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ABSTRACT 

Financial returns have been traditionally assumed to be normally distributed. 

However returns have been shown to possess thick tails as well as being leptokurtic and 

asymmetric. Accurate modeling of these features is of the upmost importance for 

financial investors. This study makes use of the skewed generalized error distribution for 

capturing asymmetries and thicker tails in the returns distribution. In addition, both 

volatility and skewness are modeled as time varying. Using daily returns data, we find 

evidence of time varying skewness in both S&P 500 and oil spot price. Also we find that 

variance is greater in days after a weekend/holiday for both sets of data, but there is no 

such holiday effect in skewness. 
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CHAPTER 1 

INTRODUCTION 

 The financial literature has known for a long time that financial asset returns are 

non-normal. Returns traditionally have fat-tails and are more leptokurtic than the normal 

distribution (Mandelbrot 1963; Fama, 1965). It is also known that financial returns are 

distributed asymmetrically (Mittnik and Paolella 2000).  

 One of the most widely used frameworks for modeling such returns is a GARCH 

model. This modeling extends from the ARCH framework, introduced by Engle (1982), 

which allowed for variances in inflation rates to change over time. Bollerslev (1987) 

allowed for past conditional variances to be used in the current conditional variance 

equation with the GARCH model. Bollerslev et al. (1992) later found that the 

parsimonious GARCH(1,1) specification works best for most applications. Sadorsky 

(2006) also found that a GARCH(1,1) model generated the best results when modeling 

the returns of oil futures. 

Different non-normal distributions have been used over the years for capturing the 

distinct features financial returns exhibit. Nelson (1991), Taylor (1994), Lee et al. (2001) 

all use the generalized error distribution to capture the excess kurtosis. While this is able 

to account for the excess kurtosis, it is not able to capture the asymmetry of the returns. 

In order to model this aspect, more flexible distributions, which can allow for skewness, 

are needed. One model which can allow for skewness, and has the normal distribution as 

a special case, is the skew-normal distribution. This is unable to allow for excess kurtosis 

however. The skewed Student’s t distribution is also able to allow for skewnes, and is a 

popular distribution for this purpose, having been used by Hansen (1994), Bond and Patel 
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(2003), Jondeau and Rockinger (2003), and Lambert and Laurent (2002). Another 

distribution, which allows for skewness, is the skewed generalized error distribution 

(SGED).  

Developed by Theodossiou (2001), the SGED has also been used by Bali (2007), 

and Lee and Pai (2010) for modeling interest rate and Real Estate Investment Trust 

(REIT) returns respectively. In modeling REIT returns, Lee and Pai (2010) found that a 

GARCH model with SGED errors outperformed GARCH models with normal errors and 

with skew-t errors.  

The modeling of time varying skewness and kurtosis in financial returns is a 

relatively new procedure. Hansen (1994) was the first to use the ARCH framework to do 

so. Using a skewed Student’s t distribution, Hansen (1994) proposed quadratic laws of 

motion; modeling conditional skewness and kurtosis as functions of lagged errors and 

lagged errors squared. Later, Harvey and Siddique (1999) began to model time varying 

skewness in a GARCH framework as a function of lagged cubed errors and lagged 

skewness. Using this framework with a non-central t distribution Harvey and Siddique 

(1999) found that time varying skewness is present in daily, weekly, and monthly stock 

returns.  

There have been a number of different distributions used when trying to model 

time varying skewness. Among them are, the (generalized) skewed Student’s t (Hansen 

1994; Bond and Patel 2003; Jondeau and Rockinger 2003; Lambert and Laurent 2002), 

Pearson IV (Brannas and Nordman 2003; Premaratne and Bera 2000), and Normal 

Inverse Gaussian (Jensen and Lunde 2001;Wilhelmsson 2009).  

Results for time varying skewness are somewhat mixed. Brannas and Nordman 
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(2003) found evidence both for and against time varying skewness in NYSE data 

depending on the distribution used. When using a Log-generalized gamma they found 

evidence of time varying skewness, however when using a Pearson IV distribution, 

skewness was not found to be time varying. Premaratne and Bera (2000) also found a 

lack of time varying skewness using daily NSYE returns. On the other hand, Bond and 

Patel (2003), Harvey and Siddique (1999), Hansen (1994), and Wilhelmsson (2009) all 

concluded that skewness was, in fact, time varying. 

In this study, we model S&P 500 returns and oil prices using SGED distribution. 

