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ABSTRACT

In the last few decades the econometric literature has generated a number of
parametric, nonparametric, and semiparametric methods for solving binary response
models. These procedures differ in the relative strength of their assumptions, conver-
gence rates, consistency, efficiency, and prediction. This paper considers an estimator
that assumes a parametric start and then couples this with a nonparametric correction
factor. This model is compared with parametric estimators of the link function on a
Monte Carlo study and an application using data from Spector and Mazzeo(1980) on

effects of new teaching methods in economics on student grades.



Chapter 1

INTRODUCTION

1.1 Problem Statement

Qualitative response models have received a lot of attention in the econometric
literature because they continue to have considerable application in studies involv-
ing participation in the labor force, choice of occupation, choice of transportation
mode, purchase of consumer durables, analyzing voter behavior, and other areas.
The last two decades have witnessed the application of semiparametric and nonpara-
metric methods developed in the 1960s and 1970s to qualitative response models.
Great interest was generated by Horowitz’s (1993) comparison of the performance
of several alternative parametric and semiparametric specifications when applied to
the problem of solving the binary decision of selecting the mode of transportation
to work. Horowitz(1993) regressed an individual’s choice of transportation method
(automobile versus transit) against difference in travel costs and travel times in and
out-of-vehicle and number of cars owned by the household. Horowitz applied a num-

ber of parametric and semiparametric procedures to estimate the link function and
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slope parameters. Some of these models were fitted by using the Klein and Spady
(1993) procedure, maximum score method by Manski(1975) and Horowitz’s(1992)
smoothed maximum score methods?.

A number of methods have been developed by econometricians to get solutions
to binary response models. These methods can be broadly classified as parametric,
nonparametric, and semiparametric in their approach to tackling the regression es-
timation of binary models. These methods differ in the relative strength of the as-
sumptions and restrictions they impose on structural form in order to estimate the
relevant regression parameters and function.

Economic theory does not reveal the structural form taken by variables but in-
stead may shed some light on the nature of the relationships between certain variables
- homogeneity, additivity, etc. Parametric approaches impose certain restrictions and
assumptions to aid in identifying the structural forms prior to solving regression prob-
lems. Now, if the true structure is not from the assumed parametric family, then the
model is misspecified. This implies that the regression estimates may not be very
useful in explaining the data and practical applications like analyzing consumer be-
havior might not be reliable. Therefore, issues involving specification and selection
of functional form are important to the quality of the results from binary response

model estimation.

Klein and Spady(1993) replaced the link function F() (Equation 1.2) with a nonparametric
kernel and estimated the parameters by a semiparametric maximum likelihood method. The score
methods of Manski(1975) and Horowitz(1992) apply the concept of getting a method that maximizes
the number of correct predictions
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1.2 Functional Forms

The estimation of the conditional mean regression function, y | z , is important
in econometrics, as it is the most common method used to explain the relationship
between variables. A number of regression estimators exist for solving binary response

models of the general conditional estimation form
yi = I(z:0 + u; > 0) (1.1)

where y; are the decision choices available, z; are the regressors, I(.) is an indicator
function, z;3 is an index, and (z;0,u;) are independent and identically distributed
(Manski 1975). The i.i.d condition implies that z;3 and u; are not correlated and are
randomly selected variables. The nature and application of index functions to binary
regression is explained in Chapter 2 and 3 of this thesis. The expression in brackets
(.) is the latent variable which is generally unobservable and provides the values
taken by the endogenous variable y (Section 2.1). Equation 1.1 can be transformed
to y; = F(x;8) + u; where F() is the distribution function of the unobservable u i.e.
the link function between the latent variable and the endogenous variable Y. F() is
usually unknown but when it is assumed to be the uniform distribution the expression
becomes y; = x;0 + u;.

The condition FE(u | ) = 0 helps map this equation to its probability form
where Y takes a value of 1 conditional on X taking particular values, x, as shown
below.

PrlY;=1|X =z)=F(z;0) (1.2)
where F(.) is an unknown function, z;0 and is an index (Horowitz 1992a). The

transformation from Equation (1.1) to (1.2) includes location normalization E(u; |
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z;3) = 0 analogous to the parametric assumption of linear least squares regression
E(u | ) = 0. Identification and prior restrictions on binary response models are
discussed further in Section 2.1. Applications of this model include Horowitz (1993),
Das (1991), and Melenberg and van Soest (1991). Horowitz applies this model to the
choice of mode of travel to work while Melenberg and Soest look at the decision to
rent or own a house subject to certain household characteristics (number of children,
income, etc). Thompson and Kidwell (1998) apply the indirect utility approach to
model consumer preference between organic and conventional produce and the choice
between two stores conditional on certain variables (incomes, demographics, etc) using
parametric methods. Their model incorporates simultaneity issues involving the two
endogenous variables - type of store and produce?3.
The problem is to estimate both § and F(.) from observations of (Y, X).
This model nests some parametric specific forms. If F(.) is the identity function the
expression becomes a linear model. If F(.) is the cumulative distribution function
(cdf) of the normal or logistic distribution then the expression is the binary probit or
logit model respectively (Greene 2000). When F'(.) is assumed to be unknown, as is
the case with nonparametric regression, this becomes flexible and less restrictive than
a parametric model while keeping the desirable features of parametric models. The
estimation method and results depend on the a priori assumptions on the population
or data generating process.
By far the most commonly applied regression methods for binary response

models are the probit and logit. These approaches rely on prior assumptions that

2Thompson and Kidwell use parametric procedures to estimate coeficients in a model that re-
gresses choice of produce or store against covariates involving demographics and income levels.
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the link function F(.) belongs to a specific family of parametric functions. This
then makes it convenient for the relevant parameters to be estimated by common
parametric estimators.

Nonparametric regression methods do not assume the functional form of the
distribution of u; but replace F(.) with a kernel estimator which has appropriate
or desirable properties. When the parametric structural assumption is correct, the
estimates for B converge at a comparatively quicker rate of n'/2 3 than those of the
nonparametric procedures. However, when the assumption is incorrect, paramet-
ric regression estimates may not converge to their true values. On the other hand,
semiparametric methods combine parametric and nonparametric procedures with po-

tential efficiency gains from both methodologies while minimizing their disadvantages

(Ker and Coble 2001).

1.3 Research Objectives

Given the abundance of qualitative data in most surveys - decision to use
certain technologies or not, insure crops or make major investment decisions, etc. - it
is important to devise ways of estimating relevant parameters efficiently. The decision
on whether to join the labor force, make a major investment, vote for a particular
party or particular legislation, consume organic produce, purchase crop insurance,
etc against the respective negative alternatives are all examples of binary response
variables. For instance, a typical binary response model regresses the probability of
joining the labor force against covariates like the number of children one has and

income level of spouse or other benefactor.

3Section 3.1.1 and Ker and Coble (2001) expound on the concept of convergence.
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A number of estimators are available to solve such models - probit, logit, lin-

ear probability model, and a host of nonparametric and semiparametric approaches.
Ker and Coble(2001) have developed an estimator of the link function that incorpo-
rates some properties of the Hjort and Glad(1995) density estimator and Glad(1998)
regression estimator that has desirable qualities for the solution of binary response
models (Section 4.3). This estimator is an extension of the Hjort and Glad (1995)
density estimator with a parametric start to the problem of qualitative response data
in a nonparametric framework. The objective of this paper is to investigate this
estimator’s performance when compared to some of the existing alternatives. This
functional form can be tested on its own merits and compared directly to the kernel
regression estimator of Nadaraya (1964) and Watson (1964) and parametric models.
The estimation process allows for consistency and flexibility particularly due to the

weak restrictions and assumptions that accompany the model.

