641.276067 650.9016245 9.625557560 641.276067 641.2145519 -0.061515042 

36 641.276067 650.6862114 9.410144425 641.276067 641.0606538 -0.215413135 

37 641.276067 651.0911677 9.815100757 641.276067 641.6810233 0.404956331 

38 641.276067 650.6501676 9.374100631 641.276067 640.8350668 -0.441000126 

39 641.276067 650.8843656 9.608298673 641.276067 641.510265 0.234198042 

40 641.276067 650.9287903 9.652723329 641.276067 641.3204916 0.044424656 

41 641.276067 650.6786448 9.402577833 641.276067 641.0259215 -0.250145495 

42 641.276067 650.9531879 9.677120992 641.276067 641.5506101 0.274543158 

43 641.276067 650.7940738 9.518006878 641.276067 641.1169528 -0.159114114 

44 641.276067 650.7957171 9.519650163 641.276067 641.2777102 0.001643285 

45 641.276067 650.8961431 9.620076107 641.276067 641.3764929 0.100425944 

46 641.276067 650.7806684 9.504601454 641.276067 641.1605923 -0.115474653 

47 641.276067 650.8481513 9.572084383 641.276067 641.3435499 0.067482929 

48 641.276067 650.8870967 9.611029745 641.276067 641.3150123 0.038945362 
 

 

B. Precipitation 

  Sustained Shock  Initial Shock  

Time 

Period 
(t) 

Before Shock After Shock 
Marginal 

Effect 
Before 

Shock 
After Shock 

Marginal 

Effect 

0 641.276067 825.666067 184.390000000 641.276067 825.666067 184.390000000 

1 641.276067 741.584227 100.308160000 641.276067 557.194227 -84.081840000 

2 641.276067 779.925546 138.649479040 641.276067 679.617386 38.341319040 

3 641.276067 797.1072245 155.831157558 641.276067 658.4577455 17.181678518 

4 641.276067 773.4649932 132.188926234 641.276067 617.6338356 -23.642231324 

5 641.276067 791.4540187 150.177951697 641.276067 659.2650924 17.989025463 

6 641.276067 786.4811786 145.205111647 641.276067 636.3032269 -4.972840050 

7 641.276067 784.3040542 143.027987221 641.276067 639.0989425 -2.177124426 

8 

 

641.276067 
 

788.6787597 147.402692746 641.276067 645.6507725 4.374705525 

9 641.276067 785.7490001 144.472933097 641.276067 638.3463073 -2.929759649 

10 641.276067 786.6756711 145.399604105 641.276067 642.202738 0.926671008 

11 641.276067 787.0755537 145.799486764 641.276067 641.6759496 0.399882659 

12 641.276067 742.8263724 101.550305458 641.276067 597.0268856 -44.249181307 

13 641.276067 783.0215275 141.745460523 641.276067 681.471222 40.195155065 

14 641.276067 755.7191634 114.443096460 641.276067 613.9737029 -27.302364063 

15 641.276067 755.7953192 114.519252257 641.276067 641.3522228 0.076155797 

16 641.276067 768.8968479 127.620780958 641.276067 654.3775957 13.101528701 

17 641.276067 753.5442964 112.268229417 641.276067 625.9235154 -15.352551541 
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18 641.276067 761.7329674 120.456900461 641.276067 649.464738 8.188671044 

