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ABSTRACT

The use of an incomplete demand system approach facilitates the exploration of a
new functional form for applied demand analysis. LinQuad is a flexible functional form,
linear in income and linear and quadratic in prices. A generalized PIGL form of LinQuad
is introduced which nests LinQuad and an AIDS-like PIGLOG form. Three levels of
theoretical restrictions, symmetry, joint symmetry and concavity, and concavity
conditional on symmetry, are not rejected at the 5% and 1% level of significance for the
optimal generalized PIGL form and LinQuad, respectively. These empirical models thus
meets all integrablity conditions. Two hypothetical welfare applications to the dairy
industry illustrate the dangers of using a misspecified PIGLOG model for policy

evaluation.
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CHAPTER ONE
INTRODUCTION
1.1 Problem Statement

Consumer demand theory tells us that the demand for a good can be explained as
a function of prices and income. Applied demand analysis uses econometrics to extend
this theory into the empirical realm, using it to quantify these market dynamics. The
results can be both practical and powerful. One application, welfare analysis, can take
advantage of this understanding of market dynamics to quantify the effects of policy-
induced price changes on consumers, producers and even the efficient functioning of the
market itself. The power of this kind of application, however, is fundamentally
determined by the quality of the underlying demand analysis.

The study of demand analysis is the exploration of how best to use economic
theory to describe the empirical functioning of a market. The goal is a mathematical
statement that explains how price, income or expenditure and any other desired variables
interact to determine the quantity demanded of a good. This functional form provides the
underlying structure while the econometrics provides the unique expression of actual data
within that functional form. For example, a very basic linear functional form would
indicate that the effect of price and income on demand is simply additive. The
econometrics provides the weights, or the marginal price and income effects, which
identify the equation with the specific data being used. Now, if the true relationship

between the price and income is multiplicative, then the model is misspecified. The
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misspecified linear functional form will do a poor job of explaining the data and practical
applications like welfare analysis might be altogether wrong. The problem of
specification and, specifically, choice of functional form is thus of central importance to

the quality of applied demand estimation.

1.1.1 Choice of Functional Form

Functional form issues tend to be specific to an empirical approach. One
particular area of demand analysis that has received a disproportionate amount of
attention due to the combination of practical applicability and theoretical challenge is the
study of the market interaction between a small group of goods. A narrow approach is
widely useful because it allows a subtle understanding of closely related goods, both
substitutes and complements. The challenge lies in the translation of general demand
theory into this particular kind of scenario. Two particular challenges have bedeviled this
area. First, the separability theory used to justify focussing on a subgroup has its
problematic aspects. Second,‘ empirical results do not always fully conform to the
expectations of theory.

For almost two decades the Almost Ideal Demands System (AIDS), introduced by
Deaton and Muellbauer (1980a) has been the standard approach to performing subgroup
demand analysis. When it was introduced it offered an alternative to the models in use at
the time. Tt did not, as its name indicates, solve all the problems and work has continued

to improve on the AIDS model. For a model to be a useful alternative to the AIDS model
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it would have to increase the already flexible AIDS form and address issues related to
separability.

Even if an alternative could be found, directly comparing functional forms in a
quantitative manner can be difficult. The complexity of the underlying assumptions
along with the variety of measures of quality can make comparison of results
uninformative or arbitrary. It can also be difficult to determine an objective benchmark
by which to compare results. Where functional forms are similar in structure and certain
results are expected a priori, comparison becomes easier. A particularly strong
comparison can be made between two or more functional forms nested within another
functional form. In a nested specification, the log of the likelihood function becomes a
simple measure of the relative ability of each nested functional form to fit the data.
Direct tests can determine which form is closest to the optimal expression of the
overarching functional form. Under these circumstances it is, in fact, possible to make a

reasonable comparison between two functional forms.

1.1.2 Demand Analysis Application
An important further measure of the success of a functional form is performance
in application. The market for dairy products is a particularly good place to compare
different functional forms through the welfare measures they produce. The dairy industry
is an ideal set of closely related goods (milk, butter, cheese, frozen, and other dairy

products) to study as a subset and there is no shortage of policy effects to quantify.
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The structure of the dairy sector is a well-documented case of government
intervention (Bailey 1997). The federal government has maintained price supports for
milk at the wholesale level since WWII. There has also been a system of differential
pricing through milk marketing orders which has distorted price relationships within the
subgroup. Economic theory tells us that both consumers and dairy farmers have
experienced transfers of money as a result of market distortion and that the resulting
inefficiency can be measured as deadweight loss. There have been many attempts to
quantify the costs and benefits (LaFrance and de Gorter 1985; Ippolito and Masson 1978,
Dahlgren 1980; Gould, Cox and Perali 1990; Kaiser, Streeter and Liu 1988; Liu et al.
1991). This work has all been based on demand analysis.

While the dismantling of a large part of the federal dairy program is now in its
final stages as a result of the 1996 farm bill, there remain many possible policy decisions
that deserve welfare analysis. Removal of government presence is far from complete. A
policy decision that has reasserted a government presence in the dairy market is presently
in effect in the Northeastern U.S. With the stated goal of supporting producer prices in
participating states, the Northeastern Interstate Dairy Compact (NIDC) increased the
support price for fluid milk.(Chite 1997) One apparent effect has been an increase in
retail milk prices. This kind of policy effect provides a reasonable template for
comparing welfare measures from different functional forms.

Price discrimination, the practice of supporting fluid milk production at a higher

price than milk for manufactured products, provides a scenario for a very different kind
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of policy effect. Price discrimination is a policy many feel should be removed. This
scenario would have a very different effect on prices than the NIDC. Fluid prices would
drop relative to the prices of manufactured dairy products.

The policy-induced price changes that would result in each of these scenarios
provide very different welfare measures. Simply put, the first scenario shows the
imposition of further policy while the second scenario shows the removal of a policy.
Furthermore, the two scenarios are different in the interaction of price changes, as the
NIDC support price increase should have no effect on manufacturing precisely as a result
of the structure that allows price discrimination. The welfare measures for both of these
scenarios can be decomposed into net transfers and deadweight loss. The latter is the
most important measure as it reflects the actual gains or losses, net of transfers, that result
from a policy decision. Deriving welfare measures for these two scenarios provides
realistic and varied results to compare the efficacy of different empirical approaches to

demand analysis.

1.2 Research Objectives

Tn this thesis, a new functional form is proposed that is well suited for applied
demand analysis. It is presented in a particularly useful nested specification. The
functional form can be tested on its own merits and can be compared directly to an
incomplete demand expression of the AIDS model. The functional form allows

estimation fully consistent with economic theory. It is a flexible functional form able to
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fully exploit the time series data utilized here. Its structure and theoretical derivation are

particularly well suited for derivation of exact welfare measures.

1.3 Organization of the Study

The thesis is organized as follows. Chapter two discusses recent critiques of the
AIDS model and then provides the theoretical argument for an incomplete demand
system approach. Chapter three provides derivations for the three models under
consideration, LinQuad, the AIDS-like PIGLOG form and the generalized PIGL form
which nests them. Chapter three goes on to derive exact welfare measures for these
models, discusses the imposition of theoretical restrictions and addresses a number of
technical issues important to the estimation procedure. Chapter four reports the results of

the estimations and the relevant welfare measures. Chapter five is concluding remarks.
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CHAPTER TWO
LITERATURE REVIEW AND THEORY
2.1 Applied Demand Analysis
2.1.1 Complete Demand Systems

Consumer economics is built on the utility function. The utility function is a
mathematical statement of how much utility is produced by some combination of goods.
A set of axioms that delineates how people order their preferences for different goods
makes it possible to represent the relationship between these goods mathematically. It is
assumed that utility will be maximized within the limitations of funds and thus the prices
play a central role. Utility, in itself, is not a very useful concept as there is no common
currency for something so subjective. Combined with a budget constraint, however, it
provides a link with which the relationships of much more concrete entities like prices
and quantity can be explored. Central to this research is the notion that, without ever
defining the units of utility, the quantities demanded of a set of goods can be described as
a function of income and the prices of those goods.

The utility function posited by economic theory encompasses all goods. In
theory, a set of equations detailing the demand for every good could be derived, directly
or indirectly, from this utility function. In practice, however, such complete demand
systems are of limited use. Data limitations force the applied demand analyst to use
highly aggregate groups of goods for estimation. This aggregation means that only under

limited conditions are the underlying preferences theoretically sound. Even more
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important, from a practical perspective, information on individual commodities is not
recoverable.

If the desired scope of analysis includes information on individual commodities,
another approach is needed. A subset of goods needs to be separated off, facilitating a
full exploration of their structural relationship, without losing the foundation of utility
theory. Derivation of demand equations for a subset of goods has been approached one
of two ways. One option has been to assume separability of the utility function and
derive conditional demand equations. The other option directly specifies a demand

system and then tries to reconcile it with economic theory after the fact.

2.1.2 Conditional Deniand Systéms

Conditional demand systems rely on separability to limit the scope of analysis in a
theoretically sound manner. If the preference ordering within a subset of goods can be
done independently of quantities of goods in other subsets, that subset is said to be
separable (Deaton and Muellbauer 1980b). Of the various forms of separability, the least
restrictive is weak separability. Weak separability implies the presence of subutility
functions within the overall utility function. This can be written u= v(Xi, X2, X3, xq) = 1]
va(X1, X2),vn(x3, X4)] where f is an increasing function and v, and v, are subutility
functions.

The separable approach to estimating demands for a subgroup of goods can be

best understood as a two-step budgeting procedure. Expenditure is allocated to
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aggregated subgroups first and only then further allocated within each subset. If a family
allocates a certain amount of money to groceries and then decides on a certain mix of
goods at the store, then a kind of two-step budgeting has occurred. It is less clear that
two-step budgeting can explain budgeting for a subgroup like dairy. Regardless of this
question, the separable approach produces demand equations derived from the
maximization of the subutility function with respect to the subgroup budget allocation.

These demands are conditional on the first step of budget allocation.

2.1.2.1 The Almost Ideal Demand System (AIDS)

The Almost Ideal Demand System (AIDS) derived by Deaton and Muellbauer
(1980a) is a model that is commonly used under an assumption of separability. The
derivation of the AIDS model does not limit it to conditional demand systems. Following
a common approach to deriving demand systems, the AIDS model is derived from an
expenditure function which represents a well behaved preference ordering.. The
expenditure function is the dual expression of the utility function. Rather than
maximizing utility subject to a budget constraint, expenditure is minimized given some
fixed level of utility.

The AIDS model is a flexible functional form that allows the imposition and
testing of theoretical restrictions. It was originally proposed as a complete system using
heavily aggregated groups of goods. More recently, under the assumption of separability,

it has been used to estimate demands for subsets of goods. The system is derived from
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the sub-expenditure function related to the subutility function of the separable group of
goods. The process of the initial allocation of expenditure among the aggregate
subgroubs is usually not explicitly addressed.

For a full derivation of the AIDS model refer to the original Deaton and
Muellbauer article. They explain why they chose the expenditure function they start with
and how with Shephard’s Lemma and a substitution, the demands are derived. The basic
process is identical to the process that will be used later in this thesis. In short, an AIDS
demand system is of the form,

w =a+Bn(p)+y[n(e)- a'In(p)- .SIn(p)Bln(p)] (2.1.1)
where w is a vector of budget shares, In(p) a vector of logged prices, In(e) logged
subgroup expenditure and a. and B and y are parameters to be estimated.

The AIDS model is non-linear in its parameters. This makes the econometrics
computationally more difficult. This was a serious consideration when computer power
was an expensive and limited resource. The popularity of the AIDS model grew, in part,
due to an easily estimated linear approximation(L-AIDS) to the original non-linear AIDS
specification. Use of a price index makes the model linear in parameters.

w =a + Bln(p) +7[in(e)- P] , (2.1.2)
where P is some logged price index, traditionally Stone’s index, the sum of the
expenditure-weighted logged prices. The authors offered evidence that the linear model
was a reasonable approximation of the non-linear AIDS specification but warned this

might not always be the case. Over the years a number of criticisms have been leveled at
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AIDS. They fall into two categories: Problems with the L-AIDS and econometric issues

implicit in the separable functional form.