1.4 Organization of the Study

This paper will proceed as follows. Section 2.1 and 2.2 explain how binary
response models are set up and how they are identified and estimated. Identification
here refers to the conditions that should exist before F'(.) and § are estimated. Then
the other Sections of Chapter 2 will embark on parametric estimation methods, their
assumptions, performance, and problems emanating from their application to binary
models. Chapter 3 will dwell on the relevant nonparametric methods applicable to
binary data and the techniques for estimating the smoothing or bandwidth parameter
that is crucial in estimation. Chapter 4 follows with a similar exposition on semi-

parametric or combined methods. In particular Section 4.3 and 4.3.1 explain how
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Ker and Coble(2001) estimator is derived and some of its properties. Chapter 5 will
deal with simulations, results and their interpretation, exposition on the application

of the model, conclusions, summary, and recommendations for future research.
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Chapter 2

PARAMETRIC METHODS

2.1 Binary Response Models

A typical binary choice model postulates that for each randomly selected in-
dividual ¢ an observed choice variable y; is related to K x 1 vector of observable
regressors or exogenous variables z; by the expression y; = I(z;8 4+ u; > 0) as
in Equation (1.1) where 8 ( K X 1 vector ) is an unknown parameter, and u; is an
unobserved variable. The indicator function I(.) is assigned 1 if the expression in
brackets is satisfied and 0 otherwise (Ichimura and Scott 1998). For this model the
threshold value k is 0, below and above which y takes certain values depending on
the values taken by the latent variable within the brackets. If the latent variable
;0 + u; > 0 then y; = 1 and if x;6 + u; > 0 then y; = 0.

This is applicable to discrete choice models where y; denotes whether a con-
sumer ¢ buys a certain good or service or in dealing with experimental willingness-to-
pay models. For instance, economic theory postulates that the decision to purchase or
not to purchase a car depends on its price. The assumption is that the consumer has
a reservation price (which is unobservable, but probably determinable by conducting

an experimental design). For instance if the market price falls below or is equal to
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the reservation price then the decision to buy is made. However, if the market price
is higher than the reservation price then the consumer decides to forego the invest-
ment. For this case the latent variable is the difference between the reservation and
market price, d = Pr — Pm . If d > 0 then y; = 1 and the consumer invests in a car.
However, if d < 0 then y; = 0 and no purchase is made. Thus y indicates the decision
choices available to the consumer (y; = 1 means he buys because d > 0 and y; = 0
means no purchase because d < 0). The error u; can be interpreted as unexplained
unobservable effects (aside from price). The indicator function I(.) thus assigns the
new observable variable y = 1 if the latent variable is positive and y = 0 otherwise.

The model is also applicable in indirect utility studies to indicate that individ-
ual 7 gets an indirect utility mu;; when alternative j is chosen, and therefore chooses
y = 1 iff mus > muy . Then § is a vector of the marginal (indirect) utilities associ-
ated with the observable variables z; (e.g. prices) and u; denotes all other unobserved
effects of indirect utility.

Heterogeneity (randomness in slope effects from observation to observation)
can be incorporated into the model by treating § as a random variable (for more de-
tails readers are directed to Quandt (1956), Horowitz (1993), and McFadden (1976)).
For this study g in Equation (1.1) is assumed to be constant across all observations.
In addition, F(.) denotes the cumulative distribution function of w;. A number of
estimators have been considered for this model including parametric, nonparametric,
and semiparametric specifications discussed in the following sections. It is assumed
that (x;,v;) are 1.i.d and y; is related to z; through the index z;8 . The model satisfies
the index restriction; F(y | z) = E(y | £3) where E is the conditional expectation

and z3 is the index or aggregator (Klein and Spady 1993) leading to the term single
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index model for Equation (1.1), which is a useful variation of the linear regression
formulation.

The index restriction implies that x is related to y only through the index z;5.
This, as will be elaborated in Section 2.1 and Chapter 3, is essential in alleviating
the problem associated with large dimensions of X by aggregating the components of
X into a single index. Horowitz (1993) and Powell, Stock, and Stoker (1989) provide
a number of ways to estimate index coeflicients. Powell, Stock, and Stoker (1989)
applies density-weighted average derivative technique to estimate coefficients of index
models. Their estimator is of the form § = E(f(a:)%%) = E(f(m)%),@ =~0
where E(y | ) = G(x;0) is the index regression function and f(z) is the density
function of x. Thus the weighted average of the derivative dg/dz is proportional
to # . The derivatives of the density are then estimated by using kernels. Horowitz
(1992) uses both nonparametric and semiparametric methods to estimate index model
coefficients by utilizing quasi-maximum likelihood and maximum score methods.

The problem is to solve the model for F'(.) and g i.e. estimate both F(.) and
(. There are basically two approaches to estimating such regression models with the
third procedure incorporating techniques borrowed from these two. If § (and there-
fore z;8 ) is known then the conditional expectation of Y on X can be estimated
by nonparametric methods by replacing F(.) with an appropriate kernel estimator
(Horowitz 1993). For the case where both F' and [ are unknown a similar nonpara-
metric approach can be applied and 3 is replaced by its estimator by a process that
minimizes the least squares cross validation function of Section 3.2.2 or other suitable
technique. Alternatively, F'(.) can be assumed known a priori then the parameters

to Equation (1.1) solved by applying parametric nonlinear techniques. Semipara-
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metric methods combine these two approaches in a process that seeks synergism by
gaining from the advantages of either of its parts while avoiding or mitigating their

disadvantages.

2.2 Restrictions and Identification of models

Manski (1988) and Horowitz (1998) provide some criteria for the identification
of binary response xmodels. An observable binary variable y is assumed to be deter-
mined by an observable variable z and an unobservable random variable u. The pair
(z,u) act on y through a linear function z;0 + w;(the latent variable), where (3 is a
k-dimensional parameter in Eq (1.1), I(.) is an indicator function that takes the value
1 if the logical condition inside the brackets is satisfied and 0 otherwise as motivated
in Section 2.1.

In economics, y may indicate the utility maximizing decision maker’s observ-
able choice between two alternatives (Manski 1988). If the realizations (y,z) are
observable and drawn randomly from the population, then the set of conditional re-
sponse probabilities can be expressed as P, = [Pr(y = 1| =),z € X] . For each
x € X , the probability of the event y = 11is Py, = [I[zf + u > 0]dF,, where
F,; is the distribution of u conditional on z. The response probabilities P, may
be estimated by nonparametric regression of y on z if I, is replaced by a suitable
kernel estimator of F'(.) (Section 3.2). Alternatively, the regression function and pa-
rameter estimates can be estimated by parametric nonlinear optimization methods if
the distribution of u, F,,, is assumed. Manski (1988) suggests that the best predictor
of y given z is always some function of the response probability P, like I[Py, > .5]

i.e. if the indicator function I(.) is satisfied then y = 1 or 0 otherwise.
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The problem of identification depends on whether (3, /) are identifiable or
estimable. The probit and logit methods of Section 2.2.2 rely on two basic condi-
tions for identification. First, for each z € X |, F,,,; is a known, continuous, strictly
increasing (monotonic) distribution function with median 0, and secondly, there is
no proper linear subspace of R* having probability 1 under F, (where F, is the
probability distribution of z). This second condition simply means that there is no
multicollinearity between X components i.e. there is no linear relationships between
the Xs or equivalently X is a full rank matrix. Monotonicity is important in trans-
forming the probabilities to their estimates back and forth thus ensuring a one-to-one
mapping of probabilities and their estimates (Section 2.3.1 on LPM * ).