Taking advantage of the nature of the distribution, we explicitly allow both volatility and 

skewness to be time varying using GARCH type specification. 

Recent events have highlighted the increased uncertainty over oil prices, as well 

as the importance of oil in the economy, making accurate modeling of oil prices very 

important. To our knowledge this is the first study to study asymmetries and kurtosis in 

oil prices.  

The plan for the rest of this paper is as follows. Chapter 2 will discuss the SGED 

distribution. Chapter 3 will discuss the data and the estimation procedure. Chapter 4 will 

present the empirical results. Chapter 5 concludes. 
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CHAPTER 2 

THE SKEWED GENERALIZED ERROR DISTRIBUTION 

 The skewed generalized error distribution (SGED) is a flexible distribution, which 

encompasses other distributions such as the standard normal and Laplace as special cases. 

Unlike the normal distribution, the SGED allows for skewness and excess kurtosis.  

 Compared to the most popular distribution used to model skewness and kurtosis, 

the generalized (skewed) t, developed by Hansen (1994), the SGED is more flexible. The 

generalized t distribution assumes a mean of 0 and a variance of 1, whereas the SGED 

allows the mean and variance to be parameters of the distribution. Another drawback of 

the generalized t distribution is it is not defined for all combinations of skewness and 

kurtosis
1
.    

The density of the SGED is as follows. 
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variable y.  is a parameter which controls the skewness, and is bounded such that  

-1< <1. k controls the thickness of the tails and the height, and is constrained by k>0. 

 ( )  ∫         
  

 
 is the gamma function, and sign is the sign function.  

When λ=0 and k=1, the SGED becomes the Laplace distribution, when λ=0 and k=2, the 

normal distribution, and when λ=0 and k= , the uniform. The 3
rd
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Although skewness and kurtosis depend on three parameters  (, , and k),   is closely 

associated with skewness while k is closely associated with kurtosis. Figures 2.1 and 2.2 

show how varying λ and k affect the distribution. When k<1 then the distribution has a 

higher peak than the normal distribution, is more leptokurtic, as well as having thicker 

tails. As k grows to be greater than 2, the tails die off more rapidly and the middle portion 
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 For derivations of the moments of the SGED as well as the skewness and kurtosis see 

Theodossiou (2001). 
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of the distribution becomes more uniform. Figure 2.3 shows the effect of λ on the 

skewness for different values of k. There is a positive relationship between λ and 

skewness. This relationship is stronger when the value of k is smaller. As the absolute 

value of λ approaches 1, the change in skewness becomes smaller. Larger values of k also 

limit the maximum value of the skewness. Although k is the parameter most closely 

associated with kurtosis, the kurtosis does change as λ changes. Figure 2.4 shows how the 

kurtosis is related to λ for different values of k. The kurtosis is at it’s minimun when λ=0. 

As λ departs from 0 the kurtosis increases. For larger values of k, the kurtosis is not as 

affected by changes in λ.The SGED is a very flexible distribution, which can allow for a 

wide range of skewness and kurtosis values. 
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Figure 2.1: The effect of  for the SGED 
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Figure 2.2: The effect of k for the SGED 
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Figure 2.3: The effect of λ on skewness for the SGED 

 

Figure 2.4: The effect of λ on kurtosis for the SGED 
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CHAPTER 3 

DATA SOURCE AND METHODOLOGY 

The data used for this study consist of daily observations of the closing price for 

the S&P 500 from January 3
rd

 1950 through February 4
th

 2011 (source: 

www.finance.yahoo.com) (T = 15,372), as well as daily observations of the spot price of 

crude oil in Cushing, Oklahoma from January 2
nd

 1986 through March 29
th

 2011 (source: 

www.eia.doe.gov) (T= 6,366). The returns were calculated to be the difference of the 

daily logarithms multiplied by 100. rt = 100(ln Pt – ln Pt-1) where rt and Pt represent the 

returns at time t, and the index price at time t, respectively. Dickey-Fuller unit root tests 

indicated that returns for S&P 500 and oil prices are stationary. 

 Table 3.1 gives descriptive statistics for the daily returns of both the S&P 500 and 

the oil spot price. The means are 0.028 and 0.022 respectively with standard errors of 

0.008 and 0.033. Both sets of data display negative skewness along with leptokurtosis. 

Jarque-Bera test statistics soundly reject the null hypothesis that the returns are normally 

distributed at the 1% level for each set of data. Finally Ljung-Box Q
2
 statistics indicate 

that there is a linear dependence on returns squared along with ARCH effects. These 

results indicate that a GARCH model with a SGED distribution should be able to model 

the returns effectively. 