19 641.276067 760.9758222 119.699755226 641.276067 640.5189217 -0.757145236 

20 641.276067 757.4023702 116.126303259 641.276067 637.702615 -3.573451966 

21 641.276067 761.2627577 119.986690789 641.276067 645.1364545 3.860387530 

22 641.276067 759.1413834 117.865316414 641.276067 639.1546926 -2.121374376 

23 641.276067 759.3425488 118.066481852 641.276067 641.4772324 0.201165438 

24 641.276067 770.419377 129.143310056 641.276067 652.3528952 11.076828204 

25 641.276067 755.4834684 114.207401417 641.276067 626.3401583 -14.935908639 

26 641.276067 768.7754197 127.499352778 641.276067 654.5680183 13.291951361 

27 641.276067 764.7787608 123.502693891 641.276067 637.2794081 -3.996658886 

28 641.276067 760.7013257 119.425258746 641.276067 637.1986318 -4.077435146 

29 641.276067 768.6827251 127.406658192 641.276067 649.2574664 7.981399446 

30 641.276067 762.3593088 121.083241807 641.276067 634.9526506 -6.323416384 

31 641.276067 764.6549151 123.378848147 641.276067 643.5716733 2.295606340 

32 641.276067 765.9519564 124.675889416 641.276067 642.5731082 1.297041269 

33 641.276067 763.2606518 121.984584860 641.276067 638.5847624 -2.691304556 

34 641.276067 765.420105 124.144038082 641.276067 643.4355202 2.159453222 

35 641.276067 764.6317631 123.355696128 641.276067 640.487725 -0.788341954 

36 641.276067 761.8711503 120.595083346 641.276067 638.5154542 -2.760612782 

37 641.276067 767.0608414 125.784774419 641.276067 646.465758 5.189691073 

38 641.276067 761.4092334 120.133166481 641.276067 635.624459 -5.651607938 

39 641.276067 764.410583 123.134515995 641.276067 644.2774165 3.001349514 

40 641.276067 764.9799042 123.703837233 641.276067 641.8453882 0.569321238 

41 641.276067 761.7741811 120.498114187 641.276067 638.0703439 -3.205723046 

42 641.276067 765.2925708 124.016503871 641.276067 644.7944566 3.518389684 

43 641.276067 763.2534544 121.977387472 641.276067 639.2369506 -2.039116399 

44 641.276067 763.2745138 121.998446878 641.276067 641.2971264 0.021059406 

45 641.276067 764.5615159 123.285448925 641.276067 642.563069 1.287002047 

46 641.276067 763.0816581 121.805591148 641.276067 639.7962092 -1.479857777 

47 641.276067 763.9464811 122.670414163 641.276067 642.14089 0.864823016 

48 641.276067 764.4455828 123.169515870 641.276067 641.7751687 0.499101706 
 

C. Wind Speed 

  Sustained Shock  Initial Shock  

Time 
Period 

(t) 
Before Shock After Shock Marginal Effect 

Before 

Shock 
After Shock 

Marginal 

Effect 

0 641.276067 628.370447 -12.905620000 641.276067 628.370447 -12.905620000 

1 641.276067 634.2554097 -7.020657280 641.276067 647.1610297 5.884962720 

2 641.276067 631.5718667 -9.704200280 641.276067 638.592524 -2.683543000 

3 641.276067 630.3693057 -10.906761232 641.276067 640.073506 -1.202560952 

4 641.276067 632.0240465 -9.252020447 641.276067 642.9308077 1.654740785 
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5 641.276067 630.7649786 -10.511088329 641.276067 640.0169991 -1.259067882 