2.1.2.2 Critiques of the AIDS Model

Buse (1998), Moschini (1995) and others have pointed out that there are a number
of problems with L-AIDS. Comparisons of the commonly used Stone’s index and other
indexes indicated a potentially substantial bias depending on the choice of index.
Furthermore, Moschini demonstrated that the Stone’s index is not invariant to scale. Asa
result a different index has been proposed that appears to solve the problem.

Correcting problems with the index does not solve a further problem of theoretical
consistency. One of the great advantages of a demand system derived from an
expenditure function is the luxury of returning to the expenditure function to derive exact
welfare measures. The use of the Linear approximation changes the functional form of
the AIDS model so that it is no longer strictly speaking integrable to the original
expenditure function of the nonlinear AIDS model (Buse 1994). The problematic
implications of this may also be solved as LaFrance (1998b) has recently recovered the
expenditure function for the L-AIDS model.

The second set of criticisms is aimed at AIDS only as one of the more popular
separable specifications commonly in use. There appears to be a bias inherent in welfare
measures derived from conditional demand systems. LaFrance (1993) points out that

exact welfare measures are based on overall expenditure rather than subgroup
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expenditure. Calculating welfare measures from a subgroup demand system cannot
account for the possible changes in the initial budgeting process to the aggregated
subgroups. As a result compensating variation will be biased downwards and equivalent
variation biased upwards. In a Monte Carlo experiment intended to validate his results
from actual data, LaFrance found that the average conditional estimate of compensating
variation was only 75% of the average estimate of the unconditional specification. The
only circumstances under which no bias would be present is a fixed coefficients, Leontief
relationship between the subutility function for the separable goods and all other goods.
This indicates a serious limitation in separable demand systems including the non-linear
AIDS specification.

The use of subgroup expenditure as a right-hand side variable is a further problem
for separable specifications (LaFrance 1991a). It is common practice to assume
exogeneity of expenditure to avoid simultaneity bias. There is growing evidence that
expenditure cannot be viewed as exogenous. Using the data set that will be used in this
thesis, LaFrance (1992,1993) showed expenditure failed tests of exogeneity. Wu-
Hausman tests performed for that research clearly rejected exogeneity in the conditional
demand specification while failing to reject exogeneity in prices, income or joint price
and income in the alternative incomplete specification. Simultaneous equations bias
results from joint determination of quantities demanded and expenditure. As another

possible explanation for simultaneity, Lewbel (1996) shows that measurement error
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results in a correlation between individual commodity expenditure and subgroup

expenditure.

2.1.3 Directly Specified Demand Models

A second approach to estimating demands for a subset of goods avoids two step
budgeting and conditional demands by directly specifying demand equations for a subset
of goods. For example, to avoid the possible simultaneity bias resulting from subgroup
expenditure, a direct specification might include income instead as a right hand side
variable. An informal separability may still motivate the selection of the subgroup but
demands are not the result of subutility function maximization with respect to the
subgroup budget allocation. While this approach has the advantage of choice of structure
and variables unrestricted by economic theory, the lack of explicit theoretical structure is
also a serious disadvantage. A great deal of energy has been expended developing a way
of grounding directly specified demand systems in utility theory. The integrability
conditions are a set of theoretical restrictions that establish the connection back to a well-
behaved expenditure function and, thus, theoretical consistency.

Duality theory provides the theoretical link between preference ordering and a
system of demands. Without the ability to make this connection there is no guarantee
that a demand system reflects any rational preference ordering. To maintain rational
preference ordering, duality theory implies a number of restrictions on the expenditure

function. Tt must be increasing, homogeneous of degree one in prices and concave in
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prices. A fourth requirement called the adding up condition requires that all expenditure
must be accounted for in the demand system. If a directly specified demand system can
be integrated to an expenditure function that fits these requirements this implies a
reasonable underlying preference ordering. A directly specified subgroup demand
system that uses income as a variable fails the adding up condition. The other three
integrability conditions, however, remain important for reasonable preference ordering.

In empirical demand analysis, these restrictions have proven elusive.

2.2 Incomplete Demand Systems

In recent years, work on a theory of incomplete demand systems has developed to
better understand the theoretical implications of directly specified demand systems. It
has grown out of the well-established tradition of theoretical work on complete demand
system theory (Gorman 1961, 1981; Deaton and Muellbauer 1980a, 1980b; Lewbell
1987, 1990; Muellbauer 1975; Pollak and Wales 1992). The goal has been to make
incomplete demand systems fully consistent with duality theory, thus allowing a full
exploration of the relationship between incomplete demands and the underlying

preference ordering.

2.2.1 Duality theory for Incomplete Demand Systems
Maximization of a utility function subject to a budget constraint results in a

complete set of demand functions with certain properties. If a subset of this complete set
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of demand functions is considered separately from the whole, the properties only change
slightly, and in fact become more general in nature. This insight, along with a relaxation
of the assumption of uniform functional form, allows the development of an incomplete
system duality theory that is solidly grounded in traditional duality theory but takes full
advantage of the incomplete approach.

Let x= [x, . ., xﬁ]’ be a yector of non-negative consumption levels for the
commodities of interest and p = [py, . . ., Pn]’ be the corresponding price vector; let x° =
[x°), . .. ,x°]" be the vector of non-negative consumption levels of all other commodities,
and q=[qy . . ., g»]’ be the corresponding price vector; and let income be m.

For a complete demand system, where there are goods of interest, x, and other
goods, x°, maximizing an increasing, quasiconcave utility function, u(x,x’), with respect
to the budget constraint, p’x + q’x° <m, results in demands for the goods of interest with
four properties:

1) Demands are positively valued: h*(p,q,m) 0.

2) Demands are homogeneous of degree zero in all prices and income, h*(p,q,m)
=h*(tp,tq,tm) for all t>0.

3) Subgroup expenditure is strictly less than income: p’h*(p,q,m) <m.

4) The n x n Slutsky matrix, oh*/op’ + oh'/om * h* |, is symmetric, negative

semidefinite.
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Constrained maximization also implies the existence of an expenditure function, e(p,q,u)
that is continuous and increasing in prices and utility, linearly homogeneous and concave
in prices.

These properties of an incomplete demand system, concerned only with demand
for x, are identical to the complete set of demands that would include x°, except in
property 3. Property three is the adding up condition and in a complete system
expenditure on goods is assumed to equal income. The important question about an
incomplete system is how much information is lost by forgoing the adding-up condition.
If the system is incomplete then there must be at least one other good at a positive
consumption level with a positive price to make the complete system adding up condition
hold as an equality. If there is only one other good, information about it can be recovered
through the adding up condition which, with the addition of the single other good, is now
defines a complete system. Clearly if there are two or more other goods, the incomplete
system adding up condition remains strictly less than y but the unique demands for the
other goods are no longer individually distinguishable through the complete system
adding up equality condition. This information is lost in the incomplete system.

Viewing the system from the perspective of the demands, this framework clarifies
what information is recoverable regarding the underlying utility function, and thus the
preference ordering, when starting from an incomplete system of demand equations.
Global integrability, which would imply the existence of an increasing, quasiconcave

utility function across all goods, is difficult to establish because of the insufficient
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information to distinguish other goods. But global integrability is a stronger condition
than is necessary to maintain a foundation in duality theory. LaFrance and Hanemann
(1989) propose a weak iﬁtegrability that takes full advantage of all the information
present for included goods but remains flexible to the unknown information for other
goods.

A theoretical link between complete and incomplete systems is achieved with a
composite commodity encompassing all other goods. Expenditure on this composite
good is defined as s = ¢’x° = m — p’(h*(p,q,m)). Witha properly defined utility function
and the price of s normalized to one, duality applies to the incomplete system just as if it
were a complete system. The four properties of incomplete demands and this new budget
identity are equivalent to the existence of an expenditure function, e(p,q,u), that is
increasing and concave in p, linearly homogenous in p and g, and satisfies the adding up

condition

p’h[p.gq, e(p.q.u)] + o[p.q, e(p.q.W)] = &(p.9,v) (221)
where ¢ = s. Implicit in this approach is a relaxation of an assumption that commonly
holds in demand system theory. The functional form for the composite commodity of
other goods is unknown, relaxing the assumption of uniformity of functional form. This
further increases the generality of incomplete demand systems. Assuming a different
form for the aggregate demand function for expenditure on other goods allows the
conditions for integrability to be maintained where they would fail under uniformity. For

example, a complete demand system cannot be linear in all prices and income and satisfy
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adding up conditions. An incomplete system, linear in income and prices for all goods of
interest, must only be strictly less than income. Non-uniformity of demand for other

goods increases the flexibility of functional form choice for the desired subset of goods.

2.2.2 Weak Integrabiiity and Restrictions on Preferences

This theoretical approach is applicable in practice provided the four properties of
incomplete demands are present. Positive demands and an expenditure that sums to
strictly less than income are assumed in an incomplete demand system. Symmetry and
concavity can be imposed and are testable hypotheses. Homogeneity, however, must be
imposed on the system from the outset.

Prices and income are deflated to achieve the required zero degree homogeneity
of the demands. Let the deflator, n(Q), be a known, twice continuously differentiable,
positive valued, nondecreasing (strictly increasing in some Q)), linearly homogeneous,
concave function of other prices. In the context of food demands, for example, the non-
food consumer price index or the price of gold could be used. As long as it fits the above
description the deflator does not affect thé qualitative results. Demands must be zero
degree homogeneous in all prices so an expenditure function linearly homogeneous in all
prices can be recovered.

One further property proves useful in the practical application of the dual
structure of incomplete demand systems. Symmetry restrictions are derived from the

Slutsky matrix
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As the only equality constraint on the demands, much of the information regarding the
underlying preference structure is derived from symmetry. Incomplete system demand
functions are usually assumed twice differentiable.  This allows for the further
differentiation of the Slutsky matrix and thus another set of identities. These identities
provide additional information regarding potential restrictions on the preference ordering
(i.e. the parameters of the demand model).

The demands, h*(p,q,m), are integrated with respect to p to recover the quasi-
expenditure function €[p,q, 6(q,u)]. The quasi-expenditure function is related to the
expenditure function by the identity
e(p,q,w)= £[psq, 8(q,w)] (223)
A quasi-expenditure function that is increasing and concave in p is a necessary, but not
sufficient, condition for the existence of the true expenditure function. This quasi-
expenditure function exhibits the qualities of weak integrability in that 6(q,u) is an
unknown constant of integration which limits the knowledge of preferences to those of
goods included in the incomplete demand system. The global integrability mentioned
earlier would require a single expenditure function, e(p,q,u), that held information on all
preferences. The quasi-expenditure function recovered by weak integrability applied to

deflated demands , €[p,q, 8(q,u)], defines a class of expenditure functions that are all

related to the same set of incomplete demands. As long as B(q,u) is zero degree
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homogeneous in other prices, demands are invariant across this set of expenditure
functions. The quasi-expenditure function has insufficient information to recover
preferences for other goods but exhausts the potential information implied by duality
theory regarding preferences of included goods.

A quasi-utility function and the effective restrictions on preference structure are
recovered using the precebts of duaiity theory applied to these quasi-functions. Setting
e[p,q,0(q,u)] = m, and inverting with respect to 6(q,u) recovers the quasi-indirect utility
function, ¢(p,q,m). This is related to the indirect utility function, v(p,q,m), by the
identity v(p,q,)=vlq, ¢(p,q,m)] where \y once again encapsulates all information in q
and u. The quasi-utility function is expressed as (X, s,q) and is recovered by recognizing
the utility function as the solution to the minimization of the indirect utility function with
respect to prices and income subject to the budget constraint. The result, o(x,s,q), 18
increasing and quasi-concave in (x,s). Thus, the properties of incomplete system
demands are equivalent to weak integrability and allow the recovery of the quasi-utility
function. With this duality theory of incomplete demand systems made explicit, the
effect of symmetry restrictions on conditional preferences can be established.