Table 3.1: Descriptive Statistics of Daily Returns for S&P 500 and oil prices 

Data Mean Std. 

error 

Skewness Kurtosis Jarque-Bera Q(20) Q
2
(20) 

S&P500 0.028 0.008 -1.060 29.130 546,620.8*** 111.27*** 3431.63*** 

Oil 0.022 0.033 -0.770 14.570 56,977.57*** 67.69*** 731.00*** 
Notes:  1. *** denotes statistical significance at the 1% level 

   2. Jarque-Bera is a test for normality. 

  3. Q() and Q
2
() are Ljung-Box Q tests for serial correlation in returns and returns squared. 
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Figure 3.1: Distribution of S&P 500 from January 3
rd

 1950 to February 4
th

 2011 

 

Figure 3.2: Daily S&P 500 returns from January 3
rd

 1950 to February 4
th

 2011 
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Figure 3.3: Distribution of oil spot prices from January 2
nd

 1986 to March 29
th

 2011

 

Figure 3.4: Daily oil returns from January 2
nd

 1986 to March 29
th

 2011 
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The first model estimated for this study was a GARCH(1,1) model with a SGED 

distribution. This model is as follows. 

(3.1)                           (       ) 

(3.2)   
             

         
  

a0 and a1 are constant parameters,  is distributed SGED. By taking the exponent of b0, b1, 

and b2 we are assured the parameters will be non-negative. Also  is restricted to 

be less than 1. This model allows variance to be time varying, while keeping skewness 

and kurtosis constant. 

 The next step in the model specification was to explicitly model the skewness 

parameter  to be time varying. This was done through a GARCH like framework as 

follows. 

(3.3)             
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c0, c1, and c2 are constant parameters with c1+ c2<1. The cubed errors were transformed 

in order to magnify the parameter c1 while maintaining values of t in the range to which 

it is restricted.
3
 If this were not done then the value of c1 must be extremely small so that 

 will remain between -1 and 1 for large values of ε
3
. 

 The final addition to the model was including a dummy variable (weekendt), 

which takes values of 1 when the day of the week is a Monday, or when there was no 

closing price the previous day. (i.e. if there was no close price reported for Wednesday, 

the returns for Thursday would have a value of weekendt = 1.) This variable was added to 

                                                 
3
 The restriction for  in the SGED distribution is -1<<1 



eb1  eb2
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the mean, variance, and skewness parameter equations.  

(3.5)                         

(3.6)
4
   

                 
             

(3.7)             
                     

 The same three models were estimated for both S&P 500 data and oil spot price 

data. All models were estimated by maximum likelihood estimation. The log-likelihood 

of the SGED is 

(3.8)  (       )     ( )     ( )  ∑
|       |
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where C, , and  are as defined in 2.2-2.4, and T is the sample size. 

  The Nelder-Mead method of maximum likelihood was used to obtain estimates. 

Starting values for model 1 were those that would assume errors to be distributed normal 

with constant variance. The maximum likelihood estimates for the more restricted models 

were then used as the starting values for the less restricted models. Parameter estimates 

will be discussed in the next section. 

 

 

 

 

 

                                                 
4
 Note that the parameter b3 is not restricted to be positive; however, estimated values for 

 remain non-negative for both models. 
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CHAPTER 4 

EMPIRICAL ANALYSIS 

 Tables 4.1 and 4.2 show the maximum likelihood estimates for the three models 

described in chapter 3 for S&P 500 data and oil data respectively. 

Table 4.1: Maximum likelihood estimates for daily S&P 500 returns 

 Model 1 Model 2 Model 3 

Parameter Estimate Std. Error Estimate Std. Error Estimate Std. Error 

a0 0.134*** 0.011 0.145*** 0.013 0.164*** 0.015 

a1 0.083*** 0.008 0.105*** 0.015 0.103*** 0.011 

a2     -0.094*** 0.015 

b0 -5.049*** 0.159 -5.041*** 0.159 -8.208** 3.797 

b1 -2.528*** 0.065 -2.521*** 0.065 -2.495*** 0.065 

b2 -0.090*** 0.006 -0.091*** 0.006 -0.094*** 0.006 

b3     0.029*** 0.007 

k 1.375*** 0.021 1.375*** 0.021 1.382*** 0.021 

c0   0.013 0.008 0.009** 0.004 

c1   0.023** 0.011 0.017** 0.008 

c2   0.793*** 0.143 0.875*** 0.083 

c3     -0.006 0.007 

 0.050*** 0.006     

Log-

Likelihood 

T=15,372 

-17,918.64 -17,908.28 -17,879.69 

Note: * ,** and *** denote statistical significance at the 10%, 5% and 1% levels respectively 
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Table 4.2: Maximum likelihood estimates for daily oil returns 