Manski(1988) provides further identifying conditions which require technical
proofs and readers are referred to Manski for these details. However, two other as-
sumptions that are prominent in the literature are useful for identification of (8, Fy»)
in this study. The assumption of mean independence or what is also called location
normalization,E(u | z) = 0 Vo € X , and the assumption by Horowitz (1998) on
scale normalization that sets one of the coefficients of the § vector associated with
continuous x to 1 i.e. f§; = 1 are applied in this study.

Mean independence, a common application by econometricians, implies that
the residuals are independent and uncorrelated with expectation of zero given X - this
does not imply imposition of normal distribution unless the model explicitly assumes
this (like for the probit). Horowitz’s restriction above is akin to setting the variance
of u at a constant like in the classical linear regression, a form of scale normalization

that maintains homoscedastic conditions.

4Linear Probability Model
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2.3 Parametric Approaches

Parametric regression estimation imposes or assumes a distributional structure
for the unobservable terms in Equation (1.1). Some of the models that make prior
assumptions about the link function are discussed below. The parameter estimates in

this case converge to their true values at the rate® of n!/?

. These methods for solving
qualitative response models can be broadly categorized into linear-probabilistic and
nonlinear models. The former is epitomized by the linear probability model (LPM)
and the latter by the probit and logit models.

Some of the techniques applied in solving nonlinear models include General-
ized Method of Moments (GMM) and nonlinear least squares or maximum likelihood
estimation (MLE). The LPM, probit, and logit models are examples of paramet-
ric regression methods specifically suited to qualitative response models. Ker and
Coble(2001) give a lucid discussion of the efficiency of the parametric and nonpara-
metric techniques applied in crop yield density estimation in their article ”Modeling

6 . Scott(1992) also provides a comprehensive exposition of nonparametric

yields
kernel density estimators.

Parametric methods, aside from making the assumption that F(.) is known
a priori, also make certain necessary assumptions and or restrictions for solving the
model. It is a common practice in econometrics to apply some scale and location

normalization in order to identify 5. For parametric models, such as the probit and

logit models, scale normalization is executed by setting the variance of u to one and

5Section 3.1.1 and Ker and Coble (2001) expound on the concept of convergence.

In estimating crop yield densities Ker and Coble(2001) contrast the results from Olkin and
Spiegelman(1987), Hjort and Glad(1995), and Hjort and Jones (19)estimators
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(%)2 for the probit and logit models respectively. Location normalization is usually
set by assuming that the conditional expectation of u given z is zero,F(u | ) = 0.

These are familiar concepts from ordinary least squares regression estimation.
2.3.1 The Linear Probability Model

The linear-probability model (LPM) assumes a linear relation between the
probability of y taking on a value of 1 given the index z;0 . If vector X represents the
regressors, a simple linear regression model in this case is given by vy; = z;0+u; where
u ~ N(0,02). If u; and u; are independent for 4 # j (no heteroscedasticity) and X
is a vector of random variables such that X and v are independent (othorgonality
condition equivalent to mean independence) then we know that F(u; | z) = 0 and
E(Y;) = z;0.

Let the probability that the Y equal one given the explanatory variables be
givenas Pr(Y; =1 | X =z) =m; . Thus Pr(Y; = 0 | X = z) = 1 — m; and
from probability theory the expectation of Y is denoted by E(Y;) = i:O,lPr(}/i) P =
(1) + (1 — m;)(0) = m;. Thus the model implies a linear probability model of the
form m; = z;0.

The LPM combines linearity with probability theory to model qualitative re-
sponse data Pr(Y; =1 | X = z) = m; = F(x;0) (Greene 2000), where 7; is the proba-
bility of the dependent variable y taking on values of 0/1 given that the explanatory
variables X take on specific values z. This expression transforms to m; = x;8 because
the assumption of linearity implies F'(.) is a uniform distribution.

The marginal responses of the probabilities to changes in independent variables

are depicted by parameters 3. The ”probabilities” from LPM regression are not
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confined to (0,1). When Y; is binary, the error term is dichotomous as well and
lacks normality; If Y; = 1 then uw; = 1 — m; with probability 7;. If ¥; = 0 then
u; = —m; with probability 1 —m; and V (u;) = m;(1 —m;) . It is clear that v is variable
across observations and can take negative values because the fitted values from OLS
regression are not constrained to the (0,1) interval.

Weighted least squares (WLS) or feasible generalized least squares (FGLS)
can be used to correct for heteroscedasticity. Another solution to this problem is to
have a constrained LPM where ; is contained within the unit interval while keeping
the linearity between m; and X within the interval.

However, this constrained model can generate unstable estimates especially at
the boundaries and it is hard to fit data due to abrupt slope changes at m; = 0 and
m; = 1. A number of studies show that the LS estimates of the LPM frequently give
results similar to other formally justifiable methods like the logistic model described
below(Greene 2000).

It can be inferred from this discussion that a model that gives results consis-
tent with the underlying theory will be appropriate in this case. In principle, any
continuous probability distribution defined over the real line will suffice. This explains
why most practical applications replace the LPM model with either the probit or logit
model with link function F (.) that maps all z;0 to [0,1]. Figure 5.2 shows a graphical
comparison of the probability estimates from the LPM and probit regressions from

the same dataset.
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2.3.2 The Logit and Probit Model

To correct the problem of probabilities, m; , lying outside [0,1] we need a
positively monotonic function that transforms z;8 to the unit interval. It is useful,
a priori, to have a cdf that is smooth and which approaches m; = 0 and m; = 1
asymptotically. It is advantageous if the cdf is strictly increasing so that F~'(.)
transforms the probabilities to their corresponding regression estimates of Y;, in a
one-to-one relationship.

Any cumulative distribution function (in this case the logistic or normal dis-
tribution) meets this requirement. If Y is a dichotomous dependent variable taking
values of one and zero with probability 7; and 1 — 7; respectively, then for the i** ob-
servation, the probability can be depicted as Pr(Y; = 1| z) = m; where m; = F(2;[3)
and X, «x is a full column rank matrix and Sgx1 is a vector of parameters relating 7
to z8 which could be nonlinear. F'(.) is the normal or logistic distribution that trans-
forms the estimates to the (0,1) interval. When the normal distribution is assumed

the cdf is expressed as ®(z) = \/% 7. exp~2* dz and thus Equation (1.1) becomes

1 z
T, = (I)(ﬂfl,@) = —\/7—7_( - exp_%zz dz (21)

where ®(z) is the probit model and z = zf. F(.) can also be the standardized logistic

distribution A(z) = ﬁé%p‘—”z if the u/s are distributed as logistic density function (pdf),
with
Mai) = —— 22
T = i _—_— .
1+exp 2z

giving the probabilities where A(z) is the logistic or logit model. Both models can be

conveniently expressed as in Equation(1.1).
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For the standard normal cdf the standard deviation is set at ¢ = 1. When o
is replaced by the square root of the covariance-variance matrix of x i.e.V(z) = z' Xz
then Equations (2.1) and (2.2) can accommodate heterogeneity or random-coefficient
variation as dealt in Fischer and Nagin (1981) and Hausman and Wise (1978) in travel
demand models.