LaFrance (1985,1986,1990) has applied this framework to the most common
functional forms used in directly specified demand systems. His results expose the
weaknesses of most of the forms that are used. When integration is carried out on a
system of the simplest of the integrable demand functions, those linear in prices and

income, some surprising results are found. Despite being integrable, very restrictive
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conditions are necessary to recover the underlying preference maps. Income effects must
either be all zero, all nonzero with the same sign, or some combination of these two
cases. The limitation of zero income effects is apparent. Non-zero income effects of the
same sign reveal conditional preferences with a fixed coefficients, Leontief structure
from a translated origin. A mix of these two restrictions adds the further limitation that
demands with zero income effects are also completely independent of all prices.
Constant elasticity and Semilog demand models are found to have similarly unrealistic

restrictions on the preference structure.
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CHAPTER 3
ANALYTICAL FRAMEWORK

3.1 Derivation of LinQuad

3.1.1 The Basic Model

While applying weak integrability to commonly used functional forms exposed

overly restrictive constraints on preferences, the application of duality theory to
incomplete demand systems also opened new territory. Integration of demand functions
that are linear in prices and income revealed the structure of the class of deflated
expenditure functions that produce all demands linear in prices and income. All such
demands are generated from the quasi-expenditure function
£(p,q,2,0) =p'a+p'A,z+38(z)+6(qu,z)e"” (3.1.1)
where p is now the vector of deflated prices, [p/m(Q), . ., p/m(Q)], z is a set of
demographic shifters, relevant other prices or lagged demand, 8(z) is an arbitrary real
valued function of all variables in z, 8(q,u,z) is the constant of integration and o, A, and
B are the parameters to be estimated. This quasi-expenditure could easily be made more
flexible with the addition of a quadratic term in prices (LaFrance 1990),
&(p,q,z,0)=p'a+p'A,z+.5p'Bp+ 5(z)+6(q,u,z)e’” . (3.1.2)
The above quasi-expenditure function creates a new class of quasi-expenditure functions
which produce demands with more desirable qualities. Applying Shepherd’s lemma

generates demands of the form,
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x:a+A2z+Bp+}/[9(q,u,z)e7'p]‘ (3.1.3)
Solving the original LinQuad expenditure function (3.1.2) for 6(q,u,z)e” 7 and
replacing expenditure with m for income, gives a final demand specification of
x=a+A,z+Bp +7[m—a'p -p'A,z ~.5p'Bp—5(z)]. (3.1.4)
This is the original LinQuad model (LaFrance 1990,1998a). The quadratic term in prices
increases the flexibility in Slutsky symmetry removing the restrictions that constrain the
preference ordering of the linear system. The LinQuad expenditure function in (3.1.2) is
now a second order Taylor series approximation to any arbitrary expenditure function.
The Slutsky substitution matrix is

S=B+[m~a'p—p'Azz—.Sp'Bp—é(z)lyy'. (3.1.5)
Symmetry of the Slutsky matrix is determined by B. B is not necessarily symmetric so

symmetry is a testable hypothesis. The matrix of price effects,

ﬁ':Bw(a—Azpp'B) (3.1.6)

op

is similarly not necessarily symmetric. Thus, another problem identified in some
functional forms, homothetic conditional preferences, is avoided. Finally, there are no
restrictions on individual income coefficients.

This incremental derivation of LinQuad proves to be a fundamentally strong
result. Shephard’s lemma establishes that a quasi-expenditure function of the original
LinQuad form (3.1.2) is sufficient for demands linear in income and linear and quadratic

in prices. It can also be shown that demands of this form are a necessary outcome of the
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LinQuad expenditure function. If demands linear in income and linear and quadratic in

prices are written in a general form they appear as

X :ai(q)+2ﬂijpj+%z Z‘Qi]'kpjpk+7ima G.17)
=1

j=l k=1
where, without loss in generality, €2, =£2 for all i,j,k=1K ,n,and welety, #0.

Generating the Slutsky substitution matrix and imposing symmetry onto this generalized
form of the demands produces demands identical to LinQuad. Using the LinQuad quasi-
expenditure function is the only way to derive demands linear in deflated income and
linear and quadratic in deflated prices and consistent with weak integrability (LaFrance

(1998a).

3.1.2 The PIGLOG Model

The derivation of demands from the LinQuad quasi-expenditure function does not
rely on linearity in prices aﬁd incomé. A logarithmic version of the LinQuad expenditure
function has the same structure but is a function of the natural logs of prices and income.
If this logarithmic expenditure function is differentiated with respect to logged prices,
demands of the form
W =a+A_z+Bln(p) +in(m) - a'In(p) - In(p)' A,z — .5In(p)'Bin(p) - 5@z)] (3.18)
result, where w is a vector of budget shares, which falls out of the necessary chain
differentiation. With the exception of the extra terms included in the vector z, these

demands are identical to those of the AIDS model reported earlier. The important
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innovation is the inclusion of the natural log of income as a right-hand side variable in the
place of subgroup expenditure. Following Deaton and Muellbauer we call this the Price
Independent Generalized Logarithmic (PIGLOG) specification of the LinQuad quasi-
expenditure function. AIDS is a member of the PIGLOG class of preferences derived
from a logged expenditure function.

The similarity of the PIGLOG specification to AIDS is a striking result. The
PIGLOG specification maintains the basic form of the AIDS model and includes logged
prices and quadratic logged prices. Having income as a right hand side variable in place
of subgroup expenditure avoids one of the problematic aspects of the AIDS model. The
result is an AIDS-like model that avoids the simultaneity issues that accompany the use
of subgroup expenditure. Furthermore, the inclusion of logged income comes at no
theoretical cost. In fact, the problems associated with welfare measures in separable
demand systems might make this PIGLOG version of the LinQuad quasi-expenditure
model preferable. For the purpose of this research we view the PIGLOG model as a
reasonable, if not improved, stand-in for the AIDS model to use as an alternative

specification to LinQuad.

3.1.3 The Generalized PIGL Model
The comparison of LinQuad to the PIGLOG model is facilitated by a transformed
version of the LinQuad quasi-expenditure function that nests both models. Another

commonly used transformation of an expenditure function, which results in demands with
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increased flexibility in expenditure, is called the Price-Independent Generalized Linear
(PIGL) form of the expenditure function. The expenditure function is raised to the power
of some constant, k. The PIGL expenditure function is usually specified as e*/k. The
resulting demands allow income to vary with respect to the parameter K. This idea of
transforming variables is extended here to include prices.

The Box-Cox transformation is a commonly used tool in economic analysis. It
allows flexibility between linear and logarithmic forms of a variable. Here, the Box-Cox
transformation is applied to both deflated income (expenditure) and deflated prices to
create a transformed and normalized form of the deflated LinQuad expenditure function.
Because it is a natural extension of the PIGL form we call it the generalized PIGL form.

The deflated expenditure function becomes

m(x) = EP: q,z’;g)x =D | (.1.9)

As x varies between 0 and 1 the expenditure term varies between In(e) and e-1. Each
deflated price is similarly transformed using the parameter L. Let pi(A) = (p;’”-l)/ A =1,
.0, and p(A) = [p1(}) . . . ps()]’. In the following derivation, where variables are not
specifically indicated as transformed, they are the original untransformed variable. e and
w are still vectors of expenditure on, and budget share of, goods, respectively. The p
and w vectors are also reworked as diagonal matrices, P and W, respectively.

The Box-Cox transformed, normalized expenditure function becomes

m(c) = p(A)a + p(A)' Az +.5p(A) Bp(A) + 5(2) + 0(q, u,2)e” *. (3.1.10)
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Differentiating with the chain rule reveals h*(p,q,y)=0m/Op=x combined with the extra
terms from the chain-rule differentiation of the Box-Cox transformation.

om(x) _Op_om _pislm
om A op  op

With the vector of deflated expenditures on included goods as the left-hand side variable,

“1 =g+ A ,q+Bp(A)+7'0exp{y'p(A)} (3.1.11)

the transformed PIGL demands are

e= P%”— P+ Az + Bp(A) + ()~ @'p(1) ~ (A,2)'p(A) — Sp(AYBP(A) - 5 2)}

p
(3.1.12)

Note that when ¥ = A = 0, we have the PIGLOG form of the incomplete demand system,
e =miz + Az +Bln(p) +[in(m) - a'In(p) ~ (A z)' In(p) —.51n(p) Bln(p) - @)
(3.1.13)
When « = A = 1, the Box-Cox transformations for income and prices are equal to m-1 and
pi-1, respectively. Carrying this extra negative one through and grouping appropriately,

the demands take the form,

p (a-B7r)+A,z+Bp+
e =
ylm—(a-5B'c - 5Br)p—(A,z)p-.5p'Bp-1-.5r'Br+a'r+ (A,z)7)]

(3.1.14)
with 7=[1 . . .1]’, a column vector of ones. This can be rewritten as

e=P{a+A,z+Bp +;/[m -a'p-(A,z)p-.5p'Bp —5(1)] (3.1.15)
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where & = a — Br under symmetry and & = —.5B'z—.5B7 in the unrestricted model
andS(z)=1+.50'Br—a't —(A,z)'r is a specific function of the other parameters and
the demographic variables. This reparameterization of the model shows that the
generalized PIGL with « = A = 1 is the same model as the original LinQuad demand
model. Slight adjustments take place at all levels of the theoretical restrictions as a result
of the added demographic terms in 3(z). In the unrestricted model, where B is not
necessarily symmetric, the reparameterization of & implies an averaging of the off-
diagonal terms, .5(B;; +B;;). The overall effect of this will be small as long as the y; terms
are small. The generalized PIGL form remains a consistent specification of the
normalized and transformed expenditure function across the Box-Cox transformation of
the price and income variaf)les. |

The term, 8(z), which was left unidentified in earlier specifications like the
PIGLOG model but is explicitly defined as a function of parameters and variables in the
LinQuad version of the generalized PIGL model is an interesting parameter even outside
this transformed specification. This parameter is an arbitrary real-valued function of z
held in common by demand systems derived from the expenditure function. It is constant
with respect to p so enters into the demands only when the expenditure function is solved

for O(q,u,z)e’”? and substituted into the demands. For the generalized PIGL form, it

would amount to a summation of 8(z) parameters on the demographic variables included

in z. (including a constant) that enters the parenthetical income component of the model.
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Since they enter the model.only throﬁgh the income component held in common by all of
the equations these parameters could have the intuitive interpretation of system-wide
demographic and income (from the constant) effects. Empirical difficulty estimating
these parameters in the AIDS model has led researchers to set them equal to zero, a
priori. Estimating the original LinQuad demand system, a similar approach had to be
taken with all 8(z) parameters.

In LaFrance (1998a), where the LinQuad expenditure function is shown to be
both necessary and sufficient for demands linear in income and linear and quadratic in
prices, there is an important corollary finding regarding 9(z). A critical
reparameterization in that work indicates that for the PIGLOG form of the LinQuad
expenditure function, 8o, the intercept component of 8(z), is empirically unidentified.
This justifies the common practice of setting the parameter to zero. The parameters
associated with the demographic variables also appear to be empirically unidentified.
Use of the generalized PIGL form of LinQuad forces a consistent treatment of d(z)
throughout the Box-Cox transformation of variables from logarithmic to linear. For the
PIGLOG form of the generalized PIGL, all 5(z) parameters are set to zero for the purpose
of estimation. As k and A increase from zero to one, the elements of &(z) takes on
specific values as a result of the reparamaterization that uniquely identify this term as a

function of all of the other parameters.
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3.2 Welfare Measures for LinQuad

One of the most useful properties of the LinQuad quasi-expenditure function is its
complete characterization of the included goods with regards to prices and income. This
result from the duality theory of incomplete demand systems allows exact welfare
measures to be obtained from the quasi-indirect utility function (LaFrance 1991b). This
is easily done and superior to depending on consumer surplus as an estimate of welfare
measures. Consumer surplus is not an exact measure of welfare. Provided it has a
unique solution, it is only an approximation bounded by equivalent variation (ev) and
compensating variation (cv). It is only equal to ev and cv when income effects on
demands are zero. With the ease of using direct welfare under the circumstances, there is
no reason to work with consumer surplus.