6 641.276067 631.1130321 -10.163034834 641.276067 641.6241205 0.348053495 

7 641.276067 631.265411 -10.010655960 641.276067 641.4284458 0.152378874 

8 641.276067 
 

630.9592215 -10.316845488 641.276067 640.9698774 -0.306189528 

9 641.276067 631.1642779 -10.111789006 641.276067 641.4811234 0.205056482 

10 641.276067 631.0994194 -10.176647534 641.276067 641.2112084 -0.064858528 

11 641.276067 631.0714313 -10.204635676 641.276067 641.2480788 -0.027988143 

12 641.276067 634.1684708 -7.107596145 641.276067 644.3731065 3.097039532 

13 641.276067 631.3551762 -9.920890776 641.276067 638.4627723 -2.813294632 

14 641.276067 633.2660929 -8.009974047 641.276067 643.1869837 1.910916729 

15 641.276067 633.2607627 -8.015304259 641.276067 641.2707367 -0.005330212 

16 641.276067 632.3437751 -8.932291898 641.276067 640.3590793 -0.916987639 

17 641.276067 633.4183138 -7.857753170 641.276067 642.3506057 1.074538729 

18 641.276067 632.8451814 -8.430885535 641.276067 640.7029346 -0.573132365 

19 641.276067 632.8981747 -8.377892267 641.276067 641.3290602 0.052993268 

20 641.276067 633.1482838 -8.127783187 641.276067 641.526176 0.250109079 

21 641.276067 632.8780918 -8.397975142 641.276067 641.005875 -0.270191955 

22 641.276067 633.0265687 -8.249498264 641.276067 641.4245438 0.148476878 

23 641.276067 633.0124889 -8.263578011 641.276067 641.2619872 -0.014079748 

24 641.276067 632.2372119 -9.038855063 641.276067 640.5007899 -0.775277052 

25 641.276067 633.2825894 -7.993477541 641.276067 642.3214445 1.045377522 

26 641.276067 632.3522739 -8.923793032 641.276067 640.3457515 -0.930315491 

27 641.276067 632.6320036 -8.644063324 641.276067 641.5557967 0.279729708 

28 641.276067 632.9173869 -8.358680014 641.276067 641.5614503 0.285383310 

29 641.276067 632.3587617 -8.917305256 641.276067 640.7174417 -0.558625242 

30 641.276067 632.8013432 -8.474723722 641.276067 641.7186485 0.442581533 

31 641.276067 632.6406717 -8.635395250 641.276067 641.1153954 -0.160671528 

32 641.276067 632.5498906 -8.726176322 641.276067 641.1852859 -0.090781071 

33 641.276067 632.7382574 -8.537809524 641.276067 641.4644338 0.188366798 

34 641.276067 632.5871154 -8.688951574 641.276067 641.1249249 -0.151142051 

35 641.276067 632.6422921 -8.633774820 641.276067 641.3312437 0.055176754 

36 641.276067 632.8355099 -8.440557078 641.276067 641.4692847 0.193217742 

37 641.276067 632.4722788 -8.803788169 641.276067 640.9128359 -0.363231091 

38 641.276067 632.8678398 -8.408227106 641.276067 641.671628 0.395561063 

39 641.276067 632.6577727 -8.618294226 641.276067 641.0659998 -0.210067120 

40 641.276067 632.6179254 -8.658141525 641.276067 641.2362197 -0.039847299 

41 641.276067 632.8422968 -8.433770120 641.276067 641.5004384 0.224371405 

42 641.276067 632.5960416 -8.680025341 641.276067 641.0298117 -0.246255221 

43 641.276067 632.7387612 -8.537305772 641.276067 641.4187865 0.142719569 

44 641.276067 632.7372872 -8.538779739 641.276067 641.274593 -0.001473967 

45 641.276067 632.6472088 -8.628858156 641.276067 641.1859885 -0.090078417 

46 641.276067 632.7507854 -8.525281595 641.276067 641.3796435 0.103576561 

47 641.276067 632.6902556 -8.585811326 641.276067 641.2155372 -0.060529732 
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48 641.276067 632.6553231 -8.620743898 641.276067 641.2411344 -0.034932572 
 

 

D. Per Capita Income 

  Sustained Shock  Initial Shock  

Time 

Period 
(t) 