 Model 1 Model 2 Model 3 

Parameter Estimate Std. Error Estimate Std. Error Estimate Std. Error 

a0 0.167*** 0.061 0.160*** 0.062 0.210*** 0.063 

a1 -0.017 0.012 -0.061*** 0.023 -0.054** 0.025 

a2     -0.234** 0.117 

b0 -2.699*** 0.225 -2.737*** 0.219 -7.607 6.204 

b1 -2.565*** 0.119 -2.615*** 0.110 -2.531*** 0.116 

b2 -0.090*** 0.010 -0.086*** 0.009 -0.097*** 0.011 

b3     0.381*** 0.086 

k 1.330*** 0.030 1.332*** 0.030 1.334*** 0.031 

c0   0.023* 0.013 0.035** 0.015 

c1   -0.024** 0.011 -0.019 0.012 

c2   -0.148 0.172 -0.339** 0.134 

c3     -0.035** 0.018 

 0.021** 0.011     

Log-

Likelihood 

T=6,366 

-13,995.16 -13,992.54 -13,985.50 

Notes: * ,** and *** denote statistical significance at the 10%, 5% and 1% levels respectively 
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 Maximum likelihood estimates of k are significantly less than 2 in all model 

specifications for both sets of data indicating the returns to be leptokurtic. GARCH 

effects are highly significant in all model specifications as well. The estimates of  

without time varying skewness are 0.050 for the S&P 500 and 0.021 for the oil data. Both 

indicate slight positive skewness in the returns and are significant at the 1% level for 

S&P 500 and the 5% level for oil. When time varying skewness is introduced, the S&P 

500 dataset indicates strong overall significance based on likelihood ratio tests (20.72), 

but for oil returns, the significance is not as great (5.24). Only the parameter associated 

with the modified lagged error cubed is significant at the 5% level. For S&P 500 both the 

c1 and c2 parameters in the skewness equation are significant at at least the 5% level. The 

final addition of a weekend dummy variable proves significant at the 1% level in the 

variance equation for both models. The weekend variable is significant at the 5% level in 

both the mean and skewness equations for the oil model, whereas it is highly significant 

in the mean equation but not significant at all for the skewness for the S&P 500 returns. 

Jointly the addition of the weekend variable to the mean, variance, and skewness 

equations is significant for both sets of data based on likelihood ratio tests (57.18 for S&P 

500 and 14.08 for oil). The signs of the parameters are also consistent between the data 

sets. Returns on Mondays or days after holidays seem to be less than compared with all 

other days. Also they display greater variance along with more negative skewness. 
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Table 4.3 shows values for Ljung-Box test statistics for raw returns as well as 

standardized residuals for each model for different lag lengths. For S&P 500 data, models 

2 and 3 have the least autocorrelation, while all models have no ARCH effects in the 

standardized residuals. All models for oil returns are free from ARCH effects, however 

only model 1 is free of autocorrelation in the standardized residuals. Breusch-Pagan tests 

for autocorrelation and ARCH effects presented in table 4.4 also show the same results. 

Table 4.3: Ljung-Box statistics 

Data/model Q(5) Q(20) Q(40) Q
2
(5) Q

2
(20) Q

2
(40) 

SP returns 57.26*** 111.27*** 185.36*** 1,836.61*** 3,431.63*** 4,622.50*** 

SP model 1 22.32*** 39.46*** 65.88*** 8.69 20.73 38.26 

SP model 2 13.23* 30.50* 57.00** 9.05 21.45 39.15 

SP model 3 13.72** 29.02* 53.52* 8.61 19.88 36.07 

Oil returns 34.30*** 67.69*** 116.93*** 369.94*** 731.00*** 1,102.16*** 

Oil model 1 5.86 20.04 48.96 7.08 22.69 36.78 

Oil model 2 22.61*** 37.52** 67.10*** 8.85 24.32 37.96 

Oil model 3 16.61*** 31.87** 62.62** 7.11 23.51 37.71 

Notes: * ,** and *** denote statistical significance at the 10%, 5% and 1% levels respectively 
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Table 4.4: Breusch-Pagan test statistics 