For the generalized PIGL form of LinQuad, ev and cv are derived as follows.
Remember the quasi indirect utility function @(p,q,z,m) is derived by setting the quasi-
expenditure function, £(p,q,z,0), equal to m and inverting with respect to 6. 0(q,z,u) is
the monotonic transformation of u containing the information regarding other goods that
is not available in the incémplete deﬁand system. 6(q,z,u) allows the definition of a set
of expenditure functions that are sufficient to define the preference map of the subset of
goods in which we are interested. Inverting produces the function 8 = ¢(p,q,z,m). This

is related to the indirect utility function, v(p,q,z,m) by

v(p,q,2,m)=y[q,Z,0(p,q,z,m)] (3.2.1)
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where y[q,0] = u, is the inverse of 8(q,z,u) with respect to u. (3.2.1) clearly shows that
the quasi-indirect utility fuhction cohtains all the information available regarding prices,
p, of goods included in the demand system and income, m. Thus, all compensated
changes in prices are fully contained in o(p,qsz,m). This is a particularly important result
in light of the biased welfare measures produced by separable demand specifications.
Because all information relating to income is found in the quasi-indirect utility function,
the proper welfare measures as they relates to income, as opposed to subgroup
expenditure, can be derived.

Equivalent variation, is the change in income that would produce the equivalent
change in utility as the price change,
(p(po,q,z,m+ev) = (p(pl,q,z,m). , (3.22)
Compensating variation, the compensating change in income needed to reestablish
original utility levels after a price change has taken place, can be defined by
o(p°,qsz,m) = o(p',q.z,m-cv). (3.2.3)
The generalized PIGL transforms income through the Box-Cox transformation. Welfare
measures have the same units as income so must be inside the Box-Cox transformation. It
is argued that ev is a better measure for policy analysis because it allows comparison
starting from the same baseline of p’. The derivation of the two measures is almost

identical so only ev will be derived.
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To derive ev for the generalized PIGL form of LinQuad functional form, the
normalized and transformed expenditure function must be inverted with respect to 0 after
being set equal to income, m.
o(p,q,2,m) = [m(x) ~p(A) & — p(1)' A,z — .5p(2) Bp(A) ~ 8 ()}’ " (3.2.4)

The ev identity becomes
{—————(’" L 1} — & p(2)o ~P(A)y' Az~ 5P(A), BR(A), - 5(z)}e‘7'f’° -
{{(_@;——_ljl —a'p(d), —pA),'A,z~ Sp(4),'Bp(4), - é‘(z)}e_ylpl

(3.2.5)
where p(}) is still a vector of Box-Cox transformed prices whether before or after the
price change. After isolating ev, the welfare measure is expressed

1
B { Klm() - a'p(), ~p(2),"A - 5p(2), BR(A), -5 T
~x[-a'p(), ~p(A),'A g~ 5P(2),"BR(A), ~5(a)]-
(3.2.6)
By deriving exact welfare measures with transformed income and prices,
comparisons can be made between LinQuad, PIGLOG and the optimal generalized PIGL
model, which should fall between the others with respect to (k,A). The most important
aspect of ev to compare across the functional forms is deadweight loss. Deadweight loss

equals the remainder of ev after net transfers are removed. This is the measurement of
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greatest importance to policy analysis as it indicates the specific monetary losses of

policy induced inefficiencies.

3.3 The Econometric Model
3.3.1 Choice of Left-Hand Side Variable

For the sake of econometric estimation, an error term is appended to each demand
equation. A system of five equations of the form
=y + 3 By 0 ), 1) - 2, p), - ST, X, 8,0, ), P

(3.3.1)

is estimated, where uy =[uy, . . ,us] is assumed to be distributed N(O, ). The Box-Cox
transformed PIGL specification as well as the PIGL and Linear versions of LinQuad can
all be estimated with quantity, expenditure or budget share as the left-hand side variable.
In the incomplete specification, budget shares have the disadvantage of being extremely
small. Estimating with quantity as a left-hand side variable, on the other hand, implies a
heteroscedastic Z-matrix.

The heteroscedasticity is evident if we consider the adding-up condition for the

incomplete specification, -
m=s+y px, (33.2)

where m is income and s is expenditure on all other goods. For an estimated system of

demands, error terms should be included,
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m= f(s)+u, +y pX + Pl (3.3.3)
where f(s) is estimated expenditure on other goods and u is the error term for expenditure
on other goods. Adding up implies that the price-weighted, mean levels of the estimated
demands along with expenditure on other goods add up to income. This leaves the price-
weighted errors and expenditure residual from f(s) adding to zero,

O=u, +Zip,.u,. (3.3.4)
Clearly, the adding up condition makes this complete system singular necessitating the
dropping of an equation for the purposes of estimation. More importantly, the adding up
condition implies

u,=—y pu;=-u'p (3.3.5)
Taking the variance of both sides,

Var(us) = p’2p, (3.3.6)
where ¥ is the variance-covariance matrix for the demands. Suppose that the variance of
u, is assumed constant. With p varying through the sample, the assumption of a constant
¥ is impossible unless it is zero. This implies heteroscedasticity in X.

This result is an argument fof the use of deflated expenditure as the left-hand side
variable. This is achieved by simply multiplying both sides of each equation by its
corresponding price. Returning to the budget identity, it is apparent how this approach
avoids this source of heteroscedasticity. Now the adding up condition appears

mEZ,-ei +s 3.3.7)
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where ¢; is deflated expenditure. If error terms were included they would no longer be
price-weighted, thus,

Varfu,] =1’2r, (3.3.8)
where 7T is again a vector of ones. This solution provides a logical rationale for choice of

left-hand side variable.

3.3.2 Demographic Variables and Other Prices

The generalized PIGL form in all of its specifications allows the inclusion of
demographic variables and specific other prices. These variables serve two purposes.
First, in time series estimation, trends in population composition, both with regards to age
and ethnicity, have an effect on the observed demand behavior. Inclusion of variables
relating to age and ethnicity allow for the explicit accounting of variation due to these
factors. The vector z is a vector of these variables. The matrix A, is the matrix of
coefficients that captures the effects. In this estimation, population mean, variance and
skew have been included to capture the effects of such demographic phenomena as the
post WW-II baby boom,‘ increased longevity and decreasing birthrates. Ethnicity
variables that indicate percentage of population in various ethnic groups track changes in
the ethnic composition of the country. Explicitly accounting for these variables improves
the fit of the model and lessens potential bias resulting from omitted variables.

Second, other prices can also be included in the vector z and estimated as shift

parameters. This is where complements and substitutes not included in the subgroup
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being estimated can be included. This allows other goods to be included in the estimation
without making the overall size of the system untenable. In this research, for the sake of

simplicity, no other prices were included.

3.3.3 The Problem of Serial Correlation

In all time series econometrics, the potential problem of serial correlation must be
addressed. Because the purpose of this thesis is comparing functional forms, serial
correlation is addressed in two different ways. First, a reasonable effort is made to
account for serial correlation through model specification. Second, remaining serial
correlation is measured to compare across the different forms of the generalized PIGL
model.

To account for some of the serial correlation, lagged quantity demanded is
included on the right-hand side of the demand equations in vector q along with the
demographic variables. This approach allows the model to explicitly account for
variation due to lagged demand. The coefficients on these lagged variables are invariably
highly significant indicating the necessity of their inclusion.

Beyond this basic incorporation of lagged demand, it is more important to
determine how the different models under consideration perform with respect to serial
correlation. A convenient way to do this in a system of demands is with a Prais-Winston
auto-correlation coefficient. This is a single coefficient for all of the equations estimated

in a system of equations, based on the demand equation residuals of the form:
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ul = S(1=r2)u, +(1-8)u, —rlu, (D]} (3.3.9)
where & =1 in the first year of the sample and zero elsewhere, 1 is the coefficient being
estimated, u; is the residual from equation i of the demand system, u;(-1) is that same
residual lagged one period and u;” is the resulting Prais-Winston-corrected residual. The

Prais-Winston procedure is similar to the Cochrane-Orcutt procedure in that it measures
first-degree autocorrelation, or the degree to which unexplained right-hand side variation
is determined by the left-hand side variable lagged one period. The advantage of the
Prais-Winston procedure is the explicit inclusion of the first sample year in the
estimation. The coefficient varies between zero and one, with numbers closer to zero
indicating less serial correlation.

These coefficients are not tests of serial correlation but give an indication of the
magnitude of the auto-correlation coefficient that would arise if the whole demand
system were estimated under the Prais-Winston procedure. A major concern in demand
estimation of this kind is what happens as theoretical restrictions are imposed.
Theoretical restrictions generally increase autocorrelation problems. The Prais-Winston
autocorrelation coefficient allows us to compare the effect of imposed theoretical
restrictions on the extent of the presence of autocorrelation within each functional form at

the same time as we compare across the forms.
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3.3.4 Choice of Estimation Technique

Systems of equations like AIDS and LinQuad are usually estimated using either
maximum-likelihood (ML) or iterative seemingly unrelated regressions techniques
(ITSUR). With the AIDS model the motivation is clear. Dropping one of the subgroup
demand equations is necessary to avoid a singular variance-covariance matrix. These
two estimators provide results invariant to which equation is dropped. This motivation is
not relevant for incomplete demand systems. An incomplete demand system
encompasses all goods but the demand equation for all non-subgroup goods is always
disregarded. Thus, in the system to be estimated, there is not a singular variance-
covariance matrix.

Seemingly unrelated regressions (SUR) technique, with only one iteration on the
variance-covariance matrix, produces consistent, efficient and asymptotically normal
parameter estimates while avoiding potential difficulties inherent in ITSUR and ML
methods. Both Deaton and Muellbauer (1980a) and LaFrance (1997) point out that
ITSUR and ML can overfit an equation in systems of equations like LinQuad with a large
number of parameters shared across equations.

For this thesis, parameters will be estimated with SUR estimation techniques in
the statistical package TSP (Hall 1996). One graph will be created using ITSUR because
it is convenient to compare likelihood functions across specifications and the visual

representation is extremely helpful in organizing the results. The difference in point
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estimates and standard errors between SUR and iterative-SUR are quite small. Other

than the graph, all results will be derived using SUR techniques.

3.3.5 Lagrange Multiplier Based F-Test

There are three commonly used tests for joint restrictions on an econometric
model: the Wald, likelihood ratio (LR) and Lagrange multiplier (LM). In large demand
models such as this, all three are known to over-reject a true null (Laitinen 1978, Meisner
1970; and Bera, Byron, and Jarque 1981). Of these asymptotic x?* tests, the Wald test is
the most likely to reject a true null while LM is least likely to reject. LaFrance (1997)
has developed an approximate F-test based on the LM test that partially corrects this
tendency to over-reject.

In SUR estimation, first round residuals are used to estimate a variance—

covariance matrix for the system. If the estimate of  is C, then the least squares criterion

for the second round of estimation is to minimize:
4 1

()= u' ¢y, (3.3.10)
t=1

where uy is the equation residual, i indicates the equation and t the sample year. The F-

test uses the least square criterions from both restricted and unrestricted models. Using a

“A” ¢4 indicate the unrestricted least square criterion and £ matrix, gives us §(£‘ ). Using

“_” to indicate the restricted least square criterion and £ matrix gives us is 5(%). Where

the F-test is unusual is in its use of a mixed sum of squares, using residuals from the
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unrestricted model but the £ matrix from the restricted model. This mixed sum of
squares is represented: $(Z). The F-statistic is

F&-3)/G
$(C)/NT - K)

F(G,NT-K)= (3.3.11)

where G is the number of restrictions, N the number of equations and K the number of
parameters. Use of the restricted X matrix in the numerator guarantees a positive test
statistic. The numerator converges in distribution to a x*(G)/G random variable. Under
normality of the residuals, the denominator converges in distribution to a x> (NT-K)/(NT-
K). This F-statistic provides a test of restrictions that is better suited to the kind of model

being estimated with the number of restrictions being imposed.