Before Shock After Shock 
Marginal 

Effect 
Before 

Shock 
After Shock 

Marginal 

Effect 

0 641.276067 641.298067 0.022000000 641.276067 641.298067 0.022000000 

1 641.276067 641.288035 0.011968000 641.276067 641.266035 -0.010032000 

2 641.276067 641.2926095 0.016542592 641.276067 641.2806415 0.004574592 

3 641.276067 641.2946595 0.018592578 641.276067 641.2781169 0.002049986 

4 641.276067 641.2918387 0.015771768 641.276067 641.2732461 -0.002820810 

5 641.276067 641.293985 0.017918081 641.276067 641.2782133 0.002146312 

6 641.276067 641.2933917 0.017324760 641.276067 641.2754736 -0.000593321 

7 641.276067 641.293132 0.017065002 641.276067 641.2758072 -0.000259758 

8 641.276067 
 

641.2936539 0.017586958 641.276067 641.2765889 0.000521956 

9 641.276067 641.2933044 0.017237402 641.276067 641.2757174 -0.000349556 

10 641.276067 641.2934149 0.017347965 641.276067 641.2761775 0.000110563 

11 641.276067 641.2934626 0.017395676 641.276067 641.2761147 0.000047711 

12 641.276067 641.2881832 0.012116203 641.276067 641.2707875 -0.005279473 

13 641.276067 641.2929789 0.016911981 641.276067 641.2808627 0.004795777 

14 641.276067 641.2897214 0.013654472 641.276067 641.2728094 -0.003257509 

15 641.276067 641.2897305 0.013663558 641.276067 641.276076 0.000009086 

16 641.276067 641.2912937 0.015226732 641.276067 641.2776301 0.001563174 

17 641.276067 641.2894619 0.013394984 641.276067 641.2742352 -0.001831749 

18 641.276067 641.2904389 0.014371993 641.276067 641.277044 0.000977009 

19 641.276067 641.2903486 0.014281656 641.276067 641.2759766 -0.000090337 

20 641.276067 641.2899223 0.013855299 641.276067 641.2756406 -0.000426357 

21 641.276067 641.2903828 0.014315891 641.276067 641.2765275 0.000460592 

22 641.276067 641.2901297 0.014062785 641.276067 641.2758138 -0.000253106 

23 641.276067 641.2901537 0.014086787 641.276067 641.276091 0.000024002 

24 641.276067 641.2914753 0.015408389 641.276067 641.2773886 0.001321602 

25 641.276067 641.2896933 0.013626351 641.276067 641.2742849 -0.001782038 

26 641.276067 641.2912792 0.015212244 641.276067 641.2776528 0.001585894 

27 641.276067 641.2908023 0.014735394 641.276067 641.2755901 -0.000476851 

28 641.276067 641.2903159 0.014248906 641.276067 641.2755805 -0.000486488 

29 641.276067 641.2912681 0.015201185 641.276067 641.2770192 0.000952279 

30 641.276067 641.2905137 0.014446723 641.276067 641.2753125 -0.000754462 

31 641.276067 641.2907876 0.014720617 641.276067 641.2763408 0.000273894 

32 641.276067 641.2909423 0.014875371 641.276067 641.2762217 0.000154753 
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33 641.276067 641.2906212 0.014554265 641.276067 641.2757458 -0.000321106 

34 641.276067 641.2908789 0.014811914 641.276067 641.2763246 0.000257649 

35 641.276067 641.2907848 0.014717855 641.276067 641.2759729 -0.000094059 

36 641.276067 641.2904554 0.014388480 641.276067 641.2757376 -0.000329375 

37 641.276067 641.2910746 0.015007674 641.276067 641.2766861 0.000619194 

38 641.276067 641.2904003 0.014333368 641.276067 641.2753926 -0.000674306 

39 641.276067 641.2907584 0.014691466 641.276067 641.2764251 0.000358098 

40 641.276067 641.2908263 0.014759393 641.276067 641.2761349 0.000067927 

41 641.276067 641.2904439 0.014376910 641.276067 641.2756845 -0.000382482 

42 641.276067 641.2908637 0.014796698 641.276067 641.2764867 0.000419787 

43 641.276067 641.2906204 0.014553406 641.276067 641.2758237 -0.000243292 

44 641.276067 641.2906229 0.014555919 641.276067 641.2760695 0.000002513 

45 641.276067 641.2907764 0.014709474 641.276067 641.2762205 0.000153555 

46 641.276067 641.2905999 0.014532909 641.276067 641.2758904 -0.000176565 

47 641.276067 641.290703 0.014636093 641.276067 641.2761701 0.000103184 

48 641.276067 641.2907626 0.014695642 641.276067 641.2761265 0.000059549 

 

 