Estimation of these models is straightforward using maximum likelihood meth-
ods to estimate the parameters; see Greene (2000), Quandt (1956), and McFadden
(1976). The parameter estimates maximize the log of the product of the joint pdf‘s
of multivariate functions from a known dgp. For a random sample of size n, ML
estimator is defined by maximizing the log-likelihood function that corresponds to

Equation (1.1)

In L,(8) = XLy [y In F(2:0) + (1 — ) In(1 — F(z:5))] (2.3)

where the error term w is assumed to have distribution F(.) given x. The maxi-
mum likelihood estimates are obtained by maximizing Eq (2.3) over any unknown
parameters (regression and distributional coefficients) corresponding to the cdf with
appropriate normalization restrictions.

In some cases, the probit and logit models fit the data better by avoiding the
assumption of linearity (LPM) thus revealing unique data behavior across the support
(Greene 2000) as demonstrated by the graph in Figure 5.2. The logit’s interpretation
of the inverse transformation F~1(m;) as log odds as a useful connotation related to

prediction. Rearranging, and taking logs of the above logit model gives an interesting

result; Log( T ) = F~Ym;) = z; . This is the logit of 7 or the log of the odds that

1—m;

Y is one rather than zero. If the odds are even (m; = .5) then the logit is zero i.e the
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E(Y | X =z)=0. If ;; <.5 the logit is negative and if m; > .5 the logit is positive.
For the binary choice model, the probit and logit estimation methods are

the most commonly applied and these restrict the error distribution to parametric
families. If the parametric specification is incorrect then inconsistent estimates may

result from the likelihood-based approaches. As Chen (2000) clearly enunciates

...... specific functional forms for the error distribution cannot usually be

justified by economic theory’

. However, when the assumed functional form is correct, convergence is attained at
the parametric rate.

As a result of a priori assumptions about the dgp, regressions based on para-
metric methods are not necessarily always correct. If the assumptions made are not
correct then the estimates may not converge to their true values. Policy decisions
based on such results may not have the desired impact. However, if the initial as-
sumptions are correct then parametric regression estimation of § may converge at a

quicker rate to the true parameter values.

"Chen(2000) proposes a semiparametric MLE for both intercept and slope parameters under
symmetry and index restrictions.
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Chapter 3

NONPARAMETRIC METHODS

3.1 Introduction

Economic theory is often abstract without revealing any clear functional rela-
tionships and never implying or pointing to a specific data generating process. Para-
metric regression approaches rely on assumptions to help in the selection of the link
function from the family of known parametric functions. Once this is identified, max-
imum likelihood estimators are consistent in estimating the unknown parameters of
the likelihood function in Equation (2.3). The estimators are asymptotically normal
with the inverse of the covariance matrix satisfying some efficiency lower bound cri-
terion (Hardle and Linton 1994). This means that the inverse of the matrix of second
derivatives (Hessian) of the nonlinear function that is to be optimized meets some
Cramer-Rao-like measure of efficiency for the estimates. If the parametric model is
not true, MLE estimates may not be efficient. Therefore, the restrictions imposed by
a parametric approach can sometimes bear a cost.

It is not surprising that a lot of literature is now delving into different proce-
dures that do not rely on strong prior restrictions. Nonparametric methods do not

impose parametric restrictions on functional forms. Nonparametric smoothing tech-
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niques have been used substantially in demand, food expenditures, and total income
analysis for household surveys (Deaton 1991). These procedures are useful in dis-
playing intricate features of a dataset (Greene 2000) and also as a tool of comparison
against estimated parametric models. Some of the nonparametric methods include
kernel estimators and related local smoothing methods, or series estimators such as
truncated polynomials or spline methods. The discussion on nonparametric methods
in this paper will concentrate on kernel estimators.

Nonparametric smoothing estimators offer robustness under a wider class of
structural functional forms but are characterized by a slower convergence process
dependent on the dimension of X. The smoothing parameter(Section 3.2.1) decreases
so as to reduce bias to zero as sample size increases. A measure of bias is the squared
difference between the expected value of the estimate (mean estimate) and its actual
value.

Nonparametric regression usually makes modest assumptions about the shape
of the regression function - some degree of functional differentiability, symmetry
around zero [k(u) = k(—u)], and integrability to one of the kernel [f k(u)du = 1]
(Yatchew 1998). With nonparametric regression, inferences and estimators are less
dependent on functional form or dgp assumptions. It is also important that non-
parametric techniques can be useful in bolstering parametric procedures. If doubts
exist about the parametric functional form, specification checks against nonparamet-
ric alternatives can provide comparison criteria and as will be discussed later, a joint

parametric-nonparametric approach may offer additional efficiency.
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3.1.1 Nonparametric Convergence Rates

Econometric literature on nonparametric regression estimation discusses var-
ious methods that can improve convergence rates. It is generally agreed that as the
dimension of X increases, larger datasets are needed for efficient estimation. As the
dimension of the X matrix becomes larger there may be need for an impracticably
large sample in order to improve estimation precision (Stone 1980). But a number of
techniques have been applied to mitigate this phenomenon, aptly called ”the curse of

dimensionality”. These methods are discussed in the following sections.
3.1.2 Dimensionality and Single Index Models

Local nonparametric regression averagers, because of their flexible functional
forms, estimate the parameters by a process that averages across neighboring data
points. This leads to larger and larger data sets being required for the estimates to
converge to their true values, what is termed the curse of dimensionality. The rate of
convergence for density estimators is provided by Stone (1980, 1982) as OAW)
where d is the dimension of X, m is the smoothness or differentiability of the function,
and N is the number of realizations. Hardle and Linton (1994) also indicate that for
nonparametric regression estimation this depends on the dimension of X. This is the
rate at which a consistent estimator of 4 i.e.3 converges to the true value.

The single index model (SIM) structure avoids the curse of dimensionality that
is associated with SIM-less nonparametric methods. What the SIM model structure
does is aggregate the X components to a single index z3 and then the regression of
Y on X (multivariate) becomes a simpler univariate regression of Y on zf.

The simple SIM structure can be extended to a multiple-index format E(Y |
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X) = xofo + G(x101......50m) that splits the model into a number of indexes. This
then becomes an additive index model composed of linear and nonlinear parts. The
rate of convergence for parametric regression is not dependent on the number of
explanatory variables and the variance of the estimator goes to zero at a rate of n'/?

irrespective of the number of explanatory variables.
3.1.3 Partially Linear and Additive Models

To avoid the slow convergence associated with the curse of dimensionality,
restricted models can be used - nonparametric additive models of Hastie and Tib-
shirani (1990), or semiparametric models like the partially linear and index mod-
els. Partially linear models proposed by Ai and McFadden (1997) where z; and
2o are non-overlapping divide the model into linear and unknown functional forms
E(Y | z1,23) = 2101 + g(22). For a partial linear regression model on the unit square
of the form 2z + f(x) 4+ u where f is unknown, f can be estimated at a rate equivalent
to that of nonparametric function of one variable while 2 is estimated by parametric
techniques.