3.3.6 Imposition of Symmetry Restrictions

One set of theoretical restrictions commonly tested in applied demand analysis is
the symmetry restrictions. Most functional forms have some way of restricting the
estimated model such that symmetry of the off-diagonal elements of the Slutsky matrix
will be maintained. Hypothesis testing establishes whether the restricted model is
statistically similar to the original, unrestricted model. Since symmetry is one of the
basic theoretical requirements of demand systems, not rejecting symmetry restrictions
strengthens the model’s explanatory validity. Many models do not make it over even this

hurdle.
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Imposition of symmetry on the generalized PIGL form of LinQuad is not difficult.
Further differentiation of the Box-Cox transformed demands (3.1.12) reveals the Slutsky

matrix for the generalized PIGL model, in a convenient form,

m<pA %PH =B+ [m(ic) —a'p(A)-A,'p(1)-.5p(1)Bp(L) - 3, }yy'
+m P71 - x)ww' - (1- H)WP*

(3.3.12)

2
where 0 am' =S 1is the Slutsky matrix. It is unnecessary to isolate S because, for all x
Y

and A, m*" and P are positive and only scale the Slutsky matrix while having no effect
on either symmetry or concavity considerations.

Close consideration of the right-hand side of (3.3.12) reveals that symmetry of the
Slutsky matrix is completely determined by the symmetry of B. Symmetry restrictions
are simply B;; = B;i. In this five equation system this amounts to ten linear restrictions on

the parameters. Estimating the restricted system is straightforward.

3.3.7 Concavity Restrictions
The last restriction to impose on the demand system is quasi-concavity. This is
done by imposing negative semidefiniteness on the Slutsky matrix. Quasi-concavity is
the final property of integrable demand equations and allows the theoretically consistent
return to the normalized and transformed expenditure function using the estimated

parameters of the demand functions. The exact welfare measures that make the
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generalized PIGL model so attractive are derived from this expenditure function. This is
the practical crux of integrability.

Negative semidefiniteness of the Slutsky matrix can be imposed on the
generalized PIGL form of LinQuad for all sample points. Further consideration of the
right-hand side of the Slutsky matrix equation (3.3.12) reveals that the two components
other than B are quite small. The income parameters (Y) are small, as are the budget
shares (w). In fact, for « = A = 1, the last component drops out completely. If B is
restricted to being sufficiently negative definite for all sample points, then negative
semidefiniteness of the Slutsky matrix is guaranteed. The positive semidefinite influence
of the second component, with m(x) in it, is largely determined by the size of this income
variable. The last year in the sample; 1995 has the largest income and therefore produces
the largest influence. Imposing negative semidefiniteness using 1995 levels assures
quasi-concavity of the demand system for all sample points.

The imposition of quasi-concavity is achieved with a Choleski factorization of the

scaled Slutsky matrix,

) azm

opop'

m<'P! P =-LL/ (3.3.13)

where L is a lower triangular 5x5 matrix, -LL’ is symmetric and negative semidefinite. It
has 15 unknown parameters, the same number of unknown parameters as a symmetric B
matrix. Substituting this negative semidefinite representation of the scaled S back into

the Slutsky equation we get,
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LU= B+ f(x)- a'p(2) - A, 'p(A) - 5p) BBV -5, [y’
+m P [(1 —x)ww'—(1- /I)VVIP_/I

(3.3.14)
Evaluated at any particular sample point, the last component of (3.3.13) is a constant and
independent of B. The income index term,
[m(c) —a'p(1) - A, 'p(1)-.5p(A) Bp(A) - 8, | = Fi(x) (33.15)
however, varies with B. Evaluating 7i(x) at 1995 levels of prices and income along with
all the parameter estimates from the symmetry restricted model we get,
B = —LL'-#(x)yy'—m P> [1 - c)ww’' — (1- HW]P*. (3.3.16)
B is thereby reparameterized in terms that force quasi-concavity onto the model as a
whole. rTz(K) depends on B so it is necessary to iterate on rTz(x), updating the parameter
values that define it and then re-estimating the parameter values, until it converges. This
iterative process generally took fewer than five iterations in this study. Parameters
estimated in this fashion are known to be consistent but not efficient because the
interaction between #i(x’) and the other parameters is ignored at each iteration of the
estimation procedure. Consistent estimates of the covariance matrix for the parameters
are obtained by evaluating the empirical information matrix at the final consistent,
symmetry and concavity restricted point estimates of the structural parameters.

The Slutsky matrix for the LinQuad has three negative eigen values. The
PIGLOG version only has one negative value. The 3 negative eigen values indicate

negative semidefiniteness in only three dimensions for LinQuad, one dimension for the
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PIGLOG form. This determines the number of parameter restrictions on L necessary to
estimate the concave version of the model. It also determines the rank of the Slutsky
matrix. Restricting s, lss, and Iss to zero limits LL' to a factorization in three dimensions.
Where there are positive eigen values there will be no information that can enrich a
negative semidefinite representation of the matrix. With out these restrictions TSP will
try to identify these last two dimensions indefinitely. An LM based F-test of the further
restrictions of J3, /34 and /s has a p-value of .9845 indicating that while these parameters
can be identified there is nothing to be gained statistically by their inclusion. This makes
intuitive sense. The third negative eigen value for the LinQuad model is close to zero
and of a magnitude much smaller than the other two negative eigen values. Thus, the
LinQuad model is estimated with 6 additional restrictions, L33, laa, Is3s, laa, Lus, and Iss, over
and above the ten symmetry restrictions already imposed.

The PIGLOG model must be estimated as a rank one Slutsky matrix. This means
only 1, ha, hs, 1s and [;s are identified. ThelO additional zero restrictions on l; and the
rest, below and to the right, are necessary for the concave version. That the Slutsky
matrix for the PIGLOG model is rank one in its negative semidefinite representation is an

early sign of the limited explanatory power of this model.

3.3.8 Data
The data set for this research consists of annual time series observations from

1919 to 1995. Per capita consumption of the five dairy categories (milk, butter, cheese,
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frozen and other), and their average retail prices were constructed from several USDA
and Bureau of Labor Statistics (BLS) sources. To get a consistent series of disaggregate
retail prices per pound a baseline was established with detailed price estimates from 1967
combined with their corresponding quantity observations. — Then, using either
disaggregate consumer price indices or average retail food prices, the full series of retail
prices was constructed for each category. The nonfood consumer price index is used as a
general deflator for all prices and income.

Demographic variables included in this research come from the Bureau of Census.
They include the first three moments (mean, variance and skewness) of the empirical age
distribution for the U.S. population. FEthnicity variables track the proportion of the
population that is black or neither white nor black. The variable for white population is
dropped to avoid a singulalrity. Finally, income is per capita disposable income, and also
comes from the Bureau of Census. All data used and data sources are included in

appendix A.
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CHAPTER FOUR
ESTIMATION RESULTS
4.1 Demand System Results

There are a variety of results of interest in this research. For the estimation of the
demand system, there are two different kinds of restrictions being imposed on the model.
The generalized PIGL model varies from LinQuad to the PIGLOG specification as (k)
vary from (1,1) to (0,0).. Restric’gions on ¥ and A allow nested tests of these two
specifications. Meanwhile, the imposition of symmetry, concavity and joint symmetry
and concavity’ are testable hypotheses for the LinQuad, PIGLOG and optimal
generalized PIGL model. Finally, there is added information on the serial correlation
characteristics of each specification.

There is a convenient way of organizing the results with this functional form. In
the Box-Cox transformation, ¥ and A determine the degree of curvature in the variable.
In the generalized PIGL form, the amount of curvature preferred by the prices is
independent of the curvature preferred by the income variable. A single restriction, that x
= ), forces the model to determine the optimal degree of curvature for both prices and
income, jointly. This is a testable hypothesis for all three levels of the theoretical

restrictions. Results are in Table 4.1. « = A is clearly not rejected by the data. A p-value

! Symmetry is a necessary condition for the imposition of concavity. When concavity restrictions are
discussed, symmetry is thus assumed. An important distinction exists, however, when restrictions are
tested. Joint imposition of symmetry and concavity is a different test than testing the imposition of
concavity conditional on symmetry.
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Table 4.1 Generalized PIGL Form: Test for x = A
F-Statistic P-Value
Unrestricted F(1,318) 0.003363 0.953789
Symmetric  F(1,328) 0.003579 0.952331
Concave F(1,334) 0.917864 0.338729

as low as .05 would be acceptable.

The simplification .allowed By setting k¥ = A facilitates a general introduction to
the results of the generalized PIGL functional form. Specifically, setting x = A allows a
two-dimensional graph of the log-likelihoods of all three levels of theoretical restrictions
as k = A varies from 0 to 1. This visual representation, Figure 4.1, helps to organize the
remaining statistical results.

Figure 4.1 is based on iterative SUR results because of the ease of comparing the
log-likelihood function values. The chart is bounded by x = A=0 on the left, the AIDS-
like PIGLOG form, and x = A=1 on the right, the LinQuad form. The optimal values for
x = A are indicated by the vertical lines corresponding with the apexes of the parabolas.

There are two different sets of test results to report. First we will look at each of
the three forms carefully so as to fully understand the characteristics of each one. This
will involve reviewing the Prais-Winston autocorrelation coefficients for all of the
theoretical restrictions within each specification and then testing those restrictions. With
regards to the theoretical restrictions, the null hypothesis is that the restricted model is

still the same model as the unrestricted model. The visual representation of these tests is



Figure 4.1, The Generalized PIGL Demand Model,
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a comparison of the vertical distance between the lines representing different levels of
restriction at ¥ = A =0, k = A=1 and optimal x = A. As is indicated by the graph, the
different model specifications have varying degrees of success with the theoretical
restrictions.

The second set of tests compares across the different specifications. It is possible
to use the nested generalized PIGL form to directly compare all three versions of the
LinQuad and PIGLOG specifications to the results with optimal x and A and optimal x =
A If a LR test was used this would involve comparing the optimal log-likelihood at the
apex of each parabola to the log-likelihoods at x = A =0 and x = A=1. There is the
question of which form has the highest log likelihood, and whether either the PIGLOG

specification or LinQuad is statistically indistinguishable from the optimal model.

4.1.1 Generalized PIGL Form
The optimal generalized PIGL form with k = A is represented by the apex of each
of the three parabolas in Figure 4.1. A three dimensional map would allow us to view
three versions of the generalized PIGL where « and A are unrestricted.
Prais-Winston coefficients for the generalized PIGL model unrestricted with
respect to x and A are in Table 4.2, while coefficients for the model with x = A

restrictions are in Table 4.3. The Prais-Winston coefficients are small and stay small
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Table 4.2 Prais-Winston Coefficients, Optimal PIGL Model,
x and A Unrestricted

Coefficient Standard Error  T-Statistic

Unrestricted 0.102737 0.051523 1.99399
Symmetry-Restricted  0.111731 0.052331 2.13507
Concavity-Restricted ~ 0.096388 0.052165 1.84777

Table 4.3 Prais-Winston Coefficients, Optimal PIGL Model, x = A

Coefficient Standard error T-Statistic
Unrestricted 0.058707 0.053861 1.08997
Symmetry-Restricted  0.094596 0.052311 1.80833
Concavity-Restricted  0.100112 0.052105 1.92133

with the imposition of theoretical restrictions. With x and A free to estimate separately,
the coefficient actually decreases with the imposition of concavity restrictions. What
constitutes a small and reasonable coefficient is not the focus of this research. T-statistics
indicate that all three coefficients in the ¥ = A model are not statistically different from
zero. This gives some indication that in this generalized PIGL model that autocorrelation
is largely accounted for by the inclusion of lagged demand as a right-hand side variable.
Most importantly, these autocorrelation coefficients provide a benchmark with which to
compare the PIGLOG and LinQuad forms of the generalized PIGL model.

4.1.1.1 Tests on Theoretical Restrictions

The generalized PIGL form also provides a benchmark for comparing the effect
of theoretical restrictions on the performance of the models in a more general sense.

With these models, theoretical restrictions are testable hypotheses. The null hypothesis is
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that the restricted model is the same model as the unrestricted model. The restrictions

lessen the flexibility of the model to fit the data by requiring the model to perform in a

manner that is theoretically consistent. What the unrestricted model offers in flexibility

to fit the data the restricted models counter with theoretical consistency. If the models are

found to be statistically indistinguishable the implication is that theoretical assumptions

are consistent with the data as expressed through the functional form.

Imposition of symmetry is a frequently tested restriction and under many

circumstances is not rejected. If a restriction like symmetry is rejected it is common to

lay the blame on the functional form rather than question basic economic theory. This is

why the effect of theoretical restrictions on a functional form becomes an important point

of comparison between functional forms.