E. Change in Population 

  Sustained Shock  Initial Shock  

Time 
Period 

(t) 
Before Shock After Shock 

Marginal 

Effect 
Before 

Shock 
After Shock 

Marginal 

Effect 

0 641.276067 641.283067 0.007000000 641.276067 641.283067 0.007000000 

1 641.276067 641.279875 0.003808000 641.276067 641.272875 -0.003192000 

2 641.276067 641.2813305 0.005263552 641.276067 641.2775225 0.001455552 

3 641.276067 641.2819828 0.005915820 641.276067 641.2767192 0.000652268 

4 641.276067 641.2810852 0.005018290 641.276067 641.2751694 -0.000897530 

5 641.276067 641.2817682 0.005701208 641.276067 641.2767499 0.000682918 

6 641.276067 641.2815794 0.005512424 641.276067 641.2758782 -0.000188784 

7 641.276067 641.2814967 0.005429773 641.276067 641.2759843 -0.000082650 

8 641.276067 
 

641.2816628 0.005595850 641.276067 641.276233 0.000166077 

9 641.276067 641.2815516 0.005484628 641.276067 641.2759557 -0.000111223 

10 641.276067 641.2815868 0.005519807 641.276067 641.2761021 0.000035179 

11 641.276067 641.2816019 0.005534988 641.276067 641.2760821 0.000015181 

12 641.276067 641.2799221 0.003855156 641.276067 641.2743871 -0.001679832 

13 641.276067 641.281448 0.005381085 641.276067 641.2775929 0.001525929 

14 641.276067 641.2804116 0.004344605 641.276067 641.2750305 -0.001036480 

15 641.276067 641.2804145 0.004347496 641.276067 641.2760698 0.000002891 

16 641.276067 641.2809118 0.004844869 641.276067 641.2765643 0.000497374 

17 641.276067 641.280329 0.004262040 641.276067 641.2754841 -0.000582829 
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18 641.276067 641.2806399 0.004572907 641.276067 641.2763778 0.000310867 

19 641.276067 641.2806111 0.004544163 641.276067 641.2760382 -0.000028744 

20 641.276067 641.2804755 0.004408504 641.276067 641.2759313 -0.000135659 

21 641.276067 641.280622 0.004555056 641.276067 641.2762135 0.000146552 

22 641.276067 641.2805415 0.004474523 641.276067 641.2759864 -0.000080534 

23 641.276067 641.2805491 0.004482159 641.276067 641.2760746 0.000007637 

24 641.276067 641.2809696 0.004902669 641.276067 641.2764875 0.000420510 

25 641.276067 641.2804026 0.004335657 641.276067 641.2754999 -0.000567012 

26 641.276067 641.2809072 0.004840260 641.276067 641.2765716 0.000504603 

27 641.276067 641.2807555 0.004688534 641.276067 641.2759152 -0.000151725 

28 641.276067 641.2806007 0.004533743 641.276067 641.2759122 -0.000154792 

29 641.276067 641.2809037 0.004836741 641.276067 641.27637 0.000302998 

30 641.276067 641.2806636 0.004596685 641.276067 641.2758269 -0.000240056 

31 641.276067 641.2807508 0.004683833 641.276067 641.2761541 0.000087148 

32 641.276067 641.2808 0.004733072 641.276067 641.2761162 0.000049240 

33 641.276067 641.2806979 0.004630902 641.276067 641.2759648 -0.000102170 

34 641.276067 641.2807798 0.004712882 641.276067 641.2761489 0.000081979 

35 641.276067 641.2807499 0.004682954 641.276067 641.276037 -0.000029928 

36 641.276067 641.2806451 0.004578153 641.276067 641.2759622 -0.000104801 

37 641.276067 641.2808421 0.004775169 641.276067 641.276264 0.000197016 

38 641.276067 641.2806276 0.004560617 641.276067 641.2758524 -0.000214552 

39 641.276067 641.2807415 0.004674557 641.276067 641.2761809 0.000113940 

40 641.276067 641.2807631 0.004696170 641.276067 641.2760886 0.000021613 

41 641.276067 641.2806414 0.004574471 641.276067 641.2759453 -0.000121699 

42 641.276067 641.280775 0.004708040 641.276067 641.2762005 0.000133569 

43 641.276067 641.2806976 0.004630629 641.276067 641.2759895 -0.000077411 

44 641.276067 641.2806984 0.004631429 641.276067 641.2760678 0.000000799 

45 641.276067 641.2807472 0.004680287 641.276067 641.2761158 0.000048858 

46 641.276067 641.2806911 0.004624107 641.276067 641.2760108 -0.000056180 

47 641.276067 641.2807239 0.004656939 641.276067 641.2760998 0.000032831 

48 641.276067 641.2807428 0.004675886 641.276067 641.2760859 0.000018947 

 

 

F. Copper Mine Production 

  Sustained Shock  Initial Shock  

Time 

Period 

(t) 
Before Shock After Shock 

Marginal 
Effect 

Before 
Shock 

After Shock 
Marginal 

Effect 

0 641.276067 641.280067 0.004000000 641.276067 641.280067 0.004000000 

1 641.276067 641.278243 0.002176000 641.276067 641.274243 -0.001824000 

2 641.276067 641.2790747 0.003007744 641.276067 641.2768987 0.000831744 
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3 641.276067 641.2794474 0.003380469 641.276067 641.2764397 0.000372725 