The curse of dimensionality is thus circumvented by use of partially linear
or additive models of the form f(z, 21,7y, 23) = 26 + X3} fi(z;) , where 203 is linear
and f;(z;)are additive nonparametric sub-models. The overall rate of convergence
depends on the nonparametric part of the model. For such hybrid regression function,
the parametric part of the model converges to the true model at a rate of n'/2. But
the overall rate of convergence for the full model will depend on the nonparametric
part of the model, which can be improved by applying the SIM model as discussed

above.
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Additive models, where several nonparametric sub-models are summed up but

run separately, are useful in reducing the dimensionality problem. Additive models
of the form E(Y | X) = g1(z1) + ga(z2) + ...... + gr(zx) where k = dim(z) and g; are
unknown functions are useful in this regard. For example, on the unit square, f; and
foin f(zy,22) = fi(x1)+ fa(z2) can be approximated at a rate commensurate to that
of a nonparametric function of one variable (Yatchew 1998). The rate of convergence

for the additive model depends on the pure nonparametric component of the model.
3.1.4 Smoothness or Differentiability Conditions

Smoothness or differentiability of the function can also reduce approxima-
tion error. In nonparametric regression, smoothness conditions (especially bounds on
derivatives) are crucial to the consistency of estimation and determination of conver-
gence rates. Sufficient smoothness allows consistent derivatives of the estimator itself.
If g is twice differentiable on the unit interval with ¢' and ¢* bounded by L and g is
evaluated at equidistant values of x then it can be approximated by a Taylor series ex-
pansion g(zo) = g(z:) +9 (2¢) (w0 — 3:) + 1 ¢" (z*) (o — 2:)? wherez* € [zo—z¢) If g(zo)

is approximated by g(z)+g (z:)(zo—z:) the error is 0(zo —z:)? = 0(5%). ¢ (z¢) is not
. g§$t+1—g§mt} iS

observable but the bound on the second derivative implies that g'(z) e

0(+) so that g(zo) = g(z:) + W(% — ;) +0(5z). This is a linear estimation
joining observations with straight lines (Yatchew 1998).

The curse of dimensionality is mitigated by application of semiparametric es-
timation (the parametric part converges at a faster rate but overall convergence rate

depends on the nonparametric part of the model), using higher-order differentiable

functions, and applying the principles of the single index structure.
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3.2 The Nadaraya-Watson Estimator

A number of nonparametric regression estimators have been developed over the
years. The kernel estimator that applies the principle of local averaging® (this study
uses this) and nonparametric least square estimation related to spline estimation are
some examples.

These estimators use the concept of local averaging that gives weights w;(z)
depending on each x and is of the general form m(z) = 37 w;(z)y;, where y is the
dependent variable. Higher weights are given to observations near z and lower weights
to observations further away. The simplest kernel estimator takes the form y = f(z)+
u. To get weights,w;(z) , we use a unimodal function centered at zero that declines
in either direction at a rate controlled by a scale or smoothing parameter, h, whose
selection criteria is the subject of discussion in the next section. The symmetrical
nature of this function ensues that equal weights are assigned to equidistant neighbors
on either side of a particular x.

Kernels can take various forms but should conform to certain desired proper-
ties. These functions k(.) should be smooth, symmetric around zero and integrate
to one ie. k(u) = k(—u) and [ k(u)du = 1. Smoothness conditions imply that the
kernel should be differentiable to a certain degree. Thus kernels can be classified by
the extent of their differentiability, with higher order kernels giving rise to higher
moments. Define u;(k) = [u/k(u)du and V;(k) = [ k(u)?du. The order p of a kernel

is the first nonzero moment; u; = 0, 7 = l............. p — 1 u, # 0, implying that

80thers include nearest neighbor estimation as studied by Stone (1977) and others. Prakasa-Rao
(1983) surveys several of these methods. Econometric application of nonparametric estimators can
be found in McFadden(1976)
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orders between 1 and p vanish. For the case of density estimation, smoothness helps
to remove the noise that causes sudden spikes or jumps along the support.

Borrowing from statistics, we can estimate m(.) in y; = m(z;) +u; by estimat-
ing the joint density, f(x,y), and then integrating as m(z) = [y f(z,y)dy /f(z,y)dy
to estimate y. We know that [ k(u)du = 1 so from f(:c,y) = Lkn(z — z:)kn(y — vi)
it can be further inferred that [ f(z,y)dy = L¥ky,(x — x;) which leads to the function

depicted as [yf (z,y)dy = £¥ky,(z — z;)y;. Define the weights as

w(z;) = (nh) " kn() /(nh) " Sks(.) (3.1)

where k, = k[(x — x;)/h]. The shape of the weights is determined by & and their
magnitude by h, the smoothing parameter. A nonparametric regression function

estimator (Nadaraya 1964; Watson 1964) then becomes
m(z:) = () Siyyi ku() /(nh) T B ka() (3.2)

The choice of k is less important than the selection of A over which observations are
averaged and whose selection criteria is the subject of the next section. This paper
will compare the Nadaraya-Watson regression estimator with the parametric and the
modified Hjort and Glad (1995) estimator of Section 4.3 and 4.3.1.

A number of nonparametric kernel-type estimators exist and most of them rely
on local averaging with weights at each point. Other nonparametric estimators include
k-nearest neighbors (Macki 1981), local polynomial estimators (Fan and Gijbels 1992;
Tibshirani 1984), and spline estimators (Ansley, Kohn, and Wong. 1993). For the
bivariate case, the kernel regression estimator becomes a product of the individual

kernels (Yatchew 1998). Scott (1992) explains the estimation of multivariate densities.
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3.2.1 Selecting the Smoothing Parameter

The objectives of smoothing include finding the underlying structure or density
and also to construct estimators from probability distributions (regression models).
A decision has to be made on how many observations are included in the estimation of
each point. A large window includes more observations, thereby reducing variances,
but obscures subtle nonlinearity, or increases bias due to inclusion of more dissimilar
observations. On the other hand, a small bandwidth or window improves detection of
nonlinearity, or reduces bias, but involves fewer observations, thus increasing variance.

The optimal window usually gives the smallest value of squared bias and vari-
ance or mean integrated squared error (Powell and Stoker 1995). Powell and Stoker
(1995) look at optimal bandwidth choice for density-weighted averages, a technical
exposition that this paper will not dwell on. The literature on bandwidth selection
is quite extensive and includes several automatic (data-driven) methods for choosing
bandwidths in applications.

Most of the literature covered generally agrees that the selection of k(.) is not
as important as that of h, the smoothing parameter. It is very important to have
a method of selecting h, the smoothing parameter. Each nonparametric regression
method requires a decision on how much to smooth the data. A large h oversmooths
the data and may obscure intricate data relationships (Yatchew 1998). A large h
will oversmooth and increase bias and obscure important features of the regression
function. A small A will track the data too closely and impair out-of-sample prediction
accuracy.

There has been a lot of research covering this area by a number of authors,
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some of which is the subject of the next section. Some of these techniques include least
squares cross-validation, double cross-validation (Chiu 1991), plug-in methods, and
double smoothing. Lee and Solo (1999) came up with what they call a PURE tech-
nique that combines non-asymptotic plug-in and Unbiased Risk Estimation techniques
based on mean and weighted mean integrated squared errors (MISE and WMISE).

For these and other approaches, readers are directed to the respective articles.
3.2.2 Cross-Validation

For a nonparametric regression expression of the form y; = m(x;) + u;, the
Nadaraya-Watson estimator of m(z) is given by Eq (3.2) where k(.) is the kernel func-
tion. The precision of this estimator depends on the bandwidth. A frequent measure
of accuracy is the mean averaged squared error (MASE) i.e. how close the estimate
7y, 18 to the true m. Cross-validation and Akaike’s Information Criterion (AIC) are
some of the automatic or data-driven regression smoothing processes. Hardle, Hall,
and Marron (1992) show that such methods may exhibit a significant amount of
across-sample variability.