Table 4.4 Tests on Theoretical Restrictions, Optimal PIGL Form,
¥ and A Unrestricted

F-Statistic P-Value
Unrestricted v. Symmetry F(10,318) 1.714394 0.076465
Unrestricted v. Concave  F(16,318) 1.526865 0.088431
Symmetry v. Concave F(6,328) 1.397798 0.214799

Table 4.5 Tests on Theoretical Restrictions, Optimal PIGL Form, x = A

F-Statistic P-Value
Unrestricted v. Symmetry F(10,319) 176224 0.066641
Unrestricted v. Concave  F(16,319)  1.60206  0.066542
Symmetry v. Concave F(6,329) 1.54477 0.162862
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The results from the LM-based F tests derived from non-iterated SUR results for
both forms of the generalized PIGL form are in Table 4.4 and Table 4.5. As indicated,
the tests reflect the imposition of symmetry on the unrestricted model, the joint
imposition of symmetry and concavity on the unrestricted model and the imposition of
concavity on the symmetry restricted model. P-values indicate that not a single test can
be rejected at the 5% level of significance. Interestingly, the additional imposition of
concavity on the unrestricted model lessens the likelihood of rejection in the first model
where k and ) are unrestricted and has almost no effect in the second model. Imposition
of concavity on the symmetry-restricted model is not rejected at the 21% and 16% level
of significance, respectively.

These are extremely strong results. Non-rejection of concavity restrictions
imposed over all sample points is almost unheard of in the economics literature. This
functional form allows for the estimation of demand parameters under strict theoretically
consistent constraints. This is both an exciting result with regards to demand estimation
and also a strong argument for the use of exact welfare measures that require this

theoretical consistency.

4.1.2 PIGLOG Form Results
The primary usefulness of the generalized PIGL functional form is that it nests
both the PIGLOG and LinQuad specifications. This allows for direct comparison of

these two specifications to the optimal generalized PIGL model results just reported. At
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this point the differences are not being tested statistically but statistical results within
each specification can be compared to get an indication of relative performance.
Returning to Figure 4.1, these tests are vertically oriented within each specification, at
zero, one and the vertical lines corresponding with the optimal generalized PIGL model
results. The relationships within each model can be tested statistically and the results
compared across the three different specifications. Statistical tests of relationships across
the three specifications will be discussed in a later section.

The Prais-Winston autocorrelation coefficient for the PIGLOG specification
indicates a dramatic increase in the presence of autocorrelation. At all three levels of
restrictions, the coefficient is large and highly significant. Though the magnitude of the

Table 4.6 Prais-Winston Coefficients, PIGLOG Form (x = A =0)

Coefficient Standard Error  T-Statistic

Unrestricted 0.620098 0.053228 11.6498
Symmetry-Restricted  0.555373 0.054244 10.2385
Concavity-Restricted ~ 0.382269 0.032167 11.884

coefficient falls with the imposition of restrictions it still indicates a serious problem with
autocorrelation. The smallest coefficient of the PIGLOG specification, the concavity
restricted version, has an autocorrelation coefficient more than 3 times larger than the
largest coefficient of both generalized PIGL models. Coefficients of this size could not

be ignored in a demand system estimation process.
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4.1.2.1 Tests of Theoretical Restrictions
Tests on the imposition of theoretical restrictions on the PIGLOG specification do
not exhibit the positive results found in the optimal generalized PIGL model. In the

Table 4.7 Tests of Theoretical Restrictions, PIGLOG Form (x = A =0)

E-Statistic P-Value
Unrestricted v. Symmetry - F(10,320) 2.593881 0.004891
Unrestricted v. Concave  F(20,320) 4.138038 2.14E-08
Symmetry v. Concave F(10,330) 7.423184 1.2E-10

results in Table 4.7, symmetry restrictions are narrowly rejected at the 1% significance
level. The addition of concavity restrictions, either jointly with symmetry restrictions or
conditional on symmetry restrictions, drops P-values effectively to zero. Concavity can
be imposed on the PIGLOG specification but it is no longer the same model. This

indicates a weakness in this functional specification.

4.1.3 LinQuad Results
As the visual map (Figure 4.1) indicates, the results for LinQuad should be closer
to the results generated for the optimal PIGL specification. In fact, LinQuad results do

have most of the desirable characteristics of the optimal generalized PIGL results.

Table 4.8 Prais-Winston Coefficients, LinQuad From (x = A =1)

Coefficient Standard Error  T-Statistic
Unrestricted 0.106286 0.052414 2.02782
Symmetry-Restricted  0.108786 0.0524 2.07609
Concavity-Restricted 0.12509 0.051537 242718
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The Prais-Winston coefficents for the three levels of restrictions in LinQuad are
reported in Table 4.8. The magnitude of these coefficients is quite small. While larger
than the Prais-Winston coefficients from both optimal generalized PIGL models in all but
one case, and similarly more significant, the differences are modest. The differences are
particularly small when compared to the Prais-Winston coefficients for the PIGLOG
specification. The best autocorrelation coefficient from the PIGLOG specification, from
the concavity restricted version, is still more than three times the size of the largest Prais-
Winston coefficient from Linquad. With regards to autocorrelation, LinQuad clearly out

performs the PIGLOG specification.

4.1.3.1 Tests of Theoretical Restrictions

The results from tests of the imposition of theoretical restrictions on LinQuad fall
between the optimal generalized PIGL models and the PIGLOG specification. As the
visual map indicates, the results are much closer to those of the optimal generalized PIGL
specification. The results are in Table 4.9.

Table 4.9 Tests of Theoretical Restrictions, LinQuad Form (x = A =1)

F-Statistic P-Value
Unrestricted v. Symmetry F(10,320) 1.547145 0.121616
Unrestricted v. Concave  F(16,320) 1.899994 0.019797
Symmetry v. Concave F(6,330) 2.755366 0.012578

Imposition of symmetry restrictions is not rejected at the 12% significance level.
Joint concavity and symmetry restrictions and concavity restrictions conditional on

symmetry are not rejected at the 1% significance level. While these results are not as
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strong as for the generalized PIGL model, they are far superior to the PIGLOG
specification, and represent a substantial degree of success with regards to the estimation

of a theoretically consistent model.

4.1.4 Testing the Optimal PIGL Versus the PIGLOG Form

The statistical tests that take full advantage of the nested relationship of the three
functional forms focus on the parameters, k and A. The PIGLOG and LinQuad forms
result from testable restricfions on K and A. Starting from the fully generalized PIGL
form, where k and A are both free to estimate, both PIGLOG and LinQuad forms result
from two parameter restrictions limiting k = A =0 and k = A =1, respectively. If already
restricted by k = A, as in the visual representation above, then both PIGLOG and
LinQuad forms result from a single further restriction. Tests of these restrictions are
designed to determine whether either the PIGLOG or LinQuad forms can be considered
statistically indistinguishable from either of the generalized PIGL forms.

Using the LM-based F-test, the PIGLOG form, when k = A =0, is soundly rej ected
at all three levels of theoretical restrictions. Results for the test are in Table 4.10. The P-
values for every test are effectively zero. There are a variety of single parameter Z-test
that can be performed on these restrictions. All Z-tests on restrictions at all three levels
of theoretical restrictions return P-values effectively equal to zero. Which Z-tests are

performed can be seen in the LinQuad section where results are more interesting.
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Table 4.10 Optimal PIGL v. PIGLOG(AIDS)

x and A Unrestricted v. k = A =0 k=Av.k=A=0
F-Statistic P-Value F-Statistic P-Value
Unrestricted F(2,318) 52.20877 2.47E-20 F(1,319) 103.7337 2.8E-21
Symmetric F(2,328) 18.81856 1.83E-08 F(1,329) 22.46509 3.19E-06
Concave F(6,334) 23.99873 1.33E-23 F(5,335) 28.82241 2.6E-24

4.1.5 Testing Optimal PIGL Versus the LinQuad Form

The same statisticql tests, qsed above with the PIGLOG form, bear out the
proximity of Linquad to the generalized PIGL. Results are in the Table 4.11. As the
visual representation indicates, the optimal generalized PIGL (x = A ) with symmetry
restrictions imposed, is the closest to the LinQuad form. A P-value of .4864 shows a
substantial failure to reject the null hypothesis that LinQuad with symmetry restrictions is
the same model as the relevant PIGL model. However, with both concavity and
symmetry imposed, the null hypothesis that LinQuad is the same as the optimal
generalized PIGL form is soundly rejected.

Table 4.11 Optimal PIGL v. LinQuad, Test of x = A =1 Restriction Using LM F-Test

kx and A Unrestricted v. k = A =1 k=Av.k=A=1
F-Statistic P-Value F-Statistic P-Value
Unrestricted  f(2,318) 1.971776- 0. 140908 F(1,319) 3.95 1766 0.047677
Symmetric F(2,328) 0.442137 0.643044 F(1,329) 0.485563 0.486405

Concave F(2,334) 5.698428 0.003685 F(1,335) 10.28397 0.001471
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The results above are reiterated by the variety of single parameter z-tests that can
be done testing whether «, A or k¥ = A=xA equals one. The tests are essentially T-tests but
since the model is non-linear, not to mention the large number of degrees of freedom, we
must appeal to asymptotic theory and use the standard normal distribution.

Table 4.12 LinQuad v. Optimal PIGL, Tests of x =1 and A =1

Z-Statistic P-Value

Unrestricted k=1 -2.89882 ° 0.003746
=1 -0.68083 0.495982
Symmetry k=1 -1.97389 0.048394

A=1 0.231633 0.816823

Concavity k=1 -2.74643  0.006025
A=1 -2.38025 0.017301

The results in Table 4.12 show the results of tests when x and A are estimated
separately. P-values reflect results from the earlier F-tests but decompose the effects into
the two variables. A, the variable that transforms the prices, has a lower probability of
rejection than « in every case. For the Concavity restricted model, A=1 no longer has the
high P-value found at the other leevels of restriction. A=1 is not rejected at 1%
significance, but the change explains why when considered jointly with x, LinQuad is
soundly rejected in the concavity restricted model.

When the model is estimated with k = A=xA, similar tests can be performed on the
single parameter ()) that transforms both prices and income. These results mirror the

results of the F-tests in Table 4.11 except that there is a much higher tendency to reject
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the null. A Z-test of this sort is the square-root of a Wald test of a single restriction. The
Wald test’s tendency to over-reject the null was the motivation behind the LM-based F-
test discussed above and therefore we should interpret these results rather cautiously.

Table 4.13 LinQuad v. Optimal PIGL Tests of k = A=kA=1

Z-Statistic P-Value
Unrestricted xA=1 -2.88304 0.003939
Symmetry ¥A=1 -2.01354 0.044058
Concavity kA=1 -3.05356  0.002262

One final set of results puts both the PIGLOG and LinQuad results in
perspective. Using the above single-parameter Z-statistics, 95% confidence intervals for
k, A or kA can be constructed. The results, once again, leave little doubt as to the
superiority of LinQuad over the PIGLOG specification. Another interesting result that is
evident throughout all of the tests but is particularly clear in this set of confidence

intervals is the relationship between the joint kA parameter and the separate k¥ and A

parameters. K clearly dominates in the joint kA parameter.

Table 4.14 95% Confidence Intervals in Optimal Generalized PIGL Model
for x, A, and xA

Unrestricted e 0.858541| to | 0.985659
0.808450| to | 1.087224
kA |10.858603| to | 0.983883
Symmetry k |0.884394| to | 1.004002
A |0.879854| to | 1.149206
kA 10.885214| to |0.998454
Concavity k¥ |0.860702| to |0.976518
A |0.775747| to | 0.964675
kA |0.853468 | to |0.962996

>




4.1.6 Price Elasticities for All Three Models
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Income compensated price elasticities are easily calculated from the Slutsky

matrix. The Slutsky matrix combines the price effects with the income effects in one

measure.

They can be made into elasticites by transforming each element by its

corresponding ratio of price and demand. The elasticites in Tables 4.14, 4.15 and 4.16

are calculated from the Slutsky matrix of the concavity restricted model. These examples

give another indication of how different from the optimal PIGL and LinQuad forms are

the results generated by the PIGLOG form.