4 641.276067 641.2789345 0.002867594 641.276067 641.2755541 -0.000512874 

5 641.276067 641.2793248 0.003257833 641.276067 641.2764572 0.000390239 

6 641.276067 641.2792169 0.003149956 641.276067 641.2759591 -0.000107877 

7 641.276067 641.2791697 0.003102728 641.276067 641.2760197 -0.000047229 

8 641.276067 
 

641.2792646 0.003197629 641.276067 641.2761619 0.000094901 

9 641.276067 641.279201 0.003134073 641.276067 641.2760034 -0.000063556 

10 641.276067 641.2792211 0.003154175 641.276067 641.2760871 0.000020102 

11 641.276067 641.2792298 0.003162850 641.276067 641.2760756 0.000008675 

12 641.276067 641.2782699 0.002202946 641.276067 641.2751071 -0.000959904 

13 641.276067 641.2791419 0.003074906 641.276067 641.2769389 0.000871960 

14 641.276067 641.2785496 0.002482631 641.276067 641.2754747 -0.000592274 

15 641.276067 641.2785512 0.002484283 641.276067 641.2760686 0.000001652 

16 641.276067 641.2788355 0.002768497 641.276067 641.2763512 0.000284213 

17 641.276067 641.2785024 0.002435452 641.276067 641.2757339 -0.000333045 

18 641.276067 641.27868 0.002613090 641.276067 641.2762446 0.000177638 

19 641.276067 641.2786636 0.002596665 641.276067 641.2760505 -0.000016425 

20 641.276067 641.2785861 0.002519145 641.276067 641.2759894 -0.000077519 

21 641.276067 641.2786698 0.002602889 641.276067 641.2761507 0.000083744 

22 641.276067 641.2786238 0.002556870 641.276067 641.2760209 -0.000046019 

23 641.276067 641.2786282 0.002561234 641.276067 641.2760713 0.000004364 

24 641.276067 641.2788685 0.002801525 641.276067 641.2763072 0.000240291 

25 641.276067 641.2785445 0.002477518 641.276067 641.2757429 -0.000324007 

26 641.276067 641.2788328 0.002765863 641.276067 641.2763553 0.000288344 

27 641.276067 641.2787461 0.002679163 641.276067 641.2759803 -0.000086700 

28 641.276067 641.2786577 0.002590710 641.276067 641.2759785 -0.000088452 

29 641.276067 641.2788308 0.002763852 641.276067 641.2762401 0.000173142 

30 641.276067 641.2786936 0.002626677 641.276067 641.2759298 -0.000137175 

31 641.276067 641.2787434 0.002676476 641.276067 641.2761168 0.000049799 

32 641.276067 641.2787716 0.002704613 641.276067 641.2760951 0.000028137 

33 641.276067 641.2787132 0.002646230 641.276067 641.2760086 -0.000058383 

34 641.276067 641.27876 0.002693075 641.276067 641.2761138 0.000046845 

35 641.276067 641.2787429 0.002675974 641.276067 641.2760499 -0.000017102 

36 641.276067 641.278683 0.002616087 641.276067 641.2760071 -0.000059886 

37 641.276067 641.2787956 0.002728668 641.276067 641.2761795 0.000112581 

38 641.276067 641.278673 0.002606067 641.276067 641.2759444 -0.000122601 

39 641.276067 641.2787381 0.002671176 641.276067 641.2761321 0.000065109 

40 641.276067 641.2787505 0.002683526 641.276067 641.2760793 0.000012350 

41 641.276067 641.2786809 0.002613984 641.276067 641.2759974 -0.000069542 

42 641.276067 641.2787573 0.002690309 641.276067 641.2761433 0.000076325 

43 641.276067 641.278713 0.002646074 641.276067 641.2760227 -0.000044235 

44 641.276067 641.2787135 0.002646531 641.276067 641.2760674 0.000000457 

45 641.276067 641.2787414 0.002674450 641.276067 641.2760949 0.000027919 
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46 641.276067 641.2787093 0.002642347 641.276067 641.2760349 -0.000032103 

47 641.276067 641.2787281 0.002661108 641.276067 641.2760857 0.000018761 

48 641.276067 641.2787389 0.002671935 641.276067 641.2760778 0.000010827 
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