The model used in this thesis applies a technique commonly referred to as
Least Squares Cross-Validation (LSCV or CV). This is a global bandwidth selection
method rooted on the principle of minimizing the CV function shown in Eq (3.4)

below. This approach estimates m(.) as

M, (25) = (nh) 757 0 k(L) /(nh) ™ 5% k() (3.3)

with the j** observation being left out in the estimation process, as shown on the

summation signs. As the sums in the numerator and denominator indicate, m, is
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estimated without the j** observation, the so called leave-one-out technique with the
estimate of m at each z; using all other observations, then predicting the values of m
at the omitted observation (n separate kernels estimates are needed for each h). The

CV function can then be expressed as
CV(h) = n™'Zlrip, (z;) — y;]° (3.4)

(Clark 1995) and is minimized with respect to h.
Then the optimal h minimizes the expression above and cv(h) /cv(hop) —
1 . The question in this selection process is how to arrive at the range of values
over which the search for the optimal h will take place. Hardle and Linton (1994)
suggests that the minimization of CV be taken over restricted sets of bandwidths
H, = [n“(%_g) n_(%JFC)] for ¢ > 0. Therefore, the set of values H,, will depend on the
number of observations used with the asymptotic property that limh — 0 as n — oo
The intuition is that as limh — 0, k, — 1 if 28 — ;8 > 0 and k;, — 0 if
zf3 — z;0 < 0. Thus kj acts as an indicator function in this case. It is instructive to

note that kn, = k[(z08 — z;0)/h] , where k is the usual kernel.
3.2.3 Plug-in Techniques

Ruppert, Sheather, and Wand (1995) developed a ”direct plug-in” selection
process relying on an asymptotically optimal expression akin to Silverman’s(1986)
shown below. The idea is to plug in estimates of o and n to obtain h. Gasser and
Muller (1984) came up with ”iterative plug-in” selectors while Fan and Gijbels (1995)

developed selectors involving the plug-in notion. One of these plug-in selectors is the
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Silverman (1986) rule expressed as

h= 1/364{:22]]3}% Gn% (3.5)

where o? is the sample variance and v(.) and u(.) are as described under Section
3.2 on orders of kernels . For details of plug-in techniques that apply asymptotic
approximation procedures to determine optimal local bandwidths see Hardle and
Marron(1985). With all these procedures the idea is to get an h that minimizes
the sum of variance and bias squared i.e. E[var + bias?] . For those keen on getting
more details on these and other methods Abramson (1982), Jones, Linton, and Nielsen
(1995), and Jones and Foster (1993) give an exposition of the bias reduction methods.

A lot of potential exists for use of nonparametric regression in parameter es-
timation and as a supplement to parametric regression. However, some aspects of
nonparametric regression may slow this expansion. Nonparametric regression tech-
niques are theoretically more complex than conventional parametric models but not in
their practical application (Ker and Coble 2001). Secondly, nonparametric regression
techniques are computationally intensive. However, nonparametric regression relies
on some form of local averaging or least squares estimation, a familiar concept from
parametric modeling.

In nonparametric estimation, E(Y | X) is assumed to satisfy smoothness or
differentiability conditions but no assumptions are made about its shape or the shape
~ of its dependence on X. This does not only maximize flexibility but also minimizes

the risk of misspecification error.
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Chapter 4

SEMIPARAMETRIC METHODS

4.1 Introduction

As noted earlier, economic theory rarely points at the functional form of in-
terest of the unobservable terms in Equation (1.1). Incorrect imposition of structure
to Equation (1.1) may lead to inconsistent estimates of parameters of interest. Nu-
merous econometric regression estimation problems involve unknown functions and
unknown finite-dimensional parameters. Sometimes a parametric form may do well
for some part of the regression function while the shape of the other portion is not
quite clear or discernible a priori. In such cases, where prior knowledge exists, a
semiparametric approach can be more appropriate where parametric and nonpara-
metric techniques are combined. For a random variable Y taking 0/1 values and with
X matrix of covariates, the probability of Y = 1 conditional on X is expressed as
P(Y =1| X = z) = F(x;8) where F'is the distribution function ,Equation (1.2).

If F'(.) is assumed to be known a priori, as in the case of the logit and pro-
bit, the only problem is to estimate 8 and this can be done by MLE. However, F(.)
is not known in all cases. If F(.) is misspecified, MLE estimates of § may be in-

consistent and predictions based on them unreliable. Many estimation problems have
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unknown distribution functions that influence the relationship between observed vari-
ables (Horowitz 1991). Semiparametric methods estimate models with both unknown
F(.)and §. Semiparametric methods may reveal insights about the data that may not
be available when using parametric estimation (Figure 5.2). Semiparametric methods
for binary response data use the single index model to aggregate X. SIMs are useful in
dimension reduction of X and are of the form E(Y | z) = G(z;8) where § is unknown
k x 1 constant and G is unknown function. The quantity x;5 is the index. G and (8
are to be estimated from observations of (Y, X).

Semiparametric methods relax some of the assumptions of parametric esti-
mation models of conditional mean functions like linear and binary probit models
while maintaining the desirable features of these models. SIMs avoid the curse of
dimensionality by aggregating the dimensions of X. G can then be estimated at a
rate comparable to that of a single dimension observable quantity z3.  can also be
estimated at the parametric rate thus equaling, in terms of rate of convergence in
probability, the respective nonparametric mean regression estimation of G and para-
metric model for estimating . The dimension-reduction feature of SIMs is a powerful

tool in regression.

4.2 Some Semiparametric Estimators

A number of ”semiparametric” methods have emerged that do not impose
parametric functional forms for the error distribution in the estimation of 8 in the
model 6f Equation (1.1); see Cosslett (1983), Manski(1975), Ichimura (1993), Horowitz
(1998), and Klein and Spady (1993). Klein and Spady (1993) introduced estimators

that attain the efficiency bounds of Cosslett(1987) and Chamberlain(1986,1992) for
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the slope parameters under the independence and index restrictions.

The Klein-Spady estimator takes the form shown in Equation (1.2) where F(.)
is an unknown function characterized by a parametrically specified index, not nec-
essarily a distribution function, with range [0,1]. For the Klein-Spady estimator the
estimate of F'(.) is obtained by replacing F(.) with a nonparametric kernel, without
imposing distributional assumptions on the cdf of u; however it does not take into
account heteroscedasticity (random effects).

Klein and Spady (1993), under the index restriction that the unobservable u
depends on z only through the index xz(, proposed a semiparametric ML estimator

for § by maximizing

In Lis(B) = Tty Tilys InFro(@sfB) + (1 —:) In(1 = Fo(@i6))] (4.1)

where F,, is a nonparametric estimator for the unknown distribution of u — oy and
Tni are some trimming functions adopted for technical convenience® , and «y is the
intercept.

By further assuming that the error term is independent of explanatory vari-
ables, they showed that the estimator achieves Cosslett’s (1987) and Chamberlain’s(1986,
1992) semiparametric efficiency bound. Cosslett (1987) looked at semiparametric ef-
ficiency bounds for the parameters in a binary model with the assumption that the
error term is independent of the regressors (a typical econometric location normal-
ization restriction) and a number of other location restrictions. From the semipara-
metric literature scale normalization takes two forms,| Gy |= 0 or the coefficient of

one component of 3 is set to one. Location normalization is set by assuming that the

9to avoid outliers and zero denominators
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distribution of u conditional on z is zero.