Table 4.15 Optimal PIGL Income-Compensated Price Elasticities

Milk
Butter
Cheese

Frozen
Other

Milk
Butter
Cheese
Frozen

Milk Butter Cheese Frozen Other
-0.27031 -0.05032 -0.0649 0.031623 0.045341
-0.61597 -0.2067 0.02556 0.22919 0.28365
-0.05782 0.00175 -0.03851 -0.0147 -0.01489
0.14913 0.088704 -0.07959 -0.12156 -0.14446
0.43288 0.22181 -0.16442 -0.29195 -0.34948

Table 4.16 LinQuad Form Income-Compensated Price Elasticities

Milk Butter Cheese Frozen Other
-0.25813 -0.04096 -0.0298 0.024379 0.035813
-0.50055 -0.14475 0.021841 0.15198 0.2274
-0.02551 0.00153 -0.00975 -0.00653 -0.00995
0.11523 0.058789 -0.03608 -0.07582 -0.11394
0.34212 0.17778 -0.11107 -0.23029 -0.34612

Other
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Table 4.17 PIGLOG (AIDS) Form Income-Compensated Price Elasticities

Milk Butter Cheese Frozen Other
Milk -0.00126 -0.00134 -0.00908 0.000818 0.003792
Butter -0.01643 -0.01747 -0.11799 0.010623 0.049262
Cheese -0.00777 -0.00826 -0.05581 0.005025 0.023301
Frozen 0.003864 0.004109 0.027751 -0.0025 -0.01159
Other 0.03622 0.038512 0.2601 -0.02342 -0.1086

4.2 Exact Welfare Measures

The focus of this study has been functional form and the estimation of demand.
The demand equations estimated are not embedded in a larger system of equations
designed to model the industry and reflect long term economic effects of a price change.
Furthermore, the dairy data being utilized here is annual data. As a result, the welfare
measures generated will reflect a one-time mean annual price change. Two theoretical
price changes are proposed that provide reasonable scenarios for changes that could result
from policy changes.

The Northeast Interstate Dairy Compact, now in place in the Northeastern U.S,,
provides an example of a simple policy that has a clear effect on retail dairy prices. The
NIDC increased the base rate paid to Northeastern U.S. producers for fluid milk. The
immediate effect of this increase was a reported $.20 to $.25 per gallon rise in the price of
milk at the retail level (IDFA 1998). In terms of 1995 per pound dairy prices this is an
increase of between 7 and 8%. This price increase appeared to persist at approximately

the same level for many months.
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Another measure that can be calculated in rough terms is the effect of completely
removing price discrimination from the dairy industry. As a result of federal milk
marketing orders, a premium is paid for fluid milk relative to milk for manufactured
products. This is another distortion of the dairy industry that has occupied economists
over the years. Present policy calls for the simplification of the system but not its
removal. LaFrance (1992,1993) estimated the change in prices that would take place if
federal support prices for fluid and manufacturing milk were equalized, removing price
discrimination in the dairy industry. Applying these changes to 1995 prices gives another
theoretical price regime grounded in the reality of the dairy industry.

The ev measures are money metrics of the per capita loss or gain as a result of the
policy decision in pre-policy dollars. The population of New England is roughly 13
million. New York, which has been considering joining the compact, would add 13
million. The total cost of the NIDC-related price increases to consumers is not a trivial
amount even for the low range estimates.

Table 4.18 Per Capita ev for Fluid Milk Price Increase, Per Capita $1995

Increase Optimal PIGL LinQuad PIGLOG (AIDS)
5% -4.44813 (0.029532) -4.43687 (0.02823) -4.40956 (0.088171)
10%  -8.83685 (0.064185) -8.81481 (0.060785) -8.81531 (0.236143)
15% -13.1681 (0.105702) -13.1338 (0.099223) -13.209 (0.450488)

Standard Errors in Parentheses

The ev results for the NIDC scenario appear quite similar across the range of
increase in the price of fluid milk. These numbers multiplied by whatever population

measure is used, represent the total cost to consumers of the corresponding increase. It
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can be argued that the transfers inherent in price changes are not necessarily problematic.
The purpose of NIDC is to support dairy producers, after all, and it came about through
the political process. However, ev is a combination of net transfers and deadweight loss.
When net transfers are removed from the ev measure to get the more important measure
of deadweight loss, the differences between functional forms become less subtle.

Table 4.19 Per Capita Deadweight Loss for Fluid Milk Price Increase, Per Capita
$1995

Increase Optimal PIGL LinQuad PIGLOG (AIDS)
5% -1.40619 (0.205869) -1.23967 (0.187532) -0.0435 (1.836718)
10% -2.82616 (0.410575) -2.53628 (0.381516) -0.28392 (3.511324)
15%  -4.25996 (0.616155)  -3.88983 (0.582125) 20.69534  (5.04185)

Standard Errors in Parentheses

Deadweight loss estimates for the PIGLOG version are more than 97% smaller
than the generalized PIGL model measure for a 5% increase in fluid milk price. For the
same price increase LinQuad underestimates deadweight loss by less than 12%.
Furthermore, the standard error for the PIGLOG form is large compared to the ev point
estimate. The policy ramifications are non-trivial. For total deadweight loss in New
England, the optimal PIGL model and LinQuad indicate $23.91 and 21.07 million lost
respectively. The PIGLOG form indicates a loss of .74 million.

The scenario of removal of price discrimination provides an even more dramatic
example of the potential difference in welfare measures across these three models. In this
scenario, fluid milk price drops by 14%, while butter, cheese and other dairy products
increase by 19%, 4% and 5.5% respectively. The price of frozen dairy remains

unchanged. The removal of price discrimination should have positive implications for
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both transfers and deadweight loss. Consumers will benefit more from the decrease of
fluid milk prices than they will suffer from the increases in most other dairy products

Table 4.20 Effect of Removal of Price Discrimination, Per Capita $1995

Equivalent Variation Deadweight Loss
PIGL 6.596522 (-0.096593) 2.961649 (0.646167)
LinQuad 6.595972 (0.092208) 2.587817 (0.571495)
PIGLOG 5.418765 (0.466145) -2.272864 (4.337326)

Standard Errors in Parentheses

The overall ev estimate for the PIGLOG model is no longer so close to the
generalized PIGL estimate. It underestimates ev by over 15%. While this is problematic,
the deadweight loss estimates are stunning. While LinQuad underestimates deadweight
loss by 13%, the PIGLOG version has the wrong sign. Contrary to economic theory, the
PIGLOG model indicates that removing price controls would have a substantial, negative
effect on market efficiency. The difference between the different models is also
substantial. If price discrimination affects 200 million Americans (not all states
participate in milk marke';ing orderé), the difference between the ev measures for the
optimal PIGL and PIGLOG models top one billion dollars. These results indicate that the
PIGLOG model may have serious drawbacks for use in estimating welfare measures if it

is seriously misspecified.
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CHAPTER FIVE

SUMMARY AND CONCLUSIONS

Applied demand estimation is a many-facetted problem. When choosing a
functional form, or developing a new functional form, a number of different issues must
be taken into consideration. The functional forms proposed in this thesis provide
reasonable solutions to some of the problems that trouble other extant functional forms.

The incomplete demand system approach provides a theoretically sound way of
limiting demand estimation to small groups of goods while avoiding the shortfalls of
separable specifications. Within this theoretical structure it is possible to find functional
forms that are practical models to estimate that reflect sound preference ordering.
LinQuad is such a functional form. LinQuad is linear in income and linear and quadratic
in prices. It avoids the problem of endogeneity of subgroup expenditure while providing
flexibility with regards to price and income effects. The LinQuad expenditure function is
the only quasi-expenditure that can produce demands with these characteristic and it
provides a theoretically sound way of recovering exact welfare measures.

An interest in testing the different specifications possible from the LinQuad
expenditure function led to a normalized and transformed expenditure function that
produces what we called the generalized PIGL form of LinQuad. This model nested both
the linear form, LinQuad and the AIDS-like PIGLOG form in the overarching form. The

PIGLOG form is identical to the AIDS model except in its use of income rather than
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subgroup expenditure as a right-hand side variable. While maintaining the exact
structure of the AIDS model the PIGLOG form avoids the simultaneity issues. An
argument can be made that this is a partial solution to one of the weaknesses of AIDS.

As an AIDS stand-in, the PIGLOG model did not fair well in tests comparing it
with LinQuad and the optimal generalized PIGL forms. The imposition of symmetry and
concavity restrictions were soundly rejected for the PIGLOG model. Autocorrelation
appeared to be a substantial problem. Similarity with the optimal generalized PIGL was
rejected for all three levels of theoretical restrictions. Finally, the ev measures for the
PIGLOG model bore no relation to the estimates from the optimal generalized PIGL
model, even producing a deadweight loss measure completely inconsistent with accepted
economic theory.

LinQuad, on the other hand, faired quite well relative to the optimal generalized
PIGL model. All restrictions were nhot rejected at at least the 1% level of significance.
Autocorrelation appeared to be a minor problem. Only the concavity-restricted model
was rejected in tests directly comparing LinQuad to the generalized PIGL model.
Finally, the ev measures for LinQuad were consistently close to values from the
generalized PIGL model and in both examples, slightly underestimated the “true”
measures.

These results clearly establish the superiority of LinQuad over the PIGLOG
model. They also raise questions as to the effectiveness of the AIDS model for modeling

demands and estimating welfare measures. LinQuad is as easy to estimate as the
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nonlinear AIDS model and avoids all of the problems of separable demand models.
Welfare measures are much easier to derive from LinQuad than an AIDS specification.

In fact, in light of the results reported here, the only decision is whether the
improved results for the generalized PIGL form are worth the increased model
complexity beyond the relatively simple, linear LinQuad form. The generalized PIGL
model is only slightly more complicated to estimate and will always give at least as good
results as LinQuad. The added flexibility of allowing the data to choose the degree of
curvature could prove even more useful on other data sets. The results of this research
indicate that one of these two models offers the best choice of functional form for applied

demand estimation.



Year

1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951

Dairy Product Prices and Nonfood Consumer Price Index

Milk

0.071
0.077
0.067
0.06
0.064
0.062
0.064
0.064
0.065
0.065
0.066
0.065
0.058
0.049
0.048
0.052
0.054
0.055
0.058
0.058
0.056
0.059
0.063
0.069
0.072
0.072
0.072
0.082
0.092
0.101
0.098
0.096
0.106

Appendix A Data Used in Estimation

Butter

0.641
0.662
0.489
0.452
0.527
0.493
0.521
0.506
0.532
0.538
0.525
0.438
0.339
0.262
0.262
0.298
0.34
0.374
0.384
0.328
0.307
0.342
0.391
0.45
0.496
0.471
0.477
0.674
0.764
0.823
0.689
0.692
0.7717

Cheese

0.395
0.385
0.316
0.305
0.347
0.336
0.348
0.349
0.358
0.378
0.366
0.339
0.276
0.226
0.221
0.232
0.25
0.262
0.273
0.25
0.235
0.242
0.281
0.326
0.352
0.358
0.354
0.476
0.56
0.623
0.571
0.567
0.645

Frozen

0.138
0.188
0.143
0.133
0.139
0.146
0.152
0.158
0.141
0.138
0.131
0.13
0.118
0.091
0.095
0.095
0.098
0.101
0.102
0.096
0.096
0.095
0.095
0.116
0.13
0.139
0.143
0.159
0.187
0.186
0.194
0.193
0.192

Other

0.136
0.13
0.118
0.096
0.104
0.098
0.098
0.099
0.099
0.096
0.094
0.087
0.078
0.065
0.062
0.064
0.067
0.073
0.073
0.069
0.066
0.067
0.075
0.085
0.096
0.095
0.096
0.11
0.125
0.141
0.126
0.122
0.138

Nonfood
CPI1
0.524
0.606
0.542
0.508
0.517
0.518
0.531
0.536
0.526
0.519
0.545
0.539
0.515
0.479
0.448
0.448
0.449
0.454
0.47
0.475
0472
0.473
0.487
0.521
0.536
0.557
0.569
0.594
0.649
0.696
0.703
0.711
0.757

77



1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992

0.111
0.11
0.108
0.108
0.111
0.115
0.117
0.118
0.121
0.122
0.121
0.12
0.121
0.12
0.128
0.133
0.138
0.142
0.148
0.152
0.155
0.169
0.203
0.203
0.214
0.216
0.228
0.255
0.277
0.293
0.294
0.296
0.299
0.303
0.302
0.307
0.314
0.339
0.376
0.363
0.377