 Breusch-Pagan  test for autocorrelation Breusch-Pagan test for ARCH effects  

Model Lag =5 Lag = 20 Lag = 40 Lag =5 Lag = 20 Lag = 40 

SP returns 44.19*** 87.25*** 139.37*** 929.14*** 1,065.11*** 1,127.43*** 

SP model 1 16.99*** 29.46* 48.72 6.79 14.73 28.32* 

SP model 2 9.06 22.66 41.92 6.79 15.86 29.46 

SP model 3 10.19* 21.53 39.65 6.79 14.73 27.19* 

Oil returns 38.58*** 77.80*** 125.88*** 265.65*** 341.55*** 405.43*** 

Oil model 1 6.33 21.50 50.60 6.33 20.87 36.05 

Oil model 2 22.77*** 37.95*** 67.04*** 8.22 22.77 36.69 

Oil model 3 16.45*** 32.89** 63.25** 6.33 22.14 36.69 

Notes: * ,** and *** denote statistical significance at the 10%, 5% and 1% levels respectively 

Figures 4.1 and 4.2 graph the estimated SGED models with the kernel densities and a 

fitted normal distribution.
5
 In both cases the SGED does a good job modeling the excess 

kurtosis along with the tail thickness demonstrated by the returns. 

 

 

 

  

                                                 
5
 The unconditional mean and variance along with the estimates of k and  for “model 1” 

are used to generate the SGED graph. Normal distribution is fitted using sample mean 

and std. dev. 
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Figure 4.1: SGED vs. kernel density for S&P 500 returns 
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Figure 4.2: SGED vs. kernel density for oil returns 
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Figures 4.3 and 4.4 show the conditional variance over time, figures 4.5 and 4.6 show the 

conditional skewness over time, and figures 4.7 and 4.8 show the conditional kurtosis 

over time. Also figures 4.5-4.8 show the constant skewness and kurtosis from model 1. 

The conditional variance of the S&P 500 returns is relatively unchanging over the first 

half of the sample and has a few very large spikes later on. The conditional variance of 

the oil returns is more varied throughout the entire sample as well as having larger values 

than those of the S&P 500. The conditional skewness of the S&P 500 returns is mostly 

positive with only a small portion of the values being negative. The conditional skewness 

of the oil returns is much less stable and has a higher percentage of negative values 

compared to the S&P 500 returns. Compared to the conditional kurtosis of the S&P 500 

returns, the conditional kurtosis of the oil returns is generally greater, however the range 

for kurtosis values is smaller for oil returns. 
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Figure 4.3: Conditional variance of S&P 500 returns over time  

 

Figure 4.4: Conditional variance of oil returns over time  
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Figure 4.5: Conditional skewness of S&P 500 returns over time 

 

 

Figure 4.6: Conditional skewness of oil returns over time 
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Figure 4.7: Conditional kurtosis of S&P 500 returns over time 

 

Figure 4.8: Conditional kurtosis of oil returns over time  
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CHAPTER 5 

CONCLUSION 

 Financial returns have been shown to be distributed non-normal, having thicker 

tails and are leptokurtic, as well as being asymmetric. This study made use of the skewed 

generalized error distribution to model the daily returns of the S&P 500 and spot price of 

oil. Jarque-Bera tests for both sets of data concluded that the data were, in fact, 

distributed non-normal. Estimates of the parameters for the SGED indicate that both data 

sets are indeed leptokurtic as well as positively skewed.  

 In addition to the GARCH model for time varying volatility, skewness was also 

allowed to vary over time. Based on likelihood ratio tests, we conclude that skewness is 

indeed time varying for both S&P 500 and oil data.  

 Finally we introduced a dummy variable for days after weekends or holidays into 

the mean, variance, and skewness equations. The addition of this variable proved to be 

significant to the overall model for both data sets, however in the individual equations the 

results varied. In both S&P 500 and oil returns we found that returns were less in days 

following weekends and holidays than they were for all other days. Days after weekends 

and holidays also had more variance compared to other days. There was however, no 

significant difference in the skewness between days after weekends/holidays and all other 

days. 

 Future developments would include out-of-sample predictions, with applications 

to Value-at-Risk calculations. Also higher order moments, such as kurtosis, could be 

modeled to be time varying as well. Finally a multivariate SGED would be of interest for 

jointly modeling returns. 
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