Gozalo and Linton (2000) introduced a nonparametric regression estimator
that uses prior information about the regression shape in the form of a parametric
model and then nonparametrically encompasses the model. The authors applied the
model to binary data on Horowitz’s (1993) transport choice model dataset. Fan
and Ullah (1996) developed an estimator that adds a parametric estimator and NW
estimator to obtain asymptotic properties like those of the Glad (1998) estimator
discussed below. Jones, linton, and Nielsen(1995) proposed a purely nonparametric
estimator in a multiplicative manner. An initial kernel estimator is multiplied with a
nonparametric correction factor reducing bias but increasing variance in the process.

The estimator used in this thesis utilizes the above dimension reduction fea-
tures. This estimator combines a nonparametric kernel estimator with a parametric
start in the regression of binary response data. The form taken by this estimator and
its theoretical assumptions are a culmination of the parametric and nonparametric
literature and assumptions that have already been discussed in the preceding sections.
The relevant assumption, restrictions and related literature will be summarized in the

next section.

4.3 Ker and Coble (2001) Estimator

This section explains the workings of the Hjort and Glad (1995) density estima-
tor and how it can be modified to conform to regression estimation of binary response
models as in Glad (1998) below. Hjort and Glad (1995) introduced a density esti-
mator that combines a kernel-type correction function with a parametric start. The

idea behind this estimator is to begin with a parametric estimate f(z; B) and then

S



42
multiply with a kernel-type estimate of the correction function, r(z) = f(z)/f(z; 3).
The authors propose that

f(ﬂ%';/@:)

fz) =n""Eky(X — mi)f(X;ﬁ)

(4.2)

be the estimator, where k(.) is the kernel. The parametric start need not closely
approximate the true density for the estimator to work well. The authors show that
the estimator will work well even with a crude parametric start. Ker and Coble (2001)
used the Hjort and Glad density estimator in the estimation of crop yield densities
and found that it performed better than comparable density estimators'®.

Glad (1998) came up with the regression counterpart to the above Hjort and
Glad (1995) density estimator. The conditional regression function m(z) = E(Y |
X = z) is estimated by multiplying a pilot parametric estimate f(z; ) with a non-
parametric estimator to give m(z) = f(z;8) [f(2)/f(X;3)] (Glad 1998). The esti-
mator for the nonparametric correction factor is given by #(z) = f(z)/f(X;3) and
combining this with the initial parametric start estimate gives the estimate of m(z) as
m(z) = f(z; 8) #(z), which is the Glad (1998) regression estimator. For information
on the asymptotic properties of this estimator readers are directed to the article for
technical proofs.

The intuition for the Glad (1998) estimator is that when the initial para-
metric estimate, f(z; B), captures some features of the shape of m(z), the correction
factor,r(z), will be less variable than m(z) itself and thus easier to estimate non-

parametrically. The parametric start estimate f(z; B) can be obtained by using any

10Ker and Coble(2001) have developed an estimator of the link function for binary response
models that has a flavor of the Hjort and Glad’s(1995) density estimator and Glad’s(1998) regression
estimator. This paper will investigate how this estimator performs alongside other existing methods.
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parametric method - linear LS regression, nonlinear regression, etc.

The Glad (1998) estimator differs from that Ker and Coble (2001) in a number
of respects. The latter is flavored with some properties of the former but is specifically
designed to estimate the link function of binary response models. Again Ker and
Coble (2001) estimator incorporates the SIM dimension-reduction properties which
aid in enhancing convergence rates. The estimator has been modified by incorporating
the principles of the single index model in estimating conditional regressions involving
qualitative response data. How this is done is explained under the section on SIMs
including an explanation of how the link function and parameters are identified and
estimated (Sections 2.1, 2.2, and 4.3.1). The proposed semiparametric estimator will

take the following form before further modifications (section 4.3.1) are implemented

77A7,22:77,~1 iKh — (
() = (k)™ > _wikn(Z f( )

where z; = x;( is the index and B are the set of parameters, and h is the smoothing

Y kn(Z — ) (4.3)

parameter.
4.3.1 Modification, Identification and Estimation

Before implementing both the nonparametric and Ker and Coble (2001) esti-
mator, Equations (3.2) and (4.3), there is need to make some technical adjustments to
avoid problems associated with the denominator approaching zero (Horowitz 1991).
To implement these modifications we let B be the compact set containing 8. We
need to average over certain values of x(3 that exceed a certain small positive value to
avoid values close to zero. For the purposes of this thesis the estimation of each point
was conducted within two standard deviations of that point. So the data points

used satisfy these two criteria. Define A, and A, as sets A, = z: F(a:ﬂA, B) >
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and A, = z 3:/3 — xﬁ* ||< 2h, for some z* € A, where n > 0 is a constant
and || . || is the Euclidean norm. Let I(.) be an indicator function I(.) = 1 if the
event in the parenthesis occurs and I(.) = 0 otherwise. Define j;, = I(z; € A,) and
Jnj = I(x; € Anz) . These changes will confine the divisors to values away from zero
and at the same time avoid averaging over extremely large outliers.

When Equation (4.3) takes into account the above changes we get a semipara-

metric estimator of the form

oy (nh)™'Y v gnj w(z;) kn(Z — 2) %(%)2 »
)= (nh) ™13 Jnj w(z;) kn(Z — 2) (44)

where the numerator is composed of f(z;.) (the parametric start at point 7), and
kn(.)/f(Z.) ( the correction factor), and the denominator is a normalization term.
Thus the minimization of Equation (3.4) (Section 3.2.2) gets the estimates of 5. The
weight function, w, was set to 1 for this study but other similar applications have
used the variance as the weight.

B and F(.) are identified as explained in the section under identification and
estimation of binary response models (Section 2.1). g is estimated by optimization
techniques applied to Equation (3.4). The sums in Equation (4.4) and (3.4) should
be restricted to observations ¢ for which the probability density of =0 at the point
x; 0 exceeds a small positive number to avoid the denominators getting close to zero

as explained above.
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Chapter 5

ANALYSIS, RESULTS, AND CONCLUSIONS

5.1 Data and Sampling Technique

The Monte Carlo exercise utilized data recovered randomly from the uniform
distribution and then the disturbances incorporated from three different data gen-
erating processes from the Marron and Wand(1992) group of test densities, as de-
picted graphically in Figure 5.1. The first dataset includes disturbances from the
standard N(0,1). The second dataset is recovered from a mixture of normal with
weights i.e. 1/5N(0,1) + 1/5N(2,(2)?) + 3/5N(13, (5)?), a skewed unimodal distribu-
tion. The other data was similarly recovered from a kurtotic unimodal distribution,
2/3N(0,1) + 1/3N(0,(35)?). In all these cases three independent variables were ran-
domly generated and used to generate the dependent variable using coefficients that
are known a priori (Section below). Then these parameters were estimated using the
different approaches and their mean squared errors noted.

For the application of the model, data from Spector and Mazzeo(1980)were
used. This data were used to analyze the effectiveness of new teaching techniques in

economics. The dependent variable is an indicator of whether students’ grades(GRADES)

improved after exposure to a new method of teaching economics(a binary variable in-
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dicator, PSI). The other independent variables include grade point average(GPA),
and the score on a pretest that shows entering knowledge of the material (TUCE).
The probit model, NW and Ker and Coble(2001) estimators were applied to the data,

the slopes estimated, and the out-of-sample prediction for these methods compared.

5.2 Simulations

The Monte Carlo study involved 500 simulations on each of the samples of size
50, 100, and 500 for the three data generating processes mentioned above. The probit
model, the Nadaraya-Watson SIM estimator, and the Ker and Coble (2001) estimator
were applied to the data to get these estimates. This thesis applies these estimators to
data generated by a Monte Carlo operation in order to investigate their finite-sample
properties. Given a true regression function m(xz) we generated n realizations for X
randomly from the uniform distribution [0,1]. For the first simulation process, the
binary endogenous response variable was generated by adding normally distributed
noise. For the KC estimator, a probit estimate acts as the initial pilot start and is
then multiplied by the nonparametric correction factor applying the LSCV for the
smoothing parameter. For this experiment, the fact that we know the design density
beforehand is not utilized in the regression process at all; the kernel assumes no such
knowledge.

For the case of the standard normal data, the parametric assumption of nor-
mality is correct and theory postulates that the estimates from probit regression
will converge to the true values. However, for the skewed and kurtotic datasets this
assumption is not true and theory predicts less consistent or more biased probit

estimates. The KC estimator is expected to have improved convergence when the
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parametric start is correct. Parameters are then estimated and their mean squared
errors computed.

Several experiments were carried out with different true regression functions
and sample sizes of 50, 100, and 500 and different magnitudes of noise (Gaussian,
skewed, and kurtotic). Based on these simulations the average of the parameter
estimates is determined. For each estimation process the squared bias and variance
are calculated for each parameter estimate. The sum of these two terms gives what

we call the mean squared error (MSE).

5.3 The Results

5.3.1 Monte Carlo

The results are presented for the three regression estimates in Tables 5.1 to
5.6 at the end of this chapter. In the first simulation, the pilot estimate is correct
(the probit estimate of the Gaussian) and belongs to the true parametric family. In
the second and third simulation (skewed and kurtotic) the initial parametric estimate
is not correct.

From the all the simulation results there is a reduction in MSE as sample size
increases even with a rough parametric start. This declines for all sample sizes and
indicates a clear downward spiral as n increases. Theory expounds that this should
vanish to zero as n increases. However, this experiment was unable to reach such
levels due to the time demanded to run such models on computer. It is noteworthy
that even at such relatively small sample sizes the estimator exhibits significant bias
reduction properties even with incorrect start.

Table 5.1 shows the MSE values for the three estimators for each of the (s
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when the parametric start is correct. The results confirm the theoretical expectations
and results from other practical applications. For the normal standard data (cor-
rect parametric model), the probit outperforms the other estimators by converging
quicker within the range of realizations used i.e. positing the lowest MSE values.
Convergence in this case is measured by the magnitude of the mean squared error
(MSE) across the realizations. The KC estimator does as well as or better than the
NW regression estimator in most of these cases; this bolsters theoretical expectations
that the combined estimator sort of ’averages” its component parts. The parameter
estimates for the probit model are therefore closer to their true values (Table 5.4).

For the skewed and kurtotic regressions, theory predicts better performance
from approaches that do not assume link functions a priori. For the skewed regres-
sion the KC estimator and NW methods outperform the probit model, with the KC
estimator giving the minimum MSE. The MSE for the probit model is higher in this
case than what it is for the Gaussian dgp. The MSE results from the kurtotic dgp
mirror those of the skewed distribution. For the probit model , the MSE values from
the Gaussian noise are lower than those of the kurtotic and skewed disturbances. The
other estimators do better than the probit model in the cases involving non-Gaussian
disturbance data.

with the wrong parametric estimates, the KC estimator utilizes information
from its nonparametric part to correct the wrong start. This agrees with theoretical

expectations from Hjort and Glad (1995) and Glad (1998).
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5.3.2 Application

Table 5.7 gives the results of the application exercise. The parameter estimates
(not the slopes)for the parametric estimation are shown against those of the NW and
KC estimators including the correct predictions for each model. For this exercise it
was not possible to calculate the MSE because the true values for the parameters are
unknown. But a cursory look reveals that the parameter values for all the models are

not very ”dissimilar”. However the KC estimator gives better prediction results.

5.4 Summary and Conclusions

A number of methods exist for solving endogenous response models and the
choice of which method to use hinges on a number of considerations. If in some way
the data generating process is known to be the normal distribution then the probit
model would be the appropriate tool to use. On the other hand, this information
may not be easily available and decisions have to be made on how to proceed with
the regression process. The nature of the functional form to use is therefore very
important in the solution of such problems. What is desirable is a flexible functional
form that is able to estimate the model without recourse to assumptions about the
link function. The KC estimator is such a form and this study has shown some of
its competitive properties when compared to other forms. The KC method combines
flexibility and an initial parametric estimate to give results that are more competitive

than the other methods discussed in this thesis.

2
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Table 5.1: Gaussian: Mean Squared Error (MSE)
| Estimator || Parameters | N =50 | N =100 | N =500 H

Nonparametric 51 0.078 0.013 0.002
B2 0.178 0.030 0.010

Parametric 61 0.004 0.002 0.000

B2 0.022 0.020 0.002

KC 01 0.028 0.014 0.002

B2 0.158 0.028 0.006

Table 5.2: Skewed: Mean Squared Error (MSE)
| Estimator || Parameters ” N =50 | N=100| N =500 ”

Nonparametric Gh 0.076 0.020 0.004
B2 0.405 0.067 0.027

Parametric 51 0.456 0.371 0.347

G2 2.380 1.770 1.660

KC 01 0.070 0.019 0.006

B 0.140 0.070 0.025

Table 5.3: Kurtotic: Mean Squared Error (MSE)
“ Estimator H Parameters H N =50 ! N =100 | N =500 |]

Nonparametric ot 0.109 0.042 0.004
5 0.385 0.152 0.033

Parametric 51 0.466 0.402 0.354

B 2.914 2.082 1.963

KC 01 0.090 0.037 0.004

B2 0.280 0.080 0.016




Table 5.4: Gaussian: Parameter Estimates

True Coef ficients (1 =3, Po =7

| Estimator | Parameters | N =50 | N =100 | N =500 ||

Nonparametric Gh 2.72 2.88 3.04
B 6.58 6.83 7.10

Parametric 051 3.06 3.05 3.02

G2 7.15 7.14 7.05

KC 01 3.17 3.12 3.02

G2 7.40 7.17 7.07

Table 5.5: Skewed: Parameter Estimates
True Coef ficients 1 =3, P =17

| Estimator | Parameters || N =50 | N =100 [ N = 500 ||

Nonparametric 01 2.82 3.08 3.05
B2 6.47 6.86 7.14

Parametric 01 3.67 3.61 3.59

G2 8.54 8.33 8.29

KC B, 3.23 3.10 3.04

0o 7.25 7.14 7.04

Table 5.6: Kurtotic: Parameter Estimates

True Coef ficients 1 =3, B =T

” Estimator H Parameters ” N =50 | N =100 | N =500 H

Nonparametric 01 2.74 2.85 3.05
G2 6.48 6.69 7.16

Parametric 01 3.68 3.63 3.59

G 8.70 8.44 8.40

KC 1 3.15 3.10 3.05

B 7.29 7.11 7.10




Table 5.7: Application Results
“ Estimator || Parameters ” EstimatedV alue [ PercentPrediction ||

Nonparametric ot —7.750 87.20
B2 1.525
B3 0.055
A 1.425
Parametric 1 —7.452 81.70
A 1.626
B3 0.052
A 1.426
KC Jo —17.650 89.50
B 1.675
B3 0.455
B4 1.385
Probability

Skewed = urtotic

(LI BLILILINL I L L 0 0 TTrrrrrerT

Norma 1
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Fig. 5.1: Data Generating Processes: Gaussian, Skewed, and Kurtotic
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Fig. 5.2: A Comparison: The Probit and Linear Probability Model
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