0.812
0.754
0.691
0.676
0.692
0.713
0.712
0.723
0.72
0.735
0.724
0.723
0.73
0.742
0.808
0.83
0.837
0.847
0.867
0.878
0.874
0.919
0.947
1.031
1.271
1.343
1.489
1.684
1.892
2.038
2.084
2.108
2.159
2.182
2.19
2.177
2.165
2.14
1.999
1.942
1.942

0.664
0.662
0.631
0.631
0.634
0.639
0.64
0.64
0.664
0.706
0.703
0.706
0.726
0.746
0.835
0.872
0.89
0.939
1.008
1.055
1.087
1.208
1.464
1.533
1.732
1.784
1.87
2.098
2.318
2.509
2.572
2.615
2.639
2.688
2.701
2.764
2.849
3.068
3.423
3.464
3.534

0.193
0.192
0.188
0.185
0.185
0.189
0.19
0.191
0.189
0.189
0.188
0.186
0.183
0.179
0.183
0.188
0.188
0.189
0.197
0.2
0.2
0.213
0.251
0.285
0.298
0.314
0.334
0.371
0.421
0.465
0.47
0.479
0.494
0.511
0.519
0.533
0.545
0.572
0.61
0.639
0.652

0.143
0.14
0.133
0.131
0.135
0.14
0.145
0.146
0.152
0.153
0.15
0.148
0.148
0.152
0.159
0.169
0.172
0.178
0.189
0.2
0.203
0.227
0.291
0.311
0.346
0.367
0.384
0.42
0.465
0.503
0.518
0.533
0.546
0.568
0.572
0.585
0.589
0.6
0.605
0.605
0.605

0.775
0.79
0.795
0.797
0.811
0.838
0.857
0.873
0.888
0.897
0.908
0.92
0.932
0.945
0.967

1.044
1.101
1.167
1.221
1.258
1.307
1.437
1.571
1.675
1.784
1.912
2.13
2.44
2.706
2.884
2.983
3.113
3.233
3.286
3.401
3.542
3.703
3.9
4.074
4215
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1993
1994
1995

Year

1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947

0.377
0.391
0.391

1.662
1.602
1.612

3.306
3.316
3.352

0.627
0.652
0.665

0.569
0.579
0.591

First Four Moments of the U.S. Population Age Distribution
and Per Capita Disposable Income, $/yr.

Average
Age

28.256
28.338
28.388
28.451
28.548
28.644
28.764
28.917
29.067
29.244
29.438
29.679
29.9
30.135
30.378
30.63
30.86
31.088
31.308
31.498
31.671
31.847
32.008
32.141
32.189
32.282
32.406
32.524
32.43

Age Age Age
Variance Skewness Kurtosis
/10 /100 /10,000
38.246 46.55 37.923
38.348 46.247 37.928
38.489 46.333 38.118
38.692  46.595 38.399
38.843 46,752  38.613
38.993 46.894  38.832
39.177 46.887 39.009
30.302 46.701 39.066
39.42 46389 39.084
39.533 45923 39.066
39.607 45.398 39.002
39.699 44931 38.983
39.92 44.633 39.152
40.106 44.283 390.267
40267 43.843 39.334
40406 43.289 39.357
40.564 42.742 3942
40.715 42.153 39.484
40.881 41.539  39.591
41.107 40949 39.813
41.345 40388 40.078
41.533 39.863 40.281
41794  39.248 40.55
42.161 38.773 40.996
42,582  38.493 41.565
42915 38.058 41.99
43.373 37.625 42.551
43.761 37.32 43.015
44 415 37.757 43.99

Per Capita
Disposable
Income
631
654
508
541
616
610
636
651
645
653
683
605
516
390
362
414
459
518
552
504
537
568
689
863
972
1052
1066
1124
1171

4.343
4.46
4.582
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1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988

32.409
32.397
32.356
32.314
32.304
32.275
32.236
32.19
32.138
32.076
32.026
31.985
31.954
31.897
31.911
31.912
31.93
31.968
32.046
32.152
32.28
32.389
32.488
32.608
32.727
32.906
33.095
33.287
33.506
33.693
33.86
34.044
34.149
34.246
34.393
34.528
34.665
34.79
34.925
35.051
35.143

44.862
45.382
45.933
46.529
46.866
47.289
47.748
48.209
48.577
48.942
49.212
49.514
49.774
50.004
49.981
49.964
49.965
49.922
49.781
49.625
49421
49.251
49.181
49.097
49.012
48.878
48.725
48.627
48.475
48.425
48.402
48319
48.343
48.337
48.355
48.393
48.348
48.305
48.246
48.258
48.282

38.185
38.493
39.146
39.61
40.443
41.227
42.155
43.043
43.915
44.948
45.997
47.072
48.057
49.23
49.959
50.691
51377
51.925
52.21
52.285
52.074
52.092
52.213
52.035
51.858
51.403
51.007
50.798
50.207
49.614
48.995
48.22
47.665
47.191
46.087
45172
44224
43.425
42.577
41.752
40.919

44.607
45.322
46.161
47.003
47.419
47.994
48.644
49.293
49.813
50.372
50.814
51.266
51.65
52.024
52.039
52.039
52.052
51.973
51.712
51.409
51.028
50.738
50.641
50.552
50.462
50.273
50.057
49.925
49.636
49.554
49.54
49.468
49.571
49.669
49.707
49.79
49.741
49.717
49.68
49.717
49.734

1283
1260
1368
1475
1528
1599
1604
1687
1769
1833
1865
1971
2008
2062
2151
2225
2384
2541
2715
2877
3096
3297
3545
3805
4074
4552
4928
5367
5837
6362
7097
7861
8665
9566
10108
10764
11887
12587
13244
13849
14857
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1989
1990
1991
1992
1993
1994
1995

Year
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946

35.239
35.307
35.367
35.479
35.58
35.685
35.809

48.374
48.47
48.588
48.727
48.832
48.847
48.83

39.869
39.206
38.302
36.94
35.825
34.635
33.412

49.853
49.995
50.141
50.153
50.151
50.006
49.797

15742
16670
17191
18062
18552
19253
20063

U.S. Per Capita Consumption of Dairy Products, 1919-95
(Pound per Person per Year)

Milk
314.9
326.3
324
319.5
304.7
314.9
314.9
313.8
311.5
311.5
313.8
311.5
3104
314.9
313.8
300.1
302.4
304.7
304.7
302.4
305.8
304.7
307
331.9
3592
371.7
380.8
364.9

Butter
15.2
14.9
16.3
17.1
17.8
17.8
18.1
18.3
18.3
17:6
17.6
17.6
18.3
18.5
18.2
18.6
17.6
16.8
16.8
16.6
17.4

17
16.1
15.9
11.8
11.9
10.9
10.5

Cheese

4.8
4.6
4.6
4.8
5.1
5.4
5.6
5.6
5.6
56
59
59
5.7
5.7
5.8
6.1
6.6
6.8
7
7.5
7.9
7.9
7.9
8.4
7
7.1
9.3
9.2

Frozen
8.4
92
9.2
98
10.6
10.4
11.2
11
114
11.4
12.2
11.3
10.2
8
7.8
8.9
99
11.3
12.4
12.2
13.2
13.7
158
18.1
17.2
18.5
20.7
254

Other

11.9
10.5
11.4
12.6
13.8
13.8
14.2
15.1
15.2
16.1
18.1
17.9
17.4
17.8
17.4
18.9
20.4
20.7
219
22.8
234
25.2
25.6
26
272
241
29
32.7
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1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987

3433
328.5
326.3
335.7
3332
3325
328.1
3233
328.1
3303
324.7
319.2
312.5
301.7
2953
292.6
293.1
293.1
292.2
290.8
282.7
282.2
279.8
2717
274.6
275.6
271.5
2623
266.7
264.1
259.9
2573
2532
249.6
245.4
241.9
2423
2433
245.1
2447
24277

11.2
10
10.5
10.7
9.6
8.6
85
8.9

8.7
8.3
8.3
7.9
75
7.4
73
6.9
6.9
6.4
5.7
55
5.7
5.4
53
5.1
4.9
4.8
4.5
4.7
43
43
4.4
4.5
4.5
43
43
4.9
4.9
49
4.6
4.7

9.2
9.4
10
10.8
10.5
11
11.1
11.7
11.8
12.4
12.2
12.7
12.7
13
13.2
13.8
13.8
14.1
14.3
14.4
14.6
15.2
15.7
16.7
17.5
18.6
18.9
19.3
19
20.4
20.8
21.7
21.7
22.1
22.7
24.4
24.8
25.8
26.5
27.2
28

22.4
21
20.5
21.1
21.1
21.6
22.5
22.5
23.5
23.8
241
24.2
25.8
25.7
25.8
26.4
27
27.6
28.1
28.1
278
28.7
28.7
28.5
282
28
28
27.7
28.6
27.5
27.5
273
26.5
26.4
26.5
26.4
27.1
27.2
279
279
282

31.2
29.4
27.8
29.8
28
28
27.2
27
272
26.5
26.3
25.8
26.3
25.5
254
24.5
23
23.2
22.6
22.5
21.2
20.9
20.1
19.2
18.9
17.6
17.5
15.4
14.4
14.7
143
13.5
13.8
13.2
12.7
12.6
12.9
13.7
13.8
14.8
14.8
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1988
1989
1990
1991
1992
1993
1994
1995

Year

1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

238.7
240.5
2373
237
2348
230.8
229.8
226.7

White

89.62
89.7
89.71
89.72
89.73
89.74
89.75
89.76
89.77
89.78
89.79
89.8
89.8
89.8
89.8
89.8
89.8
89.8
89.8
89.8
89.8
89.8
89.76
89.72
89.68

4.5
4.4
4.4
42
42
4.5
4.8
4.5

Black

9.98
9.9
9.88
9.86
9.84
9.82
9.8
9.78
9.76
9.74
9.72
9.7
9.71
9.72
9.73
9.74
9.75
9.76
9.77
9.78
9.79
9.8
9.82
9.84
9.86

27.6
274
28.1
28.3
294
29.7
30.3
30.9

271
28.8
28.9
203
293
29
299
28.2

14.7
14.2
15.3
15
15.8
14.5
17.5
15.7

U.S Population Ethnic Makeup

Neither
White
nor Black

0.4
0.4
0.41
0.42
0.43
0.44
0.45
0.46
0.47
0.48
0.49
0.5
0.49
0.48
0.47
0.46
0.45
0.44
0.43
0.42
0.41
0.4
0.42
0.44
0.46

83



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984

89.64
89.6
89.56
89.52
89.48
89.44
89.4
89.32
89.24
89.16
89.08
89
88.92
88.84
88.76
88.68
88.6
88.5
88.4
88.3
88.2
88.1
88
87.9
87.8
87.7
87.6
87.43
87.26
87.09
86.92
86.75
86.58
86.41
86.24
86.07
85.9
85.7
85.5
85.3
85.1

9.88
9.9
9.92
9.94
9.96
9.98
10
10.05
10.1
10.15
10.2
10.25
10.3
10.35
10.4
10.45
10.5
10.56
10.62
10.68
10.74
10:8
10.86
10.92
10.98
11.04
11.1
11.17
11.24
11.31
11.38
11.45
11.52
11.59
11.66
11.73
11.8
11.85
11.9
11.95
12

0.48
0.5
0.52
0.54
0.56
0.58
0.6
0.63
0.66
0.69
0.72
0.75
0.78
0.81
0.84
0.87
0.9
0.94
0.98
1.02
1.06
1.1
1.14
1.18
1.22
1.26
1.3
14
1.5
1.6
1.7
1.8
1.9

2.1
22
23
2.45
2.6
2.75
2.9

84



1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995

84.9
84.7
84.5
84.3
84.1
83.9
83.6
83.4
83.2
83
82.8

12.05
12.1
12.15
12.2
12.25
12.3
12.4
12.45
12.5
12.55
12.6

3.05
32

3.35
3.5

3.65
3.8

4.15
43

4.45
4.6

85
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