Pretreatment Inspection

ATUS, TREATMENT FILTERS, DISINFECTION & DRIP

NAWT Inspection Is the 'Pretreatment' meeting Limits?

TreatmentPathogensNutrientsAcceptance

• BOD/TSS

OPERATIONAL & WATERTIGHT

Other

• FOG

CHECK WITH THE SERVICE PROVIDER

Aerobic Treatment Units

(ATU)

How do they work

WATERTIGHT~ AT RIGHT OPERATING LEVEL

Saturated environment

AerationDissolved oxygen (DO)

Aerobic Bacteria

Eat BOD & Settle out

Bubble pattern

Dissolved Oxygen [DO] in Clarifier

DO Testing

Meter Kit

Types of Operation

Suspended growth Attached growth

Typical Suspended Growth Reactor

Mechanical - Aspirator

Suspended growth ATU

Suspended growth ATU

Sequencing batch reactors

USEPA Manual, 1980

ON & OFF CYCLE

What should it look like?

Air operating

DO > 1.0 mg/l out of ATU

Brown color- Chocolate

• Black

• Clear

Musty odor

• Rotten eggs

• 50% in 30 min.

Effluent quality

30 Minute Settleability Test

Beaker with 10 even gradations
 Fill beaker with sample from aeration chamber.

Let stand for 30 minutes and read level of clear zone.

20 to 60% is ok.

% of Settling

Attached Growth ATU

Fixed film

BIOLOGICAL GROWTH (AVERAGE)

Mix of Design

Adaptive Mechanical Aerator

Introduces air mechanically into a treatment component Typically used for remediation

Attached Growth {Fixed film}

Air operating

DO > 1.0 mg/l out of ATU

Brown color- Chocolate

• Black

• Clear

Musty odor

• Rotten eggs

No Media Clogging

• Bridging

Effluent quality

FAST

Attached Growth ATU

Rotating Biological

Contactor

RBC

BRIDGING OF THE MEDIA

Review: True or False

□All ATUs use aeration to treat the wastewater.

- To inspect an ATU the DO should be > 1 mg/L coming out of the ATU.
- The effluent leaving an ATU should have a gray tinge and smell to identify healthy bacteria.

Filter types

- DesignSingle passRecirculating
- Media
- Sand
- Peat
- Constructed Wetlands
- •Synthetic

Media filters

Filter Checks

Other pieces Dosing Ponding Media Present • Settling • Plantings Drainage • Saturation

Other pieces

Use Pretreatment

•Tank

•Effluent screen

Dosing

Dosing

Does the pump operate

PressurePlugging

Dosing size

Maximum

• Minimum

Pressure Distribution

Lateral access

Peat filters- Commercial

Media Filter

Ponding

Ponding is a problemSingle passCWS

Media selection

- Peat
 - Depth
- Textile
 - Compaction
- •Wetlands

Plants

Constructed Wetland

Natural system

Seasonal performanceBOD/TSS/FecalN and P

VegetationIf part of Design

- No trees
- No Noxious weeds

Flow Path in RMF

Recirculating Valve Diagram

Media Filter- Drainage

Finished system

Appearance

Access

OperationalAll the pieces workingPerformance evaluation

Performance

Taste is NOT

Media Filters

Distribution operating

- Uniform
- Sound
- Pressure check

Media present

No ponding on Media Proper drainage Clear effluent

Review: True or False

Recirculating filters have a component to allow for removing flow from the process.

Sand filters and Peat filters effluent will look the same in a glass .

Media filters should be ponded for best performance.

Disinfection

Chlorination

- Is the tank in good condition?
- •Is there chlorine?

De-Chlorination

- Is the tank in good condition?
- •ls there ____?

Disinfection

Ultraviolet radiation

- Is the tube available?
- Is it working?
- Has it been maintained?
- Safe Electrical

Ozone

Delivery system

Does the pump work? On/ Off TDH Complete dose **GPM** Calibrate

Ryn a Rose

Drainback

Check valvePurge hole

Bottom

Is there a Alarm?

Does the alarm work?

Reset?
Second
circuit

Soil dispersal

Loading ratesSizingTreatment

Application methods • Gravity • Biomat?

• Pressure

Drip Emitters

Pressure Compensating or Non-Pressure Compensating emitters.

Controlled flow rate for emitters - Friction used to control flow

The operating pressure is typically 15-25 psi for non-pressure compensating and 15-45 psi for pressure compensating emitter systems, with water exiting the emitter at 0 psi.

Drip Filters

Types

- Screen
- Disc
- Sand

Remove particles greater than 100 microns

Protects emitters from plugging by particles in the effluent

Vacuum Breaker -

Clean the ball valve component • Be careful of scaring ball Make sure air can flow around valve

Drip Zone

Visual evaluation Uniformity of water distribution

- Vegetation uniformity • Type
 - Color

Inspection

Flow

Filters

• Clean

• Present

Flushing Air relief • Operating

Distribution

• Even

Review: True or False

Disinfection in typical systems takes place in the soil.

UV disinfection needs an ATU or Media filter to operate properly.

Drip systems operate with 100 micron filters to allow for long-term performance.

